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Proof Theory and Martin-Löf Type

Theory

Anton Setzer

January 23, 2008

Abstract

We give an overview of the historic origins of ordinal theoretic proof theory.
We indicate why ordinal theoretic proof theory needs to be supplemented by a
second step, namely the proof of the well-foundedness of the ordinal notation
systems used in theories, for which we have an argument, that everything de-
rived in them is valid. Such theories serve as a substitute for Hilbert’s finitary
methods, and we explain, in which sense extensions of Martin-Löf type theory
(MLTT) are theories, which can be used for this purpose. Next we go through
some ordinals along the proof theoretic scale, and describe variants of MLTT
used in order to prove the well-foundedness of the ordinal notation systems
and therefore the consistency of theories of that strength. The variants of
MLTT discussed are basic MLTT with natural numbers, the extension by the
W-type, the extension by one universe, MLTT with general inductive-recursive
definitions (which includes the so called “red” Mahlo universe), the so called
“black” Mahlo universe, the hyper-Mahlo universe, the hyper-α-Mahlo uni-
verse, the autonomous Mahlo universe, and the Π3-reflecting universe. We
indicate how with increasing strength the insight into the correctness of the
variants of MLTT becomes more difficult, which is by Gödel’s incompleteness
theorem unavoidable.

-

1 Introduction

It is the goal of ordinal theoretic proof theory to reduce the consistency of theories
for formalising mathematical proofs to the well-foundedness of ordinal notation
systems. In order to obtain a satisfactory solution to the consistency problem,
this reduction needs to be supplemented by a second step, namely by proofs of
the well-foundedness of the ordinal notation systems in “safe” theories, for which
one has an argument that everything shown in these theories is valid. Because of
Gödel’s incompleteness theorem, a mathematical correctness proof only can prove
relative correctness, but never provide an absolute proof of correctness. In order to
obtain an argument which provides absolute trust, the only possibility is to have a
philosophical correctness argument. Although there are other theories, which could
serve as such safe theories, the theories, for which such arguments have best been
worked out at present are extensions of Martin-Löf type theory (MLTT).

In this article we will give an overview of the techniques used in this program
of reducing the consistency of mathematical theories to MLTT. We will start by
giving an introduction into the origins and some basic techniques of ordinal theoretic
proof theory. This will motivate the notion of the proof theoretic strength. We will
then indicate how to use MLTT in order to obtain a complete consistency proof,
which is necessarily based on a philosophical argument. Then we will go through
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some key steps on the proof theoretic scale: we consider the following variants of
MLTT: MLTT with natural numbers; the additional extension by the W-type; the
additional extension by one universe; MLTT with inductive-recursive definitions;
the red and black Mahlo universes. We will finally look briefly at the hyper-Mahlo,
hyper-α-Mahlo, autonomous Mahlo, and Π3-reflecting universes.
Notations. When introducing new notions, we write them in italic, if they occur
as text, and underline them, if they occur as mathematical formulae.

We write terms in functional style, e.g. in the form C a0 · · · an rather than in
mathematical style C(a0, . . . , an). In running text we put, if necessary, brackets
around it, i.e. we write (C a0 · · · an) instead of C a0 · · · an.

When developing the semantics of variants of MLTT, we will write [[A ]] for the
interpretation of set A. Although the standard model of type theory is the PER
(partial equivalence relation) model, where [[A ]] is a set of pairs of terms, namely
those, which are equal elements of A, we usually do for simplicity as if [[A ]] were
just a set of terms and identify therefore [[A ]] with its domain.

We write a[x := b] for the result of substituting in a the variable x by b. We
write a[x] for an expression a possibly depending on a variable x. Once we have used
a[x], a[b] denotes a[x := b], where we assume that any clashes between bound and
free variables are resolved by applying α-conversion (all α-equivalent expressions
are identified).

2 The Rôle of Type Theory in a Proof Theoretic
Program

Proof theory is a discipline of mathematical logic, which was founded by David
Hilbert ([40],[41]) at the beginning of the 20th century. At that time various axiom
systems for carrying out mathematical proofs had been developed, of which some
had turned out to be inconsistent. In order to guarantee that the axiom systems,
which were actually used, don’t contain any inconsistencies, Hilbert proposed to
prove the consistency of mathematical axiom systems [39]. He observed that, if
one shows the consistency of a theory for formalising mathematics in the same or
an even stronger theory, one has not achieved anything: if the original theory is
inconsistent, it proves everything, even its own consistency. So in order to achieve
something, one has to do more: namely show the consistency using methods, which
are considered to be safe. According to Hilbert, finitary methods were safe [40]. By
finitary methods he considered finitary calculations which can be carried out on a
piece of paper.

There are two main approaches for carrying out consistency proofs. One is
to introduce a model of the system in question in the Meta-theory. However, it
seems to be implausible to assume that one can prove this way the consistency of a
theory by using finitary methods, since such methods do not allow the use of sets.
Hilbert realized this and suggested therefore that one should instead analyse proofs
and show this way directly that it is not possible to derive in the formal system
in question a contradiction. He called the mathematical discipline, in which such
investigations are carried out, proof theory ([40],[41]).
Gödel’s second incompleteness theorem and the failure of Hilbert’s origi-
nal programme. In 1931 Gödel [35] showed in his second incompleteness theorem
that Hilbert’s original programme cannot be carried out – assuming minimal condi-
tions on a theory T, he could show that a consistent theory T does not prove its own
consistency. Since finitary methods should be formalisable in any reasonable the-
ory T, it follows that the consistency of theories fulfilling those minimal conditions
cannot be shown by finitary means. Most natural theories except for extremely
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weak ones fulfil the premise of the last sentence – Hilbert’s original programme had
failed.
Gentzen’s proof of the consistency of Peano Arithmetic. 1936 Gerhard
Gentzen ([32],[33]) showed the consistency of Peano Arithmetic (PA) in PRA (prim-
itive recursive arithmetic, as defined later) extended by quantifier free transfinite
induction up to ε0. This was the birth of ordinal theoretic proof theory. His meth-
ods have been improved since. The shortest and most elegant presentation is due
to Buchholz (e.g in [22]), which is as follows:

One develops PA in a one-sided calculus, the Tait calculus [97], in which we derive
finite sets of closed formulae Γ, where the intended meaning of Γ is essentially the
disjunction of the formulae in Γ. A statement A1, . . . , An ` B1, . . . , Bk is translated
into the one sided sequent form as ¬A1, . . . ,¬An, B1, . . . , Bk (this elegant approach
works only for classical logic).

We develop an infinitary theory PA∗, in which we will interpret proofs from PA.
PA∗ uses the Tait calculus, and formulae in PA∗ are closed formulae from PA. Each
formula corresponds to a finitary or infinitary disjunction or conjunction, and we
write A ' ∧i∈IAi for formula A being associated with the conjunction of Ai for
i ∈ I, similarly A ' ∨i∈IAi for the association of a disjunction. For a true prime
formula A we have A ' ∧i∈∅Ai (there is no Ai), for a false prime formula we have
A ' ∨i∈∅Ai, we have A0 ∧ A1 ' ∧i∈{0,1}Ai, A0 ∨ A1 ' ∨i∈{0,1}Ai, ∀x.A(x) '
∧i∈NA(i), ∃x.A(x) ' ∨i∈NA(i). By the deMorgan rules we can consider negation
as a defined operation (assuming we have for each atomic formula its negation as
an atomic formula as well). Note that the formulae used are finitary expressions,
which are associated with possibly infinitary conjunctions and disjunctions. When
writing ∧i∈IAi or ∨i∈IAi, we mean in the following any formula A s.t. A ' ∧i∈IAi

or A ' ∨i∈IAi, respectively.
PA∗ has 3 rules:

Γ, Ai (all i ∈ I)
(∧ − intro)

Γ,∧i∈IAi

Γ, Ai (some i ∈ I)
(∨ − intro)

Γ,∨i∈IAi

Γ, A Γ,¬A
(Cut)

Γ
The formula A in the rule (Cut) is called the cut formula of this rule. Deriva-

tions in PA∗ are well-founded derivations constructed from those rules, where well-
foundedness means that there is no infinite descending sequence in the proof tree.

