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Indexed Induction-Recursion

Peter Dybjer*and Anton Setzer'
September 24, 2001

Abstract

We give two finite axiomatizations of indexed inductive-recursive def-
initions in intuitionistic type theory. They extend our previous finite
axiomatizations of inductive-recursive definitions of sets to indexed fami-
lies of sets and encompass virtually all definitions of sets which have been
used in intuitionistic type theory. The more restricted of the two ax-
iomatization arises naturally by considering indexed inductive-recursive
definitions as initial algebras in slice categories, whereas the other admits
a more general and convenient form of an introduction rule.

The class of indexed inductive-recursive definitions properly contains
the class of indexed inductive definitions (so called “inductive families”).
Such definitions are ubiquitous when using intuitionistic type theory for
formalizing mathematics and program correctness. A side effect of the
present paper is to get compact finite axiomatizations of indexed inductive
definitions in intuitionistic type theory as special cases.

Proper indexed inductive-recursive definitions (those which do not cor-
respond to indexed inductive definitions) are useful in intuitionistic meta-
mathematics, and as an example we formalize Tait-style computability
predicates for dependent types. We also show that Palmgren’s proof-
theoretically strong construction of higher-order universes is an example
of a proper indexed inductive-recursive definition. A third interesting
example is provided by Bove and Capretta’s definition of termination
predicates for functions defined by nested recursion.

Our axiomatizations form a powerful foundation for generic program-
ming with dependent types by introducing a type of codes for indexed
inductive-recursive definitions and making it possible to define generic
functions by recursion on this type.

Keywords: Dependent type theory, Martin-Lof Type Theory, induc-
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algebras, normalization proofs, generic programming.
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1 Introduction

In [8], the first author introduced the concept of inductive-recursive definitions,
an extension of ordinary inductive definitions. By inductive-recursive definitions
one can inductively define a set U while simultaneousely recursively defining a
function T : U — D, where D is an arbitrary type.

The prime example of an inductive-recursive definition is a universe, that
is, a set U of codes for sets together with a decoding function T' : U — set,
which assigns to a code in U the set it denotes. As an example consider the
constructor ¥ introducing codes for the ¥-type. We have X : (a : U,b: T(a) —
U) — U (the reader not familiar with this notation, which will be explained
in Sec. 2, might temporarily substitute Ila : UIIb : (T(a) — U).U for the
type of ). Note that the second argument b of %(a,b) refers to T'(a). This
makes sense since before i(a, b) is introduced, a : U has to be established, and
when a : U is established, one can recursively define T'(a). We then define
recursively T(3(a, b)) = S(T(a), (2)T(b(z))) (or in more traditional notation
T(3(a,b)) = Sz : T(a).T(b(x))). This is possible, since T(a) and T(b(z))
are known before we introduce $(a,b). Here we see the novelty of inductive-
recursive definitions relative to inductive definitions: an introduction rule for
U may refer to the function T which is simultaneously defined. Note that
T even can appear negatively in the type of a constructor, as in the type of
Y. However, the constructor refers only strictly positively to elements of the
inductively defined set U.

In the special case where T': U — 1, where 1 is the type with only one ele-
ment, so that T" does not contain any information, inductive-recursive definitions
specialize to inductive definitions. For a detailed explanation of the concept of
inductive-recursive definitions, the reader is advised to read the aforementioned
article [8].

In [8] the case of indexed inductive-recursive definitions (ITR) is also consid-
ered. In an IIR one defines a family of sets U(i), indexed over i : I, inductively,
while simultaneously recursively defining a family of functions T'(¢) : U(i) —
Dli] for some collection of types D[i] (i : I). (We have to write D[i], the result
of substituting ¢ for a fixed variable in D here, since D[i] is a type and we cannot
write D : I — type.) Again constructors of U(i) can refer to T'(j) applied to
elements of U(j).

In [9] and [10] we presented closed axiomatizations of the theory of non-
indexed inductive-recursive definitions. It is the objective of this article to
extend this to indexed inductive-recursive definitions. We will see that the
resulting rules are not much more complicated than the rules for the non-indexed
case. We will look at two alternatives: In restricted IIR (introduced by T.
Coquand for use in the Half and Agda [4] systems) we can determine for each
index ¢ the set of arguments of the constructors introducing elements of the set
U;. In unrestricted IIR [8], for a constructor C' with arguments @, the index
i s.t. C(@) : U; depends on the arguments @ of C.

Indexed inductive definitions (IID) subsume inductively defined relations,
such as the identity relation understood as the least reflexive relation. The
identity relation was indeed the only example of an IID in the early versions of
Martin-Lof type theory [13]. Theoretically, this is not very limiting since one can
define many other families of sets (predicates) using the identity together with



the other set formers of type theory. But from a more practical point of view
it became desirable to extend Martin-Lof type theory with a general notion of
inductive definition of an indexed family of sets (often called “inductive family”
for short) [6, 7]. Such a general mechanism is also a key part of the Calculus of
Inductive Constructions [21], the impredicative type theory underlying the Coq
system. Indexed inductive definitions are ubiquitous in formalizations carried
out in the different proof systems for Martin-Lof type theory and the Calculus
of Inductive Constructions.

