

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa106

Conference contribution :

Kanso, K. & Setzer, A. (2009). Specifying railway interlocking systems.(pp. 233-236). Swansea University.

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa106
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Proceedings of the
Ninth International Workshop on

Automated Verification of Critical Systems
(AVOCS 2009)

Specifying Railway Interlocking Systems

Karim Kanso Anton Setzer

3 pages

Specifying Railway Interlocking Systems∗

Karim Kanso Anton Setzer

Dept. Computer Science, Swansea University, Swansea, SA2 8PP, UK
email: {cskarim, A.G.Setzer}@swansea.ac.uk

Abstract: One of the Grand Challenges in Computer Science is to verify railway
interlocking systems [1]. We give a generic datatype of control tables and ladder
logic (2,3), and extract from these verification conditions (4). A proof of the cor-
rectness of these conditions is performed using induction and a datatype of reachable
states (5). Finally, some concluding remarks are presented (6). This specification
has been implemented in Agda2.

Keywords: verification, specification, dependent types, Agda2, railway, control
system, interlocking, ladder logic

Previously, [3] we developed a verification system that applied SAT solver technology to verify
arbitrary first order formulæ w.r.t. safety. This work builds upon previous work by formalising
what a control table is and what it means for an interlocking system to ratify a verification
condition.

1 Physical Layout

Initially, when designing a railway, it is required to fix a physical layout of the involved hardware,
i.e. track segments, signals, platforms, emergency systems, etc. These pieces of hardware have
attributes, i.e. track segments can be occupied or unoccupied and signals can be green or red.
Many techniques have been used to formally model the physical layout of a railway [4]. Layouts
must contain all identifiers of the components along with their relationships; they are viewed as
a signature for the interlocking. Let Layout be the type of physical layouts, and p : Layout.

2 Control Tables

Control tables are used to define the behaviour of the hardware in traditional railway signalling
systems; they are a set of rules/constraints that must be observed and are an abstract specification
for a portion of the railway. Responsibility of the safety of the railway is delegated to control
tables, which express for instance that a green signal is only shown when a given constraint is
met.

Control tables are sentences built over a physical layout, in our system we define a control

∗ This research is funded by Westinghouse Rail Systems, Chippenham, UK

1 / 3

Specifying Railways

table to be a list of relations, which formalise the constraints. Relevant signatures are:

data ControlTableEntryp where
route : RouteID→ Signal→ Signal→ List(Track)→ControlTableEntryp

< other relations >

ControlTablep = List ControlTableEntryp

An entry route(r,s0,s1, [t1, . . . , tn]) expresses that route r starts at signal s0, ends at signal s1, and
uses track segments t1, . . . , tn.

3 Ladder Logic

Interlocking systems are realised using a multitude of techniques; systems programmed using
ladder logic are the focus of this research. Ladder logic is a discrete time, linear system of
Boolean equations, relating Boolean valued inputs and internal state to Boolean valued outputs.
Ladder logic programs are represented using a transition function next : Internal × Input →
Internal between states, an output function out put : Internal× Input → Out put and an initial
internal state. In the following, let Ladder be the type of ladder logic programs, and l : Ladder;
Internal, Input and Out put are indexed by l. Notably, l is a model of a control table c iff l never
violates the constraints in c.

4 Verification Conditions

To determine whether a ladder logic program correctly refines a control table, verification is
required. Firstly, the datatype of correctness is defined as a relation between the input and output
of the system; Correctnessl ⊆ Inputl ×Out putl . Secondly, the verification condition type is
defined as a function from a control table entry to Correctnessl .

Veri fCondl
p =ControlTableEntryp→Correctnessl

An intersection between multiple correctness relations is used to construct combined correct-
ness relations. This technique can be used to verify all the control table.

Verification conditions are sentences built over a physical layout; they can be generated from
the relations in the control table by instantiating a template sentence. E.g. for a signal with only
one route, such as exist in some installations the route relation can be mapped to a correctness
relation which states “if a track segment in the route is occupied, then the first signal shows a red
aspect”.

f : Veri fCondl
p

f (route(rt,s1,s2, ts))(in,out)⇔
f old(∨, f alse,map((λx• in(x.occupied)), ts))→ out(s1.red)

Correctness conditions can be independent from the control table entries; this is particularly
useful when verifying general safety properties. E.g. a signal does not display both red and green
aspects at the same time1.
1 In practice the signalling policy in use could allow for a transitional period where both aspects are shown.

2 / 3

5 Correctness

Verification uses the principle of induction, working from an initial internal state at time 0 up to
time n. States might be unreachable causing false negatives during the verification. This problem
is avoided by using a datatype of reachable states.

Reachable states are defined using induction-recursion [2]. The initial state is reachable by
definition; from any reachable state at time t, after processing the inputs, state t + 1 is also
reachable. We obtain a type ReachableStatel and a function toInternall : ReachableStatel →
Internall . A proof of correctness is then a proof that the relation is not empty, i.e.

correctq
l : (r : ReachableStatel)→ (i : Inputl)→ q(i,out putl(toInternall(r), i))

where q : Correctnessl .

6 Concluding Remarks & Future Work

The above scheme has been implemented using the theorem prover and programming language
Agda22, which is based on constructive type theory (intuitionistic logic). We have verified simple
toy examples; to verify complex problems we intend to explore the possibility of linking Agda2
to a SAT solver. Also, a CASL implementation is planned.

We conjecture that an institution can be defined where the signatures are physical layouts (plus
a chosen logic signature), sentences are control tables (moreover a sentence is a formula built
using the chosen logic), models are ladder logic programs and the satisfaction relation is derived
from the correctness proof.

Bibliography

[1] Bjørner, D., TRain: The Railway Domain, in: Building the Information Society, IFIP Inter-
national Federation for Information Processing 156/2004 (2004), pp. 607–611.
URL http://www.springerlink.com/content/527p7237102w5741/

[2] Dybjer, P. and Setzer, A., Indexed Induction-Recursion, in: Proof Theory in Computer
Science, LNCS Lecture Notes in Computer Science 2183 (2001), pp. 93–113.
URL http://www.springerlink.com/content/rc3t3m7gkfnmpq3d/

[3] Kanso, K. and Moller, F. and Setzer, A., Automated Verification of Signalling Principles in
Railway Interlocking Systems, to appear in: ENTCS, (2009)

[4] Pnika, M., Formal Approach to Railway Applications, in: Formal Methods and Hybrid
Real-Time Systems, LNCS Lecture Notes in Computer Science 4700 (2007), pp. 504–520.
URL http://www.springerlink.com/content/c82275854v4k29q0/

2 http://wiki.portal.chalmers.se/agda/

3 / 3