One can see that PA∗ allows to interpret the logical rules of classical logic. The
assumption rule (in standard sequent calculus written as A ` A) reads ¬A,A and
is provable in this calculus by induction on the rank of A (where the rank is the
number of logical connectives in A – note that the formulae are closed formulae
from PA, which are finite expressions). For instance, the step from ¬A(n), A(n) for
all n ∈ N to ¬(∀x.A(x)),∀x.A(x), which is ∃x.¬A(x),∀x.A(x), reads

· · ·
¬A(n), A(n)

∃x.¬A(x), A(n) · · · (n ∈ N)
∃x.¬A(x),∀x.A(x)

By ∨-introduction we obtain immediately A ∨ ¬A as well.
Modus Ponus, which derives from A→ B, which is ¬A ∨B, and A the formula

B, is interpreted as follows (we use here the fact that PA∗ is closed under weakening,
i.e. from a proof of Γ, we can obtain a proof of Γ,∆; this is used here to weaken the
proof of A to a proof of A,B; note that ¬(¬A ∨B) = A ∧ ¬B):

¬A ∨B
A ¬B,B
A ∧ ¬B,B

(Cut)
B
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Similarly, arithmetical and equality axioms can be interpreted. True atomic formu-
lae correspond to the empty conjunction, which is provable by the rule (∧ − intro)
with no premises in this instance; this allows then by the rules for ∧ and ∨ to
prove all true propositional closed formulae. By the infinitary introduction rule
for ∀ we can prove all true closed formulae of the form ∀x.A(x), where A(x) is
quantifier free. This allows as well to prove the equality axioms (where congruence
s = t→ A(s) → A(t) is restricted to quantifier free formulae, which is sufficient to
prove congruence for all formulae). Now we can interpret proofs in PA as infinitary
proofs in PA∗:

The only principle we haven’t interpreted in PA∗ yet is the induction rule. So
assume PA ` A(0) and PA ` ∀x.A(x) → A(x + 1), from which the induction
rule derives PA ` ∀x.A(x). By induction hypothesis we have PA∗ ` A(0) and
PA∗ ` ∀x.A(x) → A(x + 1). Then we obtain in PA∗ proofs of A(n) for all n ∈ N.
One can easily show (∀x.A(x) → A(x+1)) → (A(n) → A(n+1)) for all n, therefore
we obtain A(n) → A(n + 1). Now using iterated Modus Ponus, we can, using
PA∗ ` A(0), prove PA∗ ` A(n) for all n ∈ N. By ∧-introduction we obtain therefore
PA∗ ` ∀x.A(x). Note that this proof has infinite height, since, in order to prove the
premise A(n), at least n applications of Modus Ponus were used.

The cut rank of a proof in PA∗ is the supremum of the rank of cut formulae
occurring in it. One can see that the cut rank of a proof in PA∗, which is the
translation of a proof in PA, is finite.

If we omit the cut rule, PA∗ is consistent, since falsity is interpreted as the empty
disjunction, and there is no rule for deriving the empty disjunction. Therefore, in
order to prove the consistency of PA, it suffices to show that from each proof of
falsity with finite cut rank we obtain a cut free proof of falsity. In fact, the cut
elimination result holds for arbitrary proofs of finite cut rank (the theorem can be
extended to infinite cut rank as well) in PA∗: all proofs can be transformed into
cut free proofs of the same set of formulae.
The height of well-founded trees and ordinal notation systems. The proof
of cut elimination is carried out by induction over the (well-founded) derivations.
Since we have used infinitary proofs, the height of a proof can no longer be measured
by a natural number. Proofs are well-founded, and the height of well-founded trees
can be measured by ordinals. In set theory, ordinals form a class Ord, which is well-
ordered (which means linearly ordered and well-founded), so there are no infinitely
descending sequences. For any other well-ordered set (A,≺) we can find an ordinal
α such that ({β ∈ Ord | β < α}, <) (which is equal to α) is isomorphic to (A,≺). In
this situation α is called the order type of (A,≺). Using this fact one can derive that
the height of any well-founded tree, which is a set, can be measured by a unique
ordinal α.

Ordinals from set theory are needed only for heuristic reasons – in ordinal the-
oretic proof theory one works with ordinal notation systems instead. An ordinal
notation system is a primitive recursive subset OT of N together with a primitive-
recursive binary relation ≺ s.t. (OT,≺) is well-ordered. Note that elements of OT
are therefore just finitary objects. Any a ∈ OT denotes the ordinal α, where α is
the order type of {b ∈ A | b ≺ a} – this relates ordinal notations to set theoretic
ordinals.

Gentzen was able to replace the induction over proof trees, which is needed in
the proof of the cut elimination theorem for PA∗, by transfinite induction over an
ordinal notation system, the order type of which is denoted by ε0. All infinitary
derivations can be replaced by finitary objects (Gentzen worked directly in a finitary
system), the most elegant approach for achieving this is due to Buchholz ([22]).

All other arguments can be carried out in primitive recursive arithmetic PRA
(which is PA extended by symbols for primitive recursive functions and their defin-
ing axioms, and induction restricted to quantifier free formulae), which is usually
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considered as a formalisation of Hilbert’s finitary methods. Furthermore, transfinite
induction over ε0 can be restricted to quantifier free formulae. Gentzen proved the
consistency of PA by using PRA extended by quantifier free transfinite induction
up to ε0. It is easy to convince oneself directly that transfinite induction up to ε0
is a valid principle, and in this sense Gentzen obtained a consistency proof of PA.
Proof theoretic strength. Since PRA can be interpreted in PA, PA extended by
transfinite induction up to ε0 proves the consistency of PA. Therefore, by Gödel’s
incompleteness theorem, PA does not prove transfinite induction up to ε0 (unless it
is inconsistent). One can show that for any α < ε0 PA proves transfinite induction
up to α. We define the proof theoretic strength |T| of a theory T as the supremum of
all α s.t. T proves transfinite induction up to α (more precisely one needs to restrict
oneself to so called natural ordinal notation systems). Then we obtain |PA| = ε0.
The need for a constructive foundation of proof theory. Gentzen’s approach
has later been extended to systems of increasing strength and the most powerful
result was the analysis of second order arithmetic restricted to the comprehension
axiom for Π1

2-formulae by M. Rathjen ([65],[66],[73],[74]) and, independently, T.
Arai ([3],[4],[5],[6],[7],[8]). In fact, Rathjen has carried out an analysis up to the
strength of (Π1

2 − CA) + (BI), but at present the fully published versions reach
(∆1

2 − CA) + (BI) + (Π1
2 − CA)−. Here (Π1

2 − CA) is the comprehension axiom for
Π1

2-formulae, other comprehension axioms are denoted similarly, (Π1
2 − CA)− is the

parameter free Π1
2-comprehension axiom, and BI stands for Bar induction. T. Arai

has carried out an analysis up to the strength of (Σ1
3 − DC) + (BI) (DC stands

for the axiom of dependent choice), but most of his work beyond Kripke-Platek set
theory plus Π3-reflection exists at present only in the form of (carefully worked out)
preprints.

With increasing proof theoretic strength the ordinal notation systems used be-
come increasingly complicated, and it is no longer possible to get a direct insight
into their well-foundedness. (There is an approach [85, 87] by the author called
ordinal systems, to obtain intuitive arguments for as strong as possible ordinal no-
tation systems directly.) What can be done instead is to prove the well-foundedness
in another theory, a theory TGood, for which we have a more direct insight into
that all its theorems are valid. If PRA can be interpreted in those theories, which
is expected, we obtain that TGood proves that T is consistent. This way we obtain
therefore a consistency proof of T, assuming we believe that everything proved in
TGood is valid.

The most successful (but not only) theories providing such a direct insight into
their validity are constructive theories, and at present the best developed theories
for this purpose are extensions of Martin-Löf Type Theory (MLTT). The argument
that everything proved in MLTT is valid is given by meaning explanations. Meaning
explanations rely substantially on the philosophy of language, which goes beyond the
author’s expertise, and therefore no meaning explanations are given in this article.
We note that at present no meaning explanations have been given for theories of
strength the black Mahlo universe and beyond.

One should note that there is another main approach to providing theories, which
could serve as TGood, namely Feferman’s theories of explicit mathematics [31]. How-
ever, their philosophical foundations are not as well developed, and most research on
these theories has been focused on classical and therefore non-constructive variants.