No proper IIR were part of the original versions of Martin-Lof type theory.
However, when proving normalization for an early version of this theory, Martin-
Lof made use of an informal construction on the metalevel which has an implicit
indexed inductive-recursive character.

Plan. In Section 2 we introduce the logical framework of dependent types
which is the basis for our theories of IIR. This section also explains the notation
used in the paper. In Section 3 we begin by reviewing a few examples of 11D,
such as finitely branching trees, the even and odd numbers, the accessible part
of a relation, the identity set, and context free grammars. Then we give some
examples of proper IIR: Martin-Lof’s computability predicates for dependent
types, Palmgren’s higher order universes, and Bove and Capretta’s analysis of
the termination of nested recursive definitions of functional programs. We also
introduce the restricted form of an inductive-recursive definition which has an
easier syntax and is easier to implement. In Section 4 we first explain how
the restricted version of indexed inductive-recursive definitions arises from the
existence of initial algebras of strictly positive endofunctors on slice categories
over the category of indexed families of types. Then we show how to formalize
the general notion of an indexed inductive-recursive definition and give a uniform
theory for both the general and the restricted form by giving a type of codes
for IIR and then derive the formation, introduction, elimination and equality
rules for a particular code. In Section 5 we show how to instantiate the general
theory to some of the examples given in Section 3.

2 The Logical Framework

Before giving the rules for ITR we need to introduce the basic Logical Framework
of dependent types. This is essentially Martin-Lof’s Logical Framework [18]
extended with rules for the types 0, 1, and 2. A more detailed presentation can
be found in [10].

The Logcial Framework has the following forms of judgements: I' context,
and A : type, A= B :type, a: A, a =b: A, depending on contexts I' (written
as I' = A : type, etc.). We have set : type and if A : set, then A : type. The
collection of types is closed under the formation of dependent function types
written as (x : A) — B (which is often written as IIz : A.B in the literature
— we prefer to reserve Ilz : A.B for the inductive-recursively defined set with
constructor A : ((z : A) — B) — (Ilz : A.B)). The elements of (z : A) — B
are denoted by (z : A)a (abstraction of x in a; this is often denoted by Az : A.a
in the literature) and application is written in the form a(b). We have f—
and n-rules. Types are also closed under the formation of dependent products
written as (x : A) x B (often denoted by X : A.B which is here reserved for the



inductively defined set with introduction rule p : ((z : A) x B) — (Xz : A.B)).
The elements of (z : A) x B are denoted by (a,b), the projection functions by
mo and m and again we have § and 7-rule (surjective pairing). There is the
type 1, with unique element x : 1 and 7-rule expressing that, if @ : 1, then
a = * : 1. Further we have the empty type 0 with elimination rule Efq (ex
falsum quodlibet).

Moreover, we include in our logical framework the type 2 with two elements
%0 : 2 and x1 : 2, ordinary elimination rule Cy : (a : 2, A*o], A[*x1]) — A(a)
(where x : 2 = A[z] : type) and the strong elimination rule

a:2 A : type B : type
CYP%(a, A, B) : type

with equality rules
CYP%(%0, A, B) = A | CYP°(x1,A,B) =B .

It is necessary to have the strong elimination rule, since we want to induc-
tively define indexed families of sets U : I — set and functions T : (i :
I) — U(i) — DIi] where DJi] depends non-trivially on i, as in the defi-
nition of Palmgren’s higher-order universe (where for instance D[0] = set,
DJ1] = Fam(set) — Fam(set), see 3.2 for more explanation).

We will also add a level between set and type, which we call stype for small
types: stype : type. (The reason for the need for stype is discussed in [8].) If
a : set then a : stype. Moreover, stype is also closed under dependent function
types, dependent products and includes 0, 1, 2. However, set itself will not be in
stype. The logical framework does not have any rules for introducing elements
of set, they will be introduced by IIR later and set will therefore consist exactly
of the sets introduced by IIR.

We also use some abbreviations, such as omitting the type in an abstrac-
tion, that is, writing (z)a instead of (x : A)a, and writing repeated applica-
tion as a(by,...,by) instead of a(by)---(b,) and repeated abstraction as (x7 :
Aq,y ..o @, s Ay)a instead of (21 0 Ay) -+ (25 Ap)a.

In the following we will sometimes refer to a type depending on a variable x.
We want to use the notation D[t] for D[z := t] for some fixed variable x and D
for (z)D[x]. Note that we can’t simply introduce D : I — type, since this goes
beyond the logical framework. Instead we introduce the notion of an abstracted
expression, which is an expression together with one or several designated free
variables. For an abstracted expression F, E[t1,...,t,] means the substitution
of the variables by t1,...,t,. If we take for D above an abstracted expression
of the form (x)E, then DJt] denotes D[z := t] and we can write D as parameter
for (z)E. More formally:

Definition 1 (a) An n-times abstracted expression is an expression
(z1,...,2n)F where x1,...,x, are distinct variables and E an expression
of the language of type theory. An abstracted expression is a 1-times ab-
stracted expression.

(b) ((331,...,xn)E)[tl,...,tn] = E[.’L‘l = tl,...,(En = tn]

(¢) Whenever we write slai,...,as], s is to be understood as an n-times ab-
stracted expression.

(d) If U : A — B, we identify U with the abstracted expression (a)U(a).