Therefore, MLTT can be used as a substitute for Hilbert’s finitary methods.
In order to prove the consistency of strong theories for carrying out mathematical
proofs we need therefore proof theoretically strong extensions of MLTT.

For this program we only need to prove lower bounds for the proof theoretic
strength of MLTT. However, in order to determine the limits of a certain exten-
sion, it is important to know as well an upper bound. Therefore, a constructive
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underpinning of proof theory is achieved by developing proof-theoretically strong
extensions of MLTT, for which we have an insight into their correctness, and by
determining their precise proof theoretic strength.

Note that this is as well of relevance for a full constructivist, who is only in-
terested in proofs in constructive theories. A constructivist should be interested in
proving as many theorems as possible, and therefore has an interest in obtaining an
as strong as possible constructive theory. It is as well important to compare this
strength with non-constructive theories, in order to determine the limits of what
can be proved in the constructive theory.

3 From Natural Numbers to Universes

The basic framework of MLTT. For historic reasons, the lowest type level in
MLTT is called “Set”. Outside MLTT this type level will usually be denoted by
“Type”, whereas in MLTT “Type” denotes a type level on top of Set. We will
not make use of “Type” until we reach the theory of inductive-recursive definitions.
The use of Type outside MLTT explains, why we will, as usual in type theory, refer
later to Π-types, Σ-types etc., even so they are elements of Set and should therefore
be called Π-sets, Σ-sets, etc.

In MLTT one has non-dependent judgements A : Set (A is a set), A = B : Set
(A and B are equal sets), a : A (a is an element of set A), and a = b : A (a
and b are equal elements of set A). Furthermore, we have dependent judgements
x1 : A1, . . . , xn : An ⇒ θ, where θ has the form of a non-dependent judgement, but
might depend on x1, . . . , xn. Here Ai might depend on x1, . . . , xi−1. We usually
write capital Greek letters Γ,∆ for contexts of the form x1 : A1, . . . , xn : An.

When introducing sets by declaring what their elements are, we will in the
following mean in fact canonical elements of these sets. Canonical elements are
those, which are in head normal form, i.e. they start with a constructor. Arbitrary
elements of such a set are those, which reduce to canonical elements.
The basic theory of MLTT. Basic MLTT (note that Martin-Löf usually adds N,
the W-type, and universes to his type theory) consists of the rules for the following
sets, which we call the basic set constructions:

• the finite sets Nn having n elements An
0 , . . . ,A

n
n−1;

• the Σ-type Σx : A.B[x], the elements of which are pairs (p a b), where a : A
and b : B[a];

• the Π-type Πx : A.B[x] (dependent function type) with elements λy.t[y] s.t. y :
A⇒ t[y] : B[y]; we define A→ B := Πx : A.B for some fresh variable x, and
see that the non-dependent function type is an instance of the Π-type;

• the disjoint union A+B of sets A + B with elements (inl a) for a : A and
(inr b) for b : B;

• the identity type (a =A a′) for A : Set, a : A, a′ : A, with element refl a :
a =A a for a : A; (a =A a′) stands for the proposition that a and a′ are equal
elements of A.

MLTT with natural numbers. The weakest type theory we consider is MLTT
extended by the rules for the set of natural numbers N, and a microscopic universe
Atom. Atom is needed, since without it one can show that one cannot prove Peano’s
fourth axiom, namely ¬(0 =N 1). In order to define Atom, we first give better names
to N2 and its elements by defining Bool := N2, and calling its two elements tt and ff.
Then the rules for Atom express that, depending on b : Bool, we have Atom b : Set,

6



with equality rules Atom ff = N0, Atom tt = N1. Note that Atom converts a
Boolean value into the corresponding atomic formula (therefore the name Atom):
(Atom b) is inhabited (i.e. provable) if and only if b is true. The introduction
rules for N express that it contains 0, and that, whenever n : N, then S n : N.
The elimination rule for N corresponds to the principle of induction (or primitive
recursion into an arbitrary dependent type). Let the resulting type theory be called
MLTT + Atom + N.

It is easy to show that all formulae provable in Heyting Arithmetic HA (which
is PA with classical logic replaced by intuitionistic logic; we have |PA| = |HA|)
are provable in MLTT + Atom + N as well, and from this fact one can derive
|MLTT + Atom + N| ≥ |HA|. Furthermore, each judgement Γ ⇒ θ provable in
MLTT + Atom + N can be interpreted as a closed provable formula in HA, from
which one can derive that |MLTT+Atom+N| ≤ |HA|. Therefore we have |MLTT+
Atom + N| = |HA| = |PA| = ε0. Note that we have therefore reduced PA to an
extension of MLTT and therefore given a constructive justification of PA.

If one looks at this type theory from a consistency point of view, one observes
that one has to understand first the basic setup of type theory. Once one has done
this, the only problematic construction which remains to be understood is the set
of natural numbers N. In order to understand this set, one needs to understand
the meaning of a least set closed under finitary introduction rules. This is rather
unproblematic, since each element of N can be introduced by only finitely many
applications of the introduction rules. Note that there is some analogy with time:
if we start with 0 and in regular time intervals apply the successor function to this
element, we will reach each natural number after a finite amount of time.
The W-type. The next step to increase the strength of MLTT is the addition of
the W-type. Assume A : Set, x : A ⇒ B[x] : Set. Then the formation rule for the
W-type expresses that Wx : A.B[x] : Set. The elements of Wx : A.B[x] are labelled
well-founded trees, with labels in A, where nodes with label a : A have branching
degree B[a]. So whenever we have a : A and f : B[a] → Wx : A.B[x], we can
introduce a new element (sup a f) : Wx : A.B[x]. Here (sup a f) is a tree with
root (sup a f), which is labelled with a, has therefore branching degree B[a], and
subtrees (f b) for b : B[a]. Let MLTT + Atom + N + W be the extension of the
previous theory by the rules for the W-type.

We introduce a standard model of this type theory. The most difficult con-
struction is to interpret the W-type. We define [[Wx : A.B ]] := [[ W ]]([[A ]], λa ∈
[[A ]].[[B ]]x7→a). Here [[W ]] takes a set A of terms and a function F , mapping A to
a set of terms, and returns the least set X of terms closed under reductions, such
that, if a ∈ A and f ∈ F (a) [[→ ]]X, then (sup a f) ∈ X. Here f ∈ F (a) [[→ ]]X
means that for x ∈ F (a), f x ∈ X. Closure under reduction means that if b is a term
which reduces to c ∈ X, then b ∈ X. More precisely the above has to reformulated
in terms of PERs rather than sets of terms. If we unfold the operators [[W ]] and
[[→ ]] in order to obtain a direct definition of [[ Wx : A.B ]], we see that [[ Wx : A.B ]]
can be interpreted as a set defined by a strictly positive inductive definition.

Using this idea one can interpret all statements provable in MLTT+Atom+N+W
in the theory of finitely iterated inductive definitions ID<ω, and therefore obtain
|MLTT + Atom + N + W| ≤ |ID<ω|. Here ID<ω extends PA by adding predicate
symbols indexed by strictly positive formulae and axioms stating that the sets given
by those predicates are the least fixed points given by the operators corresponding to
those formulae. (See [23] for a monograph on the proof theory of iterated inductive
definitions.)

It is known [23] that the classical theory ID<ω has the same strength as the the-
ory IDint,O

<ω , which is the restriction of ID<ω to intuitionistic logic, and where we take
as inductive definitions only the predicates corresponding to the nth constructive
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number classes. An easy way to introduce those number classes Oi is to refer to their
representation in type theory. There we define O0 := N0 (the empty set), O1 := N1

(the singleton set), O2 := N, and for n ≥ 3 On := Wx : Nn.B[x], where B[An
i ] = Oi.