3 Some Examples

3.1 Indexed Inductive Definitions

Trees and forests. Many IID occur as the simultaneous inductive definition
of finitely many sets, each of which has a different name. One example is the
set of well-founded trees Tree with finite branching degrees, which is defined
together with the set Forest of finite lists of such trees. The constructors are:

tree : Forest — Tree ,
nil : Forest ,
cons : Tree — Forest — Forest .

If we replace Tree by Tree'(xo) and Forest by Tree’(x1), where x : 2 = Tree'(x) :
set, we obtain an IID with index set 2. Since for every index we know the set
of constructors introducing elements of it in advance, we have an example of
restricted IID.

The even number predicate. Another simple example of an IID is the
predicate Even : N — set. This is inductively generated by the two rules

Co : Even(0) ,
Cy : (n:N) — Even(n) — Even(S(S(n))) .

In this form we have unrestricted IID, since in this form the constructors intro-
ducing an element of Even(n) is not given in advance.

The accessible part of a relation. Let I be a set and <: I — I — set be
a binary relation on it. We define the accessible part (the largest well-founded
initial segment) of < as a predicate Acc : I — set by a generalized indexed
inductive definition with one introduction rule:

acc: (i:I)— ((xz: 1) — (x < i) — Acc(z)) — Acc(i) .

Note that acc introduces elements of Acc(z) while referring to possibly infinitely
many elements of the sets Acc(z) (for each x : I and each proof of x < ). Acc
is an example of a restricted IID.

The identity relation. The only example of an IID in Martin-Lof’s original
formulation of type theory, which is not an ordinary inductive-recursive defi-
nition is the identity type (“identity type” is only used for historic reason — a
more appropriate name would be “identity set”). Assume A : set. The identity
on A is given as the least reflexive relation on A x A, and is the intensional
equality type on A. We have as formation rule a : A, : A = I(4,a,b) : set.
The introduction rule expresses that it is reflexive:

r:(a:A) —1(4 aq,a) .

The elimination rule inverts the introduction rule. Assume we have a type which
is a reflexive relation on A x A and a subrelation of the identity type on A. So
assume a : A,b: A;p: (A, a,b) = Cla,b,p] : type and for every a : A we have



sla] : Cla,a,r(a)] (so s is the step-function corresponding to the constructor r).
Then for every a,b : A and p : I(A,a,b) we have J(a,b,p, (x)s[z]) : Cla,b,p].
The equality rule now uses the step function in case an element is introduced
by a constructor: J(a,a,r(a), (z)s[z]) = s[a].

If we write I'y({a,b)) instead of I(A,a,b), we obtain for every A : set an
unrestricted IID I, with index set A x A.

Context free grammars. IID occur very frequently in applications in com-
puter science. For example a context free grammars over a finite alphabet X
and a finite set of nonterminals N'T can be seen as an NT x ¥*-indexed inductive
definition L, where each production corresponds to an introduction rule.

As an example consider the context free grammar with ¥ = {a,b}, NT =
{A, B} and productions A — a, A — BB, B — AA, B — b. This
corresponds to an inductive definition of an indexed family L, where L(A, &) is
the set of derivation trees of the string « from the start symbol A. So « is in the
language generated by the grammar with start symbol A iff L(A, «) is inhabited.
L has one constructor for each production: Cy : L(A,a), C1 : L(B,a) —
L(B,B) — L(A,af), Cs : L(A,a) — L(A,8) — L(B,ap), Cs : L(B,b).

Alternatively, we can inductively define an NT-indexed set D of “abstract
syntax trees” for the grammar, and then recursively define the string d(A4,p)
(“concrete syntax”) corresponding to the abstract syntax tree p : D(A). In
the example given before we get Cy : D(A), Ci : D(B) — D(B) — D(A),
Cy: D(A) — D(A) — D(B), C3 : D(B). Further d(A, Cy) = a, d(A,C1(p,q)) =
d(B,p) *d(B,q), d(B,C2(p,q)) = d(A,p) xd(B, q), d(B,C3) = b.

More examples. There are many more examples (eg. the set of formulas
derivable in a formal system, computation rules of the operational semantics of
a programming language) of similar nature. If Formula is a set of formulas of the
formal system, then to be a theorem is given by a Formula-indexed inductive
definition Theorem : Formula — set, where the axioms and inference rules
correspond to introduction rules. An element d : Theorem(¢) is a notation for
a derivation (or proof tree) with conclusion ¢. Yet more examples are provided
by the computation rules in the definition of the operational semantics of a
programming language.

Proofs by induction on the structure of an indexed inductive definition of
these kinds are often called proofs by “rule induction”. Thus the general form
of rule induction is captured by the elimination rule for unrestricted IIR which
we will give later.

3.2 Indexed Inductive-Recursive Definitions

Martin-Lo6f’s computability predicates for dependent types. We shall
now turn to proper IIR. As a first example we shall formalize the Tait-style
computability predicates for dependent types introduced by Martin-Lof [17].
This example was crucial for the historical development of IIR, since it may be
viewed as an early occurrence of the informal notion of an IIR. In [17] Martin-Lof
presents an early version of his intuitionistic type theory and proves a normal-
ization theorem using such Tait-style computability predicates. He works in an
informal intuitionistic metalanguage but gives no explicit justification for the



meaningfulness of these computability predicates. (Later Aczel [1] has shown
how to model a similar construction in classical set theory.) Since the meta-
language is informal the inductive-recursive nature of this definition is implicit.
One of the objectives of the current work is indeed to formalize an extension of
Martin-Lof type theory where the inductive-recursive nature of this and other
definitions is formalized. In this way we hope to help clarify the reason why it
is an acceptable notion from the point of view of intuitionistic meaning expla-
nations in the sense of Martin-Lof [14, 16, 15].

First recall that for the case of the simply typed lambda calculus the Tait-
computability predicates ¢4 are predicates on terms of type A which are defined
by recursion on the structure of A. We read ¢4(a) as “a is a computable term
of type A”. To match Martin-Lof’s definition [17] we consider here a version
where the clause for function types is

o If ¢5(blal]) for all closed terms a such that ¢4(a) then ¢4, g(Ax.b[z]).

(Here b[z] denotes an expression with a possible occurrence of the free variable
2 and bla] denotes the expression which is obtained by substituting = by a in

How can we generalize this to dependent types? First we must assume that
we have introduced the syntax of expressions for dependent types including II-
types, with lambda abstraction and application. Now we cannot define ¢4 for
all (type) expressions A but only for those which are “computable types”. The
definition of ¢4 has several clauses, such as the following one for I [17, p. 161]:

4.1.1.2. Suppose that ¢4 has been defined and that ¢p[, has
been defined for all closed terms a of type A such that ¢4(a). We
then define ¢r1,.4.p[») by the following three clauses.

4.1.1.2.1. If Az.b[z] is a closed term of type Iz : A.B[x] and
®B[q)(bla]) for all closed terms a of type A such that ¢4(a), then
¢HzAB[m](Azb[x])

4.1.1.2.2. ...

4.1.1.2.3. ...

(We omit the cases 4.1.1.2.2 and 4.1.1.2.3, which express closure under reduc-
tion, since they are not relevant for the present discussion. Note also that the
complete definition of the computability predicate also has one case for each of
the other type formers of type theory.)

We also note that Martin-Lof does not use the term “A is a computable
type” but only states “that ¢4 has been defined”. We can understand Martin-
Lof’s definition as an indexed inductive-recursive definition by introducing a
predicate ® on expressions, where ®(A) stands for “¢4 is defined” or “A is a
computable type”. Moreover, we add a second argument to ¢ so that ¢4(p,a)
means that “a is a computable term of the computable type A, where p is a
proof that A is computable. Now we observe that we define ® inductively while
we simultaneously recursively define ¢.

It would be possible to formalize Martin-Lof’s definition verbatim, but for
simplicity we shall follow a slightly different version due to C. Coquand [5].
Assume that we have inductively defined the set Exp of expressions and have
an operation Apl : Exp — Exp — Exp for the application of one expression
to another. Apl is a constructor of Exp, and there will be additional reduction



rules for expressions, like reduction of B-redexes. We will write in the following
Ab for Apl(A,b).
Now define an Exp-indexed IIR

¥ . Exp—set,
¥ : (A:Exp) — ¥(A) — Exp — set .

So the index set is Exp, ¥ plays the rdle of U, ¥ the role of T : (a : U) — DJa],
where D[a] = Exp — set for a : Exp. Note that ¢ depends negatively on ¥,
so this is not a simultaneous inductive definition. The introduction rule for ¥
(corresponding to Martin-Lof’s 4.1.1.2) is:

v (A:Exp) — (p: V(A) — (B: Exp) —
(¢: (a:Exp) = ¢(A,p,a) — ¥(Ba)) —

U(II(A, B)) .

Note that ¢ refers to (A4, p,a) which is short notation for ¥ (A, p)(a), where
(A, p) is the result of the recursively defined function for the second argument
p. The corresponding equality rule is

Y(II(A, B), m(A, p, B,q),b) =Va : Exp.Vz : (A, p,a).(Ba,q(a,z),ba) .

Again, the reader should be aware that we have presented only one crucial
case of the complete IIR in [5]. For instance there are clauses corresponding to
closure under reductions.

Palmgren’s higher-order universes [20]. This construction generalizes
Palmgren’s super universe [19], that is, a universe which for any family of sets
in it contains a universe containing this family.

It is outside the scope of this paper to give a full explanation of higher-
order universes, and the interested reader is referred to Palmgren [20]. They
are included here as an example of a proof-theoretically strong construction
which is subsumed by our theory of ITR: they are conjectured to reach (without
elimination rules into arbitrary types) the strength of Kripke-Platek set theory
with one recursive Mahlo ordinal. They also provide an example where we
have decoding functions T : Uy — DI[k] with D[k] = OP"(set) which depend
non-trivially on k& and, for £ > 0, is a higher type which goes beyond set.

The higher-order universes of level n is a family of universes Uy, T}, indexed
by k < n, where Uy is a set of codes for operators on families of sets of level
k, and T}, : U, — OP¥(set) is the decoding function. The set OP*(set) of such
operators is defined by introducing more generally for A : type

Fam(A4) = (X :set)x (X — A4) , Op(A) := Fam(A) — Fam(4) ,
Op"(4) = Op(---(Op(4))---) ,
n times
Let
n: N, Ay :set Bk:AkHOpk(set) (k=0,...,n) .