(More precisely we define B[x] using the identity type in such a way that B[An
i ] is

isomorphic to Oi.) Then the nth constructive number class can be represented as
On+1. There is a straightforward encoding of Oi as a set O′

i of natural numbers,
and O′

3 turns out to be Kleene’s O. O′
n+2 can be modelled by an n-times nested in-

ductive definition. IDint,O
<ω is the theory having as inductive definitions exactly those

defining O′
n+2 for n ∈ N. It is easy to model IDint,O

<ω in MLTT + Atom + N + W,
and we therefore obtain |ID<ω| = |IDint,O

<ω | ≤ |MLTT+Atom+N+W| ≤ |ID<ω|. It
is known as well that |(Π1

1 −CA)0| = |ID<ω|. Here (Π1
1 − CA)0 is the second order

theory of Π1
1-comprehension with induction formulated as an axiom, i.e. induction

can only applied to sets definable by comprehension. Since all proof theoretic equiv-
alences can be shown in HA (although this is not done explicitly, it is well known
in the proof theoretic community that in principle it can be done) and therefore as
well in MLTT + Atom + N + W, it follows that MLTT + Atom + N + W proves
the consistency of approximations of ID<ω, IDint,O

<ω , (Π1
1 − CA)0, and therefore we

obtain a constructive consistency proof for those theories. By the results of reverse
Mathematics (see for instance the monographs [94, 95]) it is known that (Π1

1−CA)0
allows to prove almost all theorems of ordinary mathematics, so already at this stage
most of mathematics can be secured constructively.
Relationship to Kripke-Platek set theory. For the understanding of the proof
theory of further extensions of type theory, it is important to understand the re-
lationship to extensions of Kripke-Platek set theory ([55, 17, 42]) and admissible
ordinals. One approach to introducing admissible ordinals (we follow here [17], p.
3) is to define an idealised computer, which performs computations involving less
than α steps. The functions F from ordinals to ordinals computed by such a com-
puter are called α-recursive. An ordinal α is admissible, if for every α-recursive
function F we have that α is closed under F , i.e. F � α : α → α. Barwise [18] has
shown that for any admissible ordinal there exist a structure M with a definable
pairing function such that α is the limit of all closure ordinals of first-order positive
inductive definitions in M, and that for any such M this limit is admissible.

Kripke Platek set theory (KP) is a weak axiomatisation of set theory. It is
designed in such a way that in the constructible hierarchy we have Lα is a model
of KP if and only if α is admissible. (Lα is the αth constructible set as introduced
by Gödel [36] – L :=

⋃
α∈Ord Lα forms a model of ZFC + GHC). One can easily

show that the height of O2+i is the ith admissible ordinal τi, sometimes denoted
by ωck

i . In general we have that, if [[A ]] ∈ Lα, and if for a ∈ [[A ]] we have
[[B ]]x7→a ∈ Lα, then [[Wx : A.B ]] ∈ Lα+ . Using this idea one can develop a model
of any approximation of MLTT + Atom + N + W in the theory KPl. Here KPl is a
variant of KP, which essentially formulates the existence of finitely many admissible
ordinals, so if τ<ω := supn<ω τn, then Lτ<ω

is the standard model of KPl. Then
one can see that |KPl| = |ID<ω|, and we obtain therefore a constructive consistency
proof of KPl.

If one looks at MLTT + Atom + N + W from a consistency point of view, we
observe that one needs to understand in addition to the constructions studied before
the W-type. For this we need to understand Wx : A.B as the least set closed under
the introduction rule, which introduces elements of the form (sup a f). This is much
more problematic than understanding N as discussed before, since the elements can
no longer be introduced in finitely many steps. Note as well that the analogy with
time, as we had it for the natural numbers, is broken – one needs to understand the
analogy of some kind of transfinite time, which goes beyond our direct experience.
Universes. The next set construction added to type theory, which substantially
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increases its strength, is a universe. A universe is a family of sets. This is given by
a set U : Set of codes for sets, together with a decoding function T, s.t. u : U ⇒
T u : Set. Then (T u) is the set denoted by the code u.

The introduction rules express that U is closed under the previous set construc-
tions Nn, Σ, Π, +, =, N, W, which we call the standard set constructions. This is
expressed in case of closure under N as follows: we have a code N̂ : U with equal-
ity rule T N̂ = N : Set. In case of closure under the W-type we have: if a : U,
b : T a→ U, then Ŵ a b : U, and T (Ŵ a b) = Wx : T a.T (b x) : Set.

In the original formulation by Martin-Löf there are no elimination rules for
universes. One can add such rules, but they do not add any strength to the theory.
In fact, it turns out that these rules are not very useful. If one, for instance, added
another universe U′ : Set together with u : U′ ⇒ T′ u : Set to the type theory,
such that U′ has the same closure properties as U (with constructors N̂′, Ŵ′ etc),
then the elimination rules don’t seem to allow to define a function f : U → U′

s.t. f N̂ = N̂′, f (Ŵ a b) = Ŵ (f a) (λx.f (b x)), unless one extends type theory
substantially (it is believed that this is not possible, but this fact hasn’t been shown
yet). Let MLTT + N + W + U be the extension of MLTT + Atom + N + W by the
rules for a universe closed under the W-type, and by omitting the rules for Atom
(Atom is definable using the universe).

The universe as introduced above is the one originally introduced by Martin-Löf
([47]), which we call the standard universe. (Martin-Löf considered in his book [47]
finitely iterated universes as well). One can consider universes with different closure
properties. In its most general form we obtain the concept of an inductive-recursive
definition, as discussed in the next section.

Because of their closure under the W-type, standard universes form some kind of
inductive definitions, which is closed under the step to the next inductive definition.
More precisely, universes correspond to recursively inaccessible ordinals. Recursively
inaccessible ordinals are admissible ordinals I, which are closed under the step to the
next admissible ordinal, i.e. if α < I, then α+ < I, where α+ is the next admissible
ordinal above κ.

Richter has shown ([76], see as well [1] Prop. 3.5.1, [43]) that the first recursively
inaccessible is the limit of the closure ordinals of [Π0

1,Π
0
0]-non-monotone inductive

definitions. An operator is here a function from sets to sets. For any operator
Γ we define by recursion on the set theoretic ordinals Γα := Γ(Γ<α) ∪ Γ<α where
Γ<α =

⋃
β<α Γβ . The closure ordinal of an operator Γ is the least α s.t. Γ(Γα) = Γα

(which can be shown in ZFC to exists by a cardinality argument, since (Γα)α∈Ord

form an increasing sequence of subsets of N). A [Π0
1,Π

0
0]-non-monotone operator

is an operator Γ s.t. Γ(X) = {x ∈ N | x ∈ Γ0(X) ∨ (Γ0(X) ⊆ X ∧ x ∈ Γ1(X))},
where Γ0 is given by a Π0

1-formula and Γ1 by a Π0
0-formula. So iteration of Γ

means that we iterate Γ0, until we have reached a fixed point. Then we apply
Γ1 to it. Then we continue applying Γ0, until we reach the next fixed point, etc.
This characterisation of the first recursively inaccessible ordinal as the limit of such
closure ordinals makes precise the statement that the first recursively inaccessible
corresponds to an inductive definition closed under the step to the next inductive
definition.

We will not make use of this characterisation of the first recursively inaccessi-
ble ordinal, but illustrate, in which sense a recursively inaccessible ordinal occurs
naturally when constructing a model of MLTT + N + W + U: We define by recur-
sion on α sets of terms Uα and functions Tα, mapping elements of Uα to sets of
terms, s.t. (Uα,Tα)α∈Ord is an increasing sequence of family of sets. This means
that, if α < β, then Uα ⊆ Uβ and Tβ � Uα = Tα. Let U<α =

⋃
β<α Uβ , sim-

ilarly for T<α. Then Uα is defined by closing (U<α,T<α) under the one step
application of the closure operators for the universe and under reductions. So
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we have if a reduces to b ∈ U<α, then a ∈ Uα and Tα(a) = T<α(b). N̂ ∈ Uα

and Tα(N̂) = [[ N ]]. If a ∈ U<α and b : T<α(a) [[→ ]] U<α, then Ŵ a b ∈ Uα

and Tα(Ŵ a b) = [[W ]](T<α(a), λy ∈ T<α(a).T<α(b y)). Then we have that
Uα,Tα ∈ Lτ1+α

. The reason why we need to refer to τ1+α is that Tα(Ŵ a b) is
obtained by iterating the operator for inductively defining the W-type up to the
next admissible ordinal, so in each step of the construction of the universe, we have
to go to the next admissible ordinal.

We can define [[ U ]] = U<I, [[ T a ]] = T<I(a), where I is the first recursively
inaccessible ordinal. The main case in showing that [[ U ]] is closed under the intro-
duction rule for the universe is to prove that if a ∈ [[ U ]] and b ∈ T<I(a) [[→ ]] [[ U ]],
then Ŵ a b ∈ [[ U ]]. This can be shown using the fact that T<I(a) ∈ Lγ for some
γ < I (using the fact that I is closed under λα.τα) and the fact that I is admissible,
from which one can deduce that a ∈ U<α and b ∈ T<α(a) [[→ ]]U<α for some α < I,
so Ŵ a b ∈ Uα ⊆ [[ U ]].

Using this construction (see [81, 91] for details) the author has given a model
of MLTT + N + W + U in the theory KPI+. Here KPI+ is a variant of KP, which
formalises the existence of one recursively inaccessible ordinal and finitely many ad-
missible ordinals above it. We therefore obtain that |MLTT+N+W+U| ≤ |KPI+|.
The author has shown using a technically complex well-ordering proof ([81, 84, 83])
that this bound is sharp, so we have |MLTT + N + W + U| = |KPI+| = ψΩ1(ΩI+ω).
Here Ωα = ℵα, and ψκ is the collapsing function, which collapses ordinals to ordi-
nals < κ. ψκ is the main function used in impredicative ordinal notation systems
and has a technically difficult definition. I is the first inaccessible cardinal. With
some effort cardinals can be replaced by their recursive analogues (admissibles and
limits of admissibles; see [79]). We note here that a variant of this theory has been
analysed [37] by E. Griffor and M. Rathjen. Note that the above gives a construc-
tive justification of KPI+, and, since the theories (∆1

2 − CA) + (BI) (second order
analysis with comprehension restricted to ∆1

2-formulae and the addition of bar in-
duction) and KPI (KP plus inaccessibility of the universe) are proof theoretically
slightly weaker, as well of those two theories.

Many more types have been added to MLTT, but the W-type and extended
universes are the main ingredients of standard extensions of MLTT, which add
proof theoretic strength. E. Palmgren has added superuniverses ([51], (Rathjen
[68, 70] has analysed the variants one obtains by omitting the W-type, which are
very weak) and higher type universes to type theory ([53]), which go substantially
beyond the theory above, but are instances of indexed inductive-recursive definitions
as discussed in the next section.

From a consistency point of view it seems that once one has accepted the W-
type, it is easy to accept as well a universe. A universe is, although technically
slightly more complicated than the W-type, nothing but an inductive definition, in
which we define, whenever we have introduced a new element, recursively T applied
to this element, and make use of T applied to previous elements.

4 Inductive-Recursive Definitions and the Mahlo
Universe

The logical framework. The theory of inductive-recursive definitions is best
introduced using the logical framework (LF). There we have two type levels, namely
Set and Type. We have Set : Type, and if A : Set then A : Type.

Set and Type are closed under the LF dependent function type (x : A) → B[x].
So if A : Type, and x : A⇒ B[x] : Type then (x : A) → B[x] : Type, similarly with
Type replaced by Set. (x : A) → B[x] has essentially the same rules as Πx : A.B[x],
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and in addition the η-rule. Elements introduced by the introduction rule are denoted
by (y)b[y] where y : A ⇒ b[y] : B[y]. We will not use the Π-type in this article in
the presence of the LF, and redefine, when using the LF, λy.b[y] := (y)b[y], which
is a more readable notation, and A→ B := (x : A) → B for some fresh variable x.

In order to easily formulate the theory of inductive recursive definitions, one
closes Set and Type as well under the dependent sum type (x : A)×B[x] with the
same formation rule as (x : A) → B[x]. (x : A) × B[x] has essentially the same
introduction, elimination and equality rules as Σx : A.B[x], and in addition the
η-rule. Elements introduced by the introduction rule are denoted by 〈a, b〉 : (x :
A) × B[x] for a : A and b : B[a], and the elimination rule is given as projections:
for a : (x : A)×B[x] we have π0 a : A and π1 a : B[π0 a].

We add as well {∗} : Set, which has essentially the same rules as N1 and in
addition the η-rule.

The LF allows to introduce type constructors in a more convenient way: For
instance, in case of a universe U,T we have T : U → Set (for which we need that
U → Set : Type), rather than having to write x : U ⇒ T x : Set with an extra rule
that if u = u′ : U then T u = T u′ : Set.

When modelling type theory with the LF, one has, in order to make sense of
types such as Set → Set, to introduce an interpretation [[ Set ]] of Set, which will
usually be a collection of terms (or more precisely a PER). This means that in the
model [[ Set ]] is a closed object. Without the LF, there is no need to define [[ Set ]],
all what is needed is to make sure that, if we derive A : Set, then [[A ]] is defined
and fulfils certain correctness conditions. Therefore, the LF adds complications to
the model construction and to the meaning explanations, and therefore we usually
avoid the LF. We note that the LF usually doesn’t add any strength. In order to
reflect this in the model, one can interpret elements of Set as sets, and elements of
Type as classes in set theory.
Inductive recursive definitions (IRD) were introduced by P. Dybjer [26] as a
concept, which generalises inductive definitions and universes. IRD allow to define
U : Set and T : U → D for an arbitrary type D, using strictly positive constructors
C. In case of D = {∗} the function T is trivial (by the η-rule it is λx.∗), and we
obtain strictly-positive inductive definitions. In case ofD = Set we obtain universes.

The idea behind an IRD is that we define U inductively. Whenever we introduce
an element of U, we recursively define T. Therefore, when referring in the inductive
definition of U to elements of U previously introduced, we can make use of T applied
to them.

The constructors of U are supposed to be strictly positive in U, which means
the following: The constructors have the form C : (x1 : A1, . . . , xn : An) → U,
where the set Ai refers either to sets introduced before one started to define U,T,
or Ai = (y1 : B1, . . . , yl : Bl) → U, where Bj were introduced before introducing U,
T. If Ai doesn’t refer to U, then xi is called a non-inductive argument, otherwise it
is called an inductive argument.

What is crucial is the dependency of Ai on x1, . . . , xi−1. Ai can directly depend
on a non-inductive argument xj for j < i. If xj is an inductive argument xj : Ai =
(y1 : B1, . . . , yl : Bl) → U, we cannot make use of xj directly: we are still at the
stage of forming the set U, and have therefore not defined yet how to introduce
other sets from an element in U. However, we can make use of the simultaneously
recursively defined function T applied to it, i.e. on T (xj b1 · · · bl), which has been
introduced before adding (C x1 · · ·xn) to U.

In order to define T recursively, one has to define T (C a1 · · · an), and this can be
defined in an arbitrary way (by using sets introduced before U,T are introduced),
but the dependency on the arguments ai is the same as the dependency of later
arguments on previous arguments.

If one wants to make the above precise, one sees that before we can introduce
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an IRD we are required to carry out some derivations beforehand. For instance,
in order to accept the constructor C : (x : A, y : B[x] → U, z : E[x, y]) → U,
T (C x y z) = F [x, y, z], one needs first to derive the following judgements:

• A : Set;

• x : A⇒ B[x] : Set;

• E[x, y] = E′[x,T ◦ y] for some E′ s.t. x : A, y′ : B[x] → D ⇒ E′[x, y′] : Set;

• F [x, y, z] = F ′[x,T ◦ y, z], s.t.
x : A, y′ : B[x] → D, z : E′[x, y′] ⇒ F ′[x, y′, z] : Set.

Therefore, a precise formalisation of a theory of IRDs needs to interleave derivations
with the introduction of new IRDs. In order to define such a theory using finitely
many rules only, the author has together with Peter Dybjer [27, 29] introduced a
data type OPD of IRDs U : Set, T : U → D. Elements of OPD are codes for IRDs.
If γ : OPD, then one has Uγ : Set and Tγ : Uγ → D. So, OPD together with
λγ.Uγ and λγ.Tγ forms a generalised universe (which is a true type and no longer
inductive-recursive), the elements of which are inductive-recursively defined sets.

In his original paper [26], P. Dybjer introduced in fact a slight generalisation
of IRD, called indexed inductive-recursive definitions (IIRDs). The generalisation
allows to define inductively simultaneously several sets U i : Set for i : I, where
I : Set is an index set introduced before, while simultaneously recursively defining
T i : U i → D[i]. Here i : I ⇒ D[i] : Type. A closed formalisation of IIRDs was
formulated by the author and P. Dybjer in [28, 30].

Apart from the LF we need only rules for introducing IIRDs, all standard set con-
structions are instances of IIRDs. The theory of IIRDs allows to define practically
all standard extensions of MLTT considered in the literature including Palmgren’s
super universes [51] and higher type universes [53].