In the following all sets and constructors are parameterized with respect to
n, Ay, B, but for simplicity we omit those parameters.



Uy, To have the standard closure properties of a universe. Additionally we
have for k =0, ...,n the two constructors (with decodings)

§k : Uy s To(ék) = Ak )
Br:Ap = Ur , Ti(Bi(a)) = Bi(a) .

Furthermore, under the additional assumptions ¢ € {0,...,n— 1}, f: U;y1, we
have two more constructors (with decodings)

ap} (f) : (u: Ug, To(u) — U;) — Ug
To(ap; (f,u,v)) = mo(Tiz1 (f)((To(u), Tiov))) ,

ap; (f) : (u: Uo,v: To(u) = Uy, mo(Tit1 (f)((To(u), Ts 0 v)))) — Us
Ti(ap; (f,u,v,a)) = m1(Tis1(f)((To(u), Ti 0 v)))(a) -

If we let I := {0,...,n} (which more formally should be replaced by N,41),
then we observe that we have introduced U : I — set together with T : (i :
I,U(i)) — D; where D; = Op'(set). For each i : I we can determine a collection
of constructors, each of which refers strictly positively to U and (positively and
negatively) to T applied to the arguments of U referred to.

Bove and Capretta’s analysis of the termination of nested recur-
sive definitions of functional programs. In a recent paper [3], Bove and
Capretta use indexed inductive-recursive definitions in their analysis of the ter-
mination of functions defined by nested general recursion. Given such a function
f the idea is to simultaneously define a predicate D(z) expressing that f(z) ter-
minates, and a function f’(x,p) which returns the same value as f(z) but has
as second argument a proof p : D(z) that f(x) terminates.

Assume for instance the rewrite rules f(0) — f(f(1)), f(1) — 2, f(2) —
f(1) on the domain {0, 1,2}. We now inductive-recursively define the termina-
tion predicate D for for f. We get one constructor for each rewrite rule: Cj :
(p:D(1),q: D(f'(1,p))) — D(0), Cy : D(1), C2: (p: D(1)) — D(2). Further-
more, the equality rules for f’ are f'(0,Co(p,q)) = f'(f'(1,p),q), f'(1,C1) = 2,
f1(2,Cs(p)) = f'(1,p). This is a proper IIR, since in the type of Cy the second
argument depends on f’(1,p), where p is the first argument.

3.3 Restricted Indexed Inductive-Recursive Definitions

There are reasons for focussing attention on IIR where we can determine for
every index i the set of constructors introducing elements of U;. More precisely
this means that if C' is a constructor of the IIR, and we write its type in un-
curried form, then its type is of the form ((¢ : I) x A(i)) — Uj, so the first
argument determines the index . An example which satisfies this restriction is
the accessible part of a relation.

We can also determine the set of constructors for U;, where a constructor
has type B — U; and ¢ does not depend on B, provided the equality on I is
decidable. In this case the type of C can be replaced by (i’ : I) — C5P°(i =qec
i’,B,0) — U, where =4¢ is the decidable equality on I, with result in 2).
In this way for example finitely branching trees and forests can be seen to be
captured by restricted IIR.



In the implementation of the Half proof system of type theory Thierry Co-
quand enforced this restriction, and it was kept in the Agda system [4], the
successor of Half. One reason is that both the introduction and elimination
rules can be specified more simply: for introducing an IIR, the constructors C;
of U; are just listed in the form data{C1(a@1) | --- | Cn(@n)}, and one doesn’t
have to include the index j in the arguments of @; of C;(@;) — this simplifies the
syntax of the system substantially. If one wants to define g(z) for x : U;, one
can write it in the form

case z of {C1(d1) —  fi(@n);

Cn(@n) —  fal@);}

For defining unrestricted IIR, a more complicated syntax has to be used, espe-
cially the elimination rules have to make use of a more general form of pattern
matching. See for instance the proof assistant Alf ([12], [2]), where unrestricted
IIR can be implemented.

Another reason for this restriction is that it is easier to construct mathe-
matical models: below we will see that restricted IIR can be modelled as initial
algebras in an I-indexed slice category. Furthermore, domain-theoretic mod-
els of restricted IIR can be given more easily. That complications arise when
modelling unrestricted IIR is one of the reasons why many believe that a fully
satisfactory understanding of the identity type has not yet been achieved.

It is often possible to replace general IIR by restricted IIR, especially if we
have a decidable equality on the index set. For example, we can define a function
by recursion which tests equality of natural numbers. Using this equality we
can write the introduction rules for the even number predicate in an alternative
way: Even(n) holds iff n = 0 or there exists m such that n = S(S(m)) and
Even(m). That is, we have two constructors: Co(n) : (n = 0) — Even(n), and
Ci(n) : (m : N) x (n = S(S(m))) x (Even(m)) — (Even(n)). (It is also worth
mentioning here that alternatively, we can directly define the even numbers by
primitive recursion on the natural numbers: Even(0) is true and Even(S(n))
is the negation of Even(n), using the two element universe 2 with decoding
T:2 — set.)

However, it is not always possible to transform a definition into the restricted
form. The prime example is that of the identity relation. In [11] we however
show that if we have extensional equality, we can simulate general IIR by re-
stricted IIR. The definitions are quite complicated though, and the resulting
programs may be computationally inefficient.

4 Formalizing the Theory of Indexed Inductive-
Recursive Definitions

4.1 The Category of Indexed Families of Types

As for the non-indexed case, we shall derive a formalization of IIR by modeling
them as initial algebra constructions in slice categories. Let R be a set of rules
for the language of type theory (where each rule is given by a finite set of
judgements as premisses and one judgement as conclusion) which includes the
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logical framework used in this article and an equality. For such R let TT(R) be
the resulting type theory. The category Type(R) is the category, the objects
of which are A s.t. TT(R) proves A : type, and the morphisms from A to B of
which are terms f s.t. TT(R) proves f : A — B. Objects A, A’ such that TT(R)
proves A = A’ : type and functions f, f’ s.t. TT(R) proves f = f': B — C are
identified. In order to model I-indexed inductive-recursive definitions, where
is an arbitrary stype, we will use the category Fam(R, I) of I-indexed families
of types. An object of Fam(R,I) is an I-indexed family of types, that is, an
abstracted expression A for which we can prove ¢ : I = A[i] : type in TT(R).
An arrow from A to B is a I-indexed function, that is, an abstracted expression
f for which we can prove (in TT(R)) ¢ : I = f[i] : A[{] — B[i]. Again we
identify A, A’ s.t. we can prove i : I = A[i] = A’[i] : type and f, f’ s.t. we can
can prove i : I = f[i| = f'[i] : B[i] — C[i]. We will usually omit the argument
R in Fam(R, I).

If C is a category, D an object of it, then C/D is the slice category with
objects pairs (A, f) where A is an object of C and f an arrow A — D, and as
morphisms from (A, f) to (B,g) morphisms h : A — B s.t. goh = f. Note
that we write pairs with round brackets on this level. This is different from the
notation (a, b) for the pair of @ and b in the logical framework.

General assumption 4.1.1 In the following we assume in all rules I : stype,
i:I = DI[i] : type (D an abstracted expression).

4.2 Coding Several Constructors by One

We can code several constructors of an IIR into one as follows: let J be a
finite index set for all constructors and A; be the type of the jth constructor.
Then replace all constructors by one constructor of type (j : J) — A;, which
is definable using case distinction on 2. In case of restricted IIR we can obtain
one constructor in restricted form with type (¢ : 1,5 : J) — A;; — C;, if the
type of the jth constructor is ¢ : I — A;; — Cj.

In this way it will suffice to consider only IIR with one constructor in the
sequel.

4.3 Restricted IIR as Initial Algebras in Slice Categories
Assume we have a restricted IIR with one constructor

intro : (i : I) — HY(U, T,i) — U(i)
(with all arguments of intro except ¢ in uncurried form), which introduces U :
I —setand T: (i:1,U(i)) — D[i]. Here HY : (U : I — set, T : (i : I,U(4)) —
Dli], I) — stype with no free occurrences of U, T and . Let further the equality
rule for T be

T(i,intro(i,a)) = H* (U, T,i,a) ,
where H' : (U : [ — set, T : (i : I,U(i)) — DI[i],i : I,HY(U,T,i)) — D[i] with
no free occurrences of U, T, ¢ or a. Now one observes that the introduction
rule and equality rule are captured as an I-indexed family of algebras for H in
Fam(I)/D, where H(U,T) = (HY(U,T), HY (U, T)):!

ITo be pedantic: one has to replace H(U,T), HY(U, T), HT (U, T) by uncurried variants
H (U,T)), YU, 1)), B (U, T))

11



D[i]

Note that the situation generalizes the situation for non-indexed induction-
recursion [10], where the rules for U and T are captured as an algebra of an
appropriate endofunctor I on the slice category Type/D.

If D[] = 1 and therefore H(U,T,¢) does not depend on T, we have the
important special case of a restricted indexed inductive definition. We show the
example of the accessible part of a relation:

(:1)— (z <i) — Acc(z) m)» Ace(i)

ie. HY(U,T,i) = (z: 1) — (x < i) — U(x).

4.4 A Diagram for General IIR

If a particular ITR does not have the restricted form then we do not prima
facie know the set of constructors for a particular expression. On the other
hand, given an argument to the constructor, we can determine the index of the
constructed element.

To capture this situation the categorical representation must be changed.
Depending on U : I — set and T : (i : I,U(i)) — DIJi] we have an stype
GY(U,T) of the arguments of the constructor intro, and, depending on a :
GY(U,T), we have GY(U,T,a) : I, which provides the i s.t. intro(a) : U;, and
GT(U,T,a) : D[GY(U,T,a)], which determines the value of T(i,intro(a)). The
diagram is:

intro

(a:GY(U,T)) — UGYU,T,a))

@*@ T(GYU,T,a))

’Q}
DIGYU, T, a)]

As a first simple instance we look at the identity relation on A. It has
index set [ := A x A, D[i] = 1, and GY(U,T) = A, GY(U,T,a) = (a,a), and

12



U({a,a)) =1a(a,a):

(a:A) . I(a,a)

1

As a second illustration we show how to obtain the rules for computability
predicates for dependent types. (As in Section 3 we only give a definition con-
taining one case, but the complete definition [5] can be obtained by expanding
the definition corresponding to the additional constructors).