At present, we have introduced only a full set-theoretic model of the theories of
IRD and IIRD, which doesn’t provide any realistic proof theoretic bound. However,
it seems not too complicated to transform this model into a model in the theory
KPM+. Here KPM+ is the variant of KP, which formulates the existence of a
recursively Mahlo ordinal and finitely many admissibles above it. A recursively
Mahlo ordinal is an admissible ordinal M such that, whenever we have for a ∆0-
formula ϕ that ∀x ∈ LM.∃y ∈ LM.ϕ(x, y) holds, then there exists an admissible
ordinal κ < M such that ∀x ∈ Lκ.∃y ∈ Lκ.ϕ(x, y). The model construction for
the theory of IRD and IIRD is rather complicated, we will sketch a model for the
Mahlo universe below, which is a theory slightly stronger than the theory of IIRD,
and which captures the essence of IIRD.

If such a model is established, then we obtain |IRD| ≤ |IIRD| ≤ |KPM+| =
ψΩ1(ΩM+ω), where M is a Mahlo cardinal. A lower bound can be obtained by
showing that IRD and IIRD allow to interpret the red Mahlo universe, which is
a variant of the ordinary Mahlo universe, sometimes called the black Mahlo uni-
verse. We will first develop the black Mahlo universe, and then develop the red
Mahlo universe and illustrate, what is known about their strengths. We will see
that ψΩ1(εM+1) ≤ |IIRD| ≤ |IRD + ext|, where ψΩ1(εM+1) is slightly smaller than
the upper bound ψΩ1(ΩM+ω) and ext are the rules of extensionality. The precise
strength of IIRD and IRD is unknown at present.
The (black) Mahlo universe is a universe, which makes use of non-positive
constructors. It was developed by the author [86] in order to capture the notion
of a recursively Mahlo ordinal: Remember that a recursively Mahlo ordinal is an
admissible ordinal M s.t. whenever we have for a ∆0-formula ϕ that ψ := ∀x ∈
LM.∃y ∈ LM.ϕ(x, y) holds, then there exists an admissible ordinal κ < M s.t. ψ′ :=
∀x ∈ Lκ.∃y ∈ Lκ.ϕ(x, y) holds as well. If we replace “admissible” by “recursively
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inaccessible”, we obtain an equivalent definition. Recursively inaccessible ordinals
correspond in type theory to universes. The existence of a recursively inaccessible
M is translated into the existence of a universe V : Set, TV : V → Set, which
is closed under the standard set constructions. LM are sets definable up to level
M, which correspond to elements of Fam(V) for the corresponding universe. Here
Fam(V) := (x : V) × (TV x → V) is the set of families of sets in V, where 〈a, b〉 :
Fam(V) is the family, which using pseudo set theoretic notation might be denoted
by {TV (b x) | x : TV a}. The formula ψ can be represented in type theory as the
assumption of some f : Fam(V) → Fam(V). The existence of κ is translated into
the existence of a subuniverse Uf : Set, T̂f : Uf → V. Let Tf := TV ◦ T̂f . That

κ is recursively inaccessible translates into Ûf , T̂f being closed under the standard
set constructions. Let Fam(Uf ) := (x : Uf ) × (Tf x → Uf ). Then that Lκ is
closed under ψ′ is represented as that Uf has constructors, which reflect f : Assume
a : Fam(Uf ), and lift it to an element aV : Fam(V). Then the constructors introduce
the two components of an element b : Fam(Uf ), such that its lifting to Fam(V) is
equal to (f aV). Finally, we need to model that κ ∈ M, which is expressed as the
existence of Ûf : V s.t. TV Ûf = Uf .

The precise formulation of the Mahlo universe avoids the LF. For this we uncurry
f and split it into two functions. So assume f0 : (x : V, y : TV x→ V) → V and f1 :
(x : V, y : TV x → V, z : TV(f0 x y)) → V, and let ~f := f0, f1. (So, from f above
we would obtain f0 = λx.λy.π0 (f 〈x, y〉) and f1 = λx.λy.λz.(π1 (f 〈x, y〉)) z.)
In the following, when we say that ~f is a function from families of sets inside a
universe to itself, we mean that ~f = f0, f1 for the two uncurried components of
such a function. Assuming such ~f , there exists U~f : Set and T̂~f : U~f → V, s.t. with

x : U~f ⇒ T~f x := TV (T̂~f x) : Set we have:

• U~f , T̂~f is closed under the standard set constructions. Closure under N means

that we have N̂~f : U~f , T̂~f N̂~f = N̂V : V, where TV N̂V = N. Closure under

W means that we have if a : U~f and b : T~f a → U~f , then Ŵ~f a b : U~f

and T̂~f (Ŵ~f a b) = ŴV (T̂~f a) (T̂~f ◦ b) where TV (ŴV c d) = Wx :
(TV c).TV (d x).

• U~f , T̂~f is closed under f0, f1. So we have, if a : U~f and b : T~f a → U~f ,

and aV := T̂~f a : V, bV := T̂~f ◦ b : TV aV → V are the corresponding

elements in V, then f̂~f,0 a b : U~f and T̂~f (̂f~f,0 a b) = f0 aV bV. If, in addition,

c : T~f (f0 aV bV), then f̂~f,1 a b c : U~f and T̂~f (̂f~f,1 a b c) = f1 aV bV c.

• We have a constructor Û~f : V s.t. TV Û~f = U~f .

A model of the Mahlo universe can be constructed in KPM+ as follows (some
of the ideas of this model are due to U. Berger (private communication)): For
simplicity one treats U~f as a subset of V, and therefore treats T̂~f as the identity

function, identifies N̂~f with N̂V, Ŵ~f with ŴV, etc., f̂f0,f1,0 with f0, and f̂f0,f1,1 with

f1. Furthermore, we omit the subscript V of TV, ŴV etc. As for the universe one
defines by recursion on α sets Vα and functions Tα with domain Vα by closing them
under the same operations as before, s.t. (Vα,Tα)α∈Ord is an increasing sequence
of families of sets.

In addition one adds closure under Û~f as follows: One defines for every pair of

terms ~f = f0, f1 a set Uα
~f
⊆ V. Uα

~f
is the least subset of Vα which is closed under
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the set constructions and under ~f , provided the results are in V<α. So if a ∈ U<α
~f

(:=
⋃

β<α Uβ
~f
), b ∈ T<α(a)[[→ ]]U<α

~f
, and Ŵ a b ∈ V<α, then Ŵ a b ∈ Uα

~f
, similarly

for the other standard set constructions. If for the same a, b we have f0 a b ∈ V<α,
then f0 a b ∈ Uα

~f
. If furthermore c ∈ T<α(f0 a b) and f1 a b c ∈ V<α, then

f1 a b c ∈ Uα
~f
.

By Uα
~f

being closed we mean that the condition of V<α in the definition of Uα
~f

is

always fulfilled: we have under the above conditions for a and b that Ŵ a b ∈ V<α

and f0 a b ∈ V<α hold, and for the c as above we have f1 a b c ∈ V<α. Note
that if Uα

~f
is closed, then, because of the fact that if α < β then Vα ⊆ Vβ and

Tβ � Vα = Tα we have that Uα
~f

= Uβ
~f

for all β > α, i.e. Uβ
~f

doesn’t change any

more. If Uα
~f

is closed, then Uα
~f

is a complete subuniverse of V closed under ~f , and

we add Û~f to Vα, with Tα(Û~f ) = Uα
~f
.

Finally, one defines for a recursively Mahlo ordinal M the interpretation of V
as [[ V ]] := VM, [[ TV a ]] := TM(a), [[ Û~f ]] := UM

~f
. That [[ V ]] is closed under the

introduction rule for Û~f is shown as follows: Assume f0, f1 is a function from
elements of [[ V ]] to itself. This property can be, using the fact that M is admissible,
expressed as a formula ∀α < M.∃β < M.ϕ(α, β), which means that UM

~f
is closed

(we use the fact that if α is inaccessible, then Vα is closed under the standard
set constructions). Then this property holds as well with M replaced by some
inaccessible κ < M. But then Vκ and therefore as well Uκ

~f
are closed under the

standard set constructions, and by ∀α < κ.∃β < κ.ϕ(α, β) it follows that Uκ
~f

is

closed under f0, f1. Therefore, Uκ
~f

is closed and we obtain Û~f ∈ Vκ ⊆ [[ V ]].