GUEW) = (A:Exp)x (p: U(A)) x
(B : Exp) x ((a : Exp) — (A, p,a) = ¥(B a)) ,
G'(W,¢,(A,p,B,q)) = T(A,B),
GY(W,¢,(A,p,B,q)) = (b)Va:ExpVz: (A p,a)y(Ba,qla,z),ba) .

Note that in the general case we no longer have an endofunctor
Fam(I)/D — Fam(I)/D.
4.5 A Uniform Theory for Restricted and General IIR

If we look at the functors arising in general ITR we observe that we have obtained
one stype GY (U, T) and two functions

G'wu,T : GYUT) —1T,
GY(U,T) : (a:GY(U,T)) — D[G'(U,T,a)] .

where (U,T) is an element of Fam(I)/D, G'T(U,T) := (GY{U,T),G*(U,T))
an element of E := (i : I) x DJi], so (GY(U,T),G'"(U,T)) is an element of
Type/E. This can be expanded to a functor

G :Fam(l)/D — Type/E .
In restricted IIR we have for ¢ : I

HY(U,T,i) : stype ,
HY(U,T,i) : (a:HY(U,T,i))— D[] ,

which can be combined to an endofunctor (with obvious arrow part and exten-
sion to U s.t. i : [ = UJi] : type)

H: Fam([)/D — Fam(I)/D .

Consider the functor m; : Fam(I)/D — Type/D[i] with object part m;(U,T) :=
(U[i], T[é]) and obvious arrow part.

Every element (U,T) : Fam(I)/D is uniquely determined by its projections
m;(U,T). One also notes that for every sequence of functors H; : Fam(I)/D —
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Type/DJi] there exists a unique functor H : Fam(Il)/D — Fam(I)/D s.t.
m; o H = H;. H and G will be strictly positive functors in much the same way
as F in [10] . But since H is determined by m; o H and both m; o H and G are
functors Fam([)/D — Type/E, (where E = (i : I) x D[i] in the general case
and E = DJi] in the restricted case), it is more economical to more generally
introduce the notion of a strictly positive functor

F:Fam(l)/D — Type/E

for an arbitrary type E. From this we can derive the functors G and H. As in
[10], we define for E : type the type of indices for strictly positive functors

FE : type
OP],D,E : type ’
together with, for v : OPr p g (we omit I, D, E, if the parameter v is given)
Fg : (U1 —set,T:(i:I1,U(i)) — D[i]) — stype ,
FI : (U:I—set,T:(i:1,U(i) — Dlil,a:FJ(U,T)) = E .
(It is straightforward to define arrow parts of these functor and the extension
to arguments (U, T) s.t. ¢ : I = Ul[i] : type.)

We construct elements of OPr p g in a similar way as in the non-indexed
case:

e Base Case: This corresponds to having IIR with no arguments of the
constructor and one only has to determine the result of F:

L : E—>OP[7D7E 5
F}J(e)(UaT) =1 )
FloUT*) = e.

e Nondependent union of functors: This corresponds to the situation where
the constructor has an argument A and (depending on a : A) further
arguments coded as y(a).

o : (A:stype,y:A—OPrpg)—OPrpE ,
FE(AW)(U’ T) = (a:4)x Fg(a)(U, T) ,
FE(A,'}/) (Ua T7 <aa b>) = F$(a) (Uv7 T, b) .

e Dependent union of functors: This corresponds to the situation where the
constructor has one inductive argument indexed over A. For each element
a : A we have to determine an index i(a) : I, which indicates the set
U(i(a)), the inductive argument is chosen from. The result of 7' for this
argument is an element of (a : A) — Dl[i(a)] and the other arguments
depend on this function. Let T o [i, f] := (2)T(i(z), f(x)).

0:(A:stype,i: A—1I,v:((a:A) — Dli(a)]) - OPrp.g) = OPrpE ,

F}SJ(AJ,W)(U, T) = (f:(a:A)—U(i(a))) x FS(To[iyf])(Ua T,
F}‘(A,i,fy) (Ua T7 <f7 b)) = Fg‘(To[i,f])(U? T, b) .
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We finish this subsection by drawing a diagram which shows the relationship
between the functors G and H for general and restricted IIR:

Fam(I)/D LG» Type/(i: I) x DJi]
m; o H 4 e

Type/Di]

; Fam(I)/D

K2

where e(U,T) = ((¢ : I) x U(%), (a){mo(a), T(mo(a),m1(a)))). So the functors in
the restricted case are those which factor through an endofunctor H, which itself
is determined by the “fibers” m; o H.

The functors for the restricted case have codes of the form

o(l,()---6(A, f,(a)---6(B,g,(b)---0(C,(c)---0(D, (d) - - - 1({i, €)))))))

ie. the codes always start with o (7, (¢)... and the innermost parts are of the
form ¢({i,e)) where i is value of the first non-inductive argument. (Note that
the order of the constructors in an element of OP might depend on arguments
preceding them). That a functor G has such a code corresponds exactly to the
fact that it is obtained by the above diagram from strictly positive functors
T; O H.