It is easy to verify that all other rules (including those for U~f , T̂~f ) hold as
well. Note that this model construction is predicative in nature: While defining
approximations of V, we were never referring to V as a whole, but only to elements
of the approximation. Especially the definition of Uα

~f
only refers to elements of

V<α, i.e. elements defined before. Therefore, the model construction reveals that
the Mahlo universe is predicative in nature, and gives an insight into its consistency.

One should note however that [[ V ]] contains more elements then those justified
by the introduction rules for the Mahlo universe: When adding Û~f to Vα we have

only guaranteed that there exists a subuniverse of Vα closed under ~f . This doesn’t
guarantee that ~f forms a function from families of [[ V ]] to itself, only that it is one
on families of [[ U~f ]].

It would be very satisfactory if one could define a variant of the Mahlo universe,
which is in accordance with its standard model, so that one could see immediately
that it is predicative in nature, and that one could develop meaning explanations
based on this idea. The problem is that the model refers to the collection of all
terms (when referring to arbitrary f0, f1), and we don’t have access to the collection
of all terms in MLTT.

Let MLTT + N + W + Mahlo be the type theory formulating the Mahlo universe
closed under the W-type. Using the model [82, 91] the author has shown that
|MLTT + N + W + Mahlo| ≤ |KPM+| = ψΩ1(ΩM+ω), and, using a well-ordering
proof [86], he has shown as well that ψΩ1(ΩM+ω) ≤ |MLTT + N + W + Mahlo|,
therefore the bound is sharp. Here M is a Mahlo cardinal. If one accepts the
consistency of the Mahlo universe one gets therefore a constructive justification of
the rather strong theories KPM+ and KPM (where KPM is the extension of KP by
the fact that the set theoretic universe has the Mahlo property).
The red Mahlo Universe. When looking at IIRDs, we see that the type Set
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has the same closure properties as the Mahlo universe: Assume ~f = f0, f1 are the
two components of a function ((A : Set) × (A → Set)) → ((A : Set) × (A → Set)).
Then the rules of induction-recursion show that there exists a universe U~f : Set,

T~f : U~f → Set, s.t. U~f is closed under the standard set constructions and under ~f .
We can now define a theory of the red Mahlo universe as follows: It contains the

rules for the standard set constructions, the rules LF, and the rules RedMahlo ex-
pressing that for every ~f as above there exists a universe U~f , T~f closed under ~f and
the standard set constructions. Furthermore, we add large elimination (i.e. elimina-
tion into a type, which might depend on the argument, rather than into a set) for the
W-type and for N. We call the resulting theory MLTT + N + W + LF + RedMahlo.
The well-ordering proof for the black Mahlo universe can be easily be adapted in
order to show |MLTT + N + W + LF + RedMahlo| ≥ ψΩ1(εM+ω) = |KPM| (see
the proof by the author in [29]). It should not be too difficult to define a model
of MLTT + N + W + LF + RedMahlo by interpreting sets in type theory as PERs
which are sets, types as PERs which are classes, and U~f as the least set closed

under ~f and the standard set constructions (assuming ~f is in KPM a term repre-
senting a function from families of sets to families of sets). This would show that
|MLTT + N + W + LF + RedMahlo| ≤ |KPM|, and therefore that this bound is
sharp.

The red Mahlo universe is a subtheory of the theory of IIRD, which in turn can
at least in the presence of an extensional equality be simulated by IRD (unpublished
result by P. Dybjer and the author). Assuming large elimination, the red Mahlo
universe is as well directly a subtheory of IRD. That the theory of the red Mahlo
universe can be interpreted in IIRD even without large elimination can be seen
as follows: MLTT + N + W, and Uf are instances of IIRD. Furthermore, large
elimination can be simulated by using IIRDs. If one wants to define f : (y : Wx :
A.B[x]) → D[y] where y : Wx : A.B[x] ⇒ D[y] : Type, which is defined induction
on Wx : A.B[x], then one defines first inductive recursively U′ : (Wx : A.B) → Set
together with T′ : (y : Wx : A.B) → U′ y → D[y]. If the desired equality rule
is f (sup a b) = g a b (f ◦ b) where g : (a : A, b : B[a] → Wx : A.B, (y :
B[a]) → D[b y]) → D[(sup a b)] then we take as constructor of U′ the function
C : (a : A, b : B[a] → Wx : A.B, (y : B[a]) → U′[b y]) → U′ (sup a b) with
T′ (sup a b) (C a b c) = g a b (λy.T′ (b y) (c y)). Now we can define f ′ : (y : Wx :
A.B) → U′ y by f ′ (sup a b) = C a b (λy.f ′ (b y)), define f = λy.T′ y (f ′ y), and
verify that f fulfils the equation f (sup a b) = g a b (f ◦ b).

From this it follows that |KPM| ≤ |MLTT+N+W+LF+RedMahlo| ≤ |IIRD| ≤
|IRD+ext| and |MLTT+N+W+LF+RedMahlo| ≤ |IRD+Largeelim|, where ext
are the rules of extensionality, and Largeelim are the rules of large elimination. This
doesn’t provide a sharp bound for the theories of IRD and IIRD, we only obtain
that their strength (assuming extensionality or large elimination in case of IRD)
is in the interval [|KPM|, |KPM+|]. Since the black Mahlo universe has strength
KPM+, we can say that it captures the essence of IIRD (for instance, assuming the
model of IIRD is developed in KPM+, it shows the well-foundedness of a sequence
of ordinals with supremum the upper bound of the proof theoretic strength of IIRD
and therefore the consistency of approximations of IIRD).

5 The Π3-Reflecting Universe

The Hyper Mahlo Universe. The first step towards the Π3-reflecting universe is
the hyper-Mahlo Universe. The hyper-Mahlo Universe is a universe U2,T2 s.t. for
every function ~f = f0, f1 from families of sets in U2 to itself, there exist a subuni-
verse U~f,1 : Set together with T̂~f,1 : U~f,1 → U2, which is Mahlo, closed under ~f
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(all universes in this section will be closed under the standard set constructions as
well), and represented in U~f,1 as a code Û~f,2.

Let T~f,1 a = T2 (T̂~f,1 x). That U~f,1 is a Mahlo universe is expressed by the
rule that for every function ~g from families of sets in U~f,1 to itself there exists a

subuniverse U~f,~g,0 together with T̂~f,~g,0 : U~f,~g,0 → U~f,1, which is closed under ~g

and represented as a code Û~f,~g,0 in U~f,1. Note that this means that we need to

have an element representing U~f,~g,0 in U2 as well, in order to define T̂~f,1 Û~f,~g,0,
which means that there needs to be an additional constructor for U2. There are
two ways for achieving this: One possibility would be to add a constructor which
introduces directly a code for T̂~f,1 Û~f,~g,0 in U2. When moving to hypern-Mahlo
universes and beyond it becomes technically rather complicated to make sure that
all elements created by a subuniverse are passed on to all universes containing it.
The other more simple possibility is to consider T̂~f,1 as a constructor of elements
of U2 rather than a recursively defined function. The disadvantage of this is that
we get doubling of elements, e.g. N̂2 and T̂~f,1 N̂~f,1 are now two different codes for
the natural numbers in U2. This doesn’t cause any problems from a proof theoretic
point of view, and reduces the technicalities in the following. So in the following,
all subuniverses are given as “inductive subuniverses”, which means that T̂ is a
constructor.

Although a lot of work needs to be carried out in order to analyse this theory,
it seems very plausible that this theory has the strength of KP−Hyper−M+,
which is the extension of KP by the existence of a recursively hyper-Mahlo ordinal
and finitely many admissible ordinals above it. Here a recursively hyper-recursively
Mahlo ordinal is an ordinal, which fulfils the same condition as a recursively Mahlo
ordinal M, except that the κ < M in the definition of a recursively Mahlo ordinal,
which was claimed to exist, can be chosen to be recursively Mahlo rather than
simply admissible.
The hyper-n- and hyper-α-Mahlo universes. The next step is to define a
hyper-n-Mahlo universe which is done by simply iterating the step towards the
hyper-Mahlo universe further. Similarly, one can define, assuming a fixed type of
ordinals Ord, hyper-α-Mahlo universes for α : Ord, which correspond to recursively
hyper-α-Mahlo ordinals. Here the definition of recursively hyper-α-Mahlo ordinals
is similar to that of recursively hyper-Mahlo, except that the κ can for any β < α
be chosen to be hyper-β-Mahlo.
The autonomous Mahlo universe. (See as well the article [89] by the author.)
A recursively autonomous Mahlo ordinal is an ordinal κ, which is recursively hyper-
κ-Mahlo. If we translate recursively inaccessible ordinals as universes, and the
ordinals of a universe V,TV as Wx : V.TV x, we arrive at the following definition
of an autonomous Mahlo universe: It is a universe V,TV, which is hyper-d-Mahlo
for every d : (Wx : V.TV x). Since (Wx : V.TV x) can only be defined once the
definition of V is complete, we replace this set by the set Deg of Mahlo degrees, which
is the least set introduced by introduction rule sup′ : (x : V, y : TV x → Deg) →
Deg. Deg is isomorphic to Wx : V.TV x, but can be defined simultaneously with
V and the other constructions defined in the following. We note that elements of
Deg depend only locally on V: For every element of d : Deg we can define an a : V
and b : TV x→ V, s.t. all elements of V used in Deg are of the form (b x) for some
x : TV x.

The autonomous Mahlo universe V,TV is hyper-d-Mahlo for every d : Deg. If
we consider V,TV as being inductively defined by the introduction rules, we see
that as new elements are added to V, new elements of Deg, i.e. new Mahlo degrees
become available, which result in the possibility of using the Mahlo reflection rule
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for V into new Mahlo degrees. The existence of the hyper-Mahlo universe claims
that this process reaches a fixed point.

The precise formulation of the autonomous Mahlo universe is as follows: We
first define depending on d : Deg a set Univd of codes for universes of Mahlo degree
d, together with for u : Univd the universes Ud,u : Set, Td,u : Ud,u → Set given
by u. Let d = sup′ a b. That Ud,u,Td,u has Mahlo degree d means that for every
function ~f from families of sets in Ud,u to itself and for every c : TV a, i.e. for every
subdegree d′ := b c of d, there exists a an element u0,d,u,~f,c : Univd′ . Let temporarily

u′ := u0,d,u,~f,c. Then there exists a constructor T̂0,d,u,~f,c : Ud′,u′ → Ud,u preserving

the denoted sets, and Ud′,u′ is closed under ~f . Furthermore, Ud′,u′ is represented
in Ud,u, i.e. there exists Û0,d,u,~f,c : Ud,u s.t. Td,u Û0,d,u,~f,c = Ud′,u′ .

That V,TV is hyper-d-Mahlo for every d : Deg means that for every such d and
function ~f from families of sets in V to itself there exists an element u1,d, ~f : Univd.

Let temporarily u′ := u1,d, ~f . Then there exists a constructor T̂1,d, ~f : Ud,u′ → V

with TV (T̂1,d, ~f c) = Td,u′ c. Ud,u′ is closed under ~f . Furthermore, there exists

Û1,d, ~f : V s.t. TV (Û1,d, ~f x) = U1,d, ~f .
The Π3-reflecting Universe. The subuniverses of the autonomous Mahlo uni-
verse have static Mahlo degrees d : Deg. However, we cannot assign directly to the
autonomous Mahlo universe a static Mahlo degree itself – the subdegrees depend
on families of sets in V,TV (remember that for each d : Deg we could determine
an a : Fam(V) s.t. d refers only to elements of V in a). In the Π3-reflecting uni-
verse this is generalised by having dynamic Mahlo degrees. The new introduction
rule for (dynamic) Mahlo degrees Deg is that if f0 : (a : V, b : TV a → V) → V,
f1 : (a : V, b : TV a → V, c : TV (f0 a b)) → Deg are the two components of a
function from families of sets in V to families of elements of Deg indexed by V,
then there exists sup′ f0 f1 : Deg. Univd, Ud,u, Td,u are formed as before, but

we have as well a constructor T̂2,d,u : Ud,u → V s.t. TV (T̂2,d,u a) = Td,u a. As-
sume d = sup′ f0 f1, a : Ud,u, b : Td,u a → Ud,u, i.e. 〈a, b〉 : Fam(Ud,u). Let
aV := T̂2,d,u a : V, bV := T̂2,d,u ◦ b : TV a → V. Then f̂0 ,d,u a b : Ud,u and
Td,u (̂f0,d,u a b) = TV (f0 aV bV), so the first component of d is reflected in Ud,u.
Furthermore, assume c : TV (f0 aV bV). Then d′ := f1 aV bV c is a subdegree
of d relative to Ud,u as given by 〈a, b〉 : Fam(Ud,u). Assume ~g is a function from
families of sets in Ud,u to itself. Then there exists a subuniverse of Ud,u of Mahlo
degree d′ closed under ~g and represented in Ud,u. Furthermore, assume d : Deg, ~f
a function from families of V to itself. Then there exists a subuniverse of V which
is an element of Univd, represented in V and closed under ~f . This concludes the
definition of the Π3-reflecting universe.

In [89] the author gives a model of the Π3-reflecting universe in the theory
KPΠ+

3 , which is defined following a similar methodology as the model of the Mahlo
universe, although it is technically much more complicated. Here KPΠ+

3 is the
theory, which formulates the existence of a Π3-reflecting ordinal α, and finitely many
admissibles above it. That α is Π3-reflecting means that for every Π3-formula ψ
relative to Lα, where ψ = ∀x ∈ Lα.∃y ∈ Lα.∀z ∈ Lα.ϕ(x, y, z), there exists a
u ∈ Lα which is transitive, not empty, and which reflects ψ, which means ∀x ∈
u.∃y ∈ u.∀z ∈ u.ϕ(x, y, z). The model of the Π3-reflecting universe shows that the
Π3-reflecting universe has at most the strength of |KPΠ+

3 |. We have a sketch of a
well-ordering proof which shows that the Π3-reflecting universe has the strength of
KPΠ+

3 , therefore this bound is sharp. Therefore we obtain, assuming one accepts
the consistency of the Π3-reflecting universe, a constructive justification of KPΠ+

3 .
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6 Future Work

We have seen in the course of this article that there are many theorems about the
precise strength of certain theories, which still need to be worked out in detail.
Especially, the precise strength of the theories of IRD and IIRD still needs to be
determined. The next steps towards stronger theories seem to be to develop Πn-
reflecting, Πα-reflecting, and Π1

1-reflecting universes. The author has some sketches
of type theories of that strength, but he doesn’t know yet whether they have the
strength of KP extended by corresponding recursively large admissibles. A big step
would be to reach the strength of (Π1

2 −CA) + (BI). M. Rathjen has argued in [72]
that there is a limit for the proof theoretic strength of extensions of MLTT, which
is due to the fact that sets in type theory can be interpreted as non-monotone
inductive definitions. This is an interesting point of view, but one might see a
paradigm shift happening in type theory, which allows MLTT to go beyond this
boundary, see the author’s review [90] of Rathjen’s article. It remains to be seen
whether MLTT can move beyond those boundaries, but we are optimistic that, if
a mathematical theory can be analysed proof theoretically, then it will be possible
to develop an extension of MLTT, which reaches its strength.

7 Conclusion

We have seen how to develop extensions of MLTT of increasing strength. Whereas
for the first theories a direct insight into their consistency was easy, this became
increasingly more difficult when moving to stronger theories. This is by Gödel’s
incompleteness theorem unavoidable. If we formulate any consistency argument
mathematically precisely, it becomes a proof in a theory, the strength of which
is stronger than the theory in question. Therefore, the stronger the theory, the
stronger the theory needs to be in which such a consistency argument is formalised.
There are of course technical problems, which add to the complexity of a consistency
argument without requiring any strength, and it is a mathematical task to develop
theories so that the mathematical technicalities of the consistency argument are as
simple as possible. But once one has rid theories of any unnecessary mathemat-
ical ballast, the real problem of getting an insight is condensed to having to use
principles, which have a certain proof theoretic strength. All we can do is to prove
mathematically that certain theories we want to use are equivalent or reducible to
certain other reference theories, for which we have an as easy consistency argument
as possible. But the strength of the principles used in this consistency argument
will necessarily increase and our trust in theories weakens as we proceed along the
proof theoretic scale.
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