4.6 Formation and Introduction Rules for Restricted IIR

Restricted IIR (indicated by a superscript r) are given by strictly positive end-
ofunctors H in the category Fam(I)/D, which can be given by their (strictly
positive) projections m; o H : Fam(7)/D — Type/DJi]. So the set of codes for
these functors is given as a family of codes for m; o H, and the type of codes is
given as

OP} p : type , OP; p=(i: 1) — OPrppp -

Assume now v : OP7 p, U : [ —set, T': (i : I[,U(i)) — DI[i], i : I. The object
part of H (restricted to U : I — set) is defined as

HY(U,T,i) = IFS(i)(U,T):stype
HY(U,T,i,a) = FJ,(U,T,a): D]

for a : HY (U, T,4).
We have the following formation rules for U and T7:

UL (i) iset ,  TL(i): UL(i) — D[] .
UZ (@) has constructor
intro (i) : HS(U;,T;,Z') — UL (i) ,
and the equality rule for T (i) is:

I T _ T T T
T, (4,intror (i,a)) = H; (U5, T, i,a) .

¥
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4.7 Formation and Introduction Rules for General ITR

In general ITR (as indicated by superscript g) we have to consider strictly positive
functors in G : Fam(I)/D — Type/(i : I) x D[i]. The type of codes is given as

OP% j, : type , OP% 1, = OP1 p (1)< D] -

Assume now v : OP} ,, U : I — set, T : (i : I,U(i)) — D[i]. The components
of G needed in the following are
GE(U,T) = ]FS(U,T) : stype
GL(U,T,a) mo(F5 (U, T,a)) :
G (U,T,a) m(F3 (U, T,a)) : DG (U, T, a)]

fora: GY(U,T).
We have essentially the same formation rules for U¢ and T%
Ug : I — set T8 : (i : 1, U8(i)) — DIi] .
There is one constructor for all U%(i). Depending on its arguments

G%(U%, T¢,a) determines the index it belongs to. So the introduction rule is:

introf : (a : GS(U%,T%)) — U%(G}Y(U,gy,T,gy,a)) .

The equality rule for T% is:

T#(G (U8, T%, a), introf (a)) = G1 (UE, T%, a) .

4.8 Elimination Rules for ITR

We now define the induction principle both for the restricted and the general
case. We define first more generally FgH and Fglap for v: OPr p g. Assume F
is a twice abstracted expression and

v:OPrpg, U:I—set, T:(i:1,U())— D[],
i:I,u:U(i) = Fli,u] : type .

The rules for F™ and F™2P are as follows:
a:FS(U,T) h:(G:1,a:U®%)) — Fli,u]
IH . ma, . .wU IH
F7(U, T, F,a) : type F2eP(U, T, F h) : (a: F5(U,T)) - F7(UT, F,a)

IH
Fie)

Fil’(l:)p(UaTvtha*) =%,

(U7T’F’*):1 )

Ff(IAﬁ)(U’ T,F,{a,b)) = F;f(la)(U, T,Fb) ,
Foer (U T, Fh, (a,b)) = FX (U, T, F,h,b)

F}SIEIA;L,»}/)(Uv Ta F’ <f7 b>) = ((a : A) - F[Z(a)hf(a)]) X ]Fg}(ITo[i,f])(Uv Ta Fa b) )

Fgrzzpii,»y)(Uv Ta Fa h7 <f7 b>) = <h’ o [7’7 f]’F:l(a’}?o[iyf])(Ua T7 F7 h’? b)> .
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In the restricted case we have now under the assumptions

v OPI},D ’
i:],a:Ufy(i):F[La]:type )
he(i: I a: (UL, TY,4), FIG (UL, T, Fya)) — Fli, intro} (i, a)]

Sop(h) (i Lax UQ('))HF[Z al ,
R p(h,i mtro,y(z,a)) h(i,a,F 700 (UL, T0, FL RS p(h),a))

And for the general case we have under the assumptions

v:0P%
i:1I,a:U8(i) = Fli,a] : type ,
h:(a:G g(U T¢),FY(US, T8, F,a)) — F[G (U8, T%, a), introf (a)] ,

RS p(h) : (i:1,a: US(i)) = Fli

.al
RiF(h G! (U2, T2, a),introf (a)) =

h(a, 20 (UE, T8, F,RE p(h),a)) .

In the restricted case one can show that the above rules express that the fam-
ily (U%(4), T% (2)) for 4 : I is (the carrier of) an initial algebra for the endofunctor
H on Fam( ) /D. This generalizes a theorem in [10] about the connection be-
tween inductive-recursive definitions of a set U and a function T : U — D and
initial algebras in the slice category Type/D.

Definition 2 (a) The basic theory of indexed inductive recursive definitions
(Bas-IIR ) consists of the rules for the logical framework as introduced in
this article, the formation and introduction rules for OP and the defining
rules for FU, FT, FIH gnd Fmap,

(b) The theory IIRT of restricted indexed inductive recursive definitions con-
sists of Bas-IIR, the defining rules for OP", HY, HT, and the forma-
tion/introduction/elimination/equality rules for U™ and T".

(¢) The theory IIRE of general indexed inductive recursive definitions consists
of Bas-IIR, the defining rules for OP%, GY, G!, GT, and the forma-

tion/introduction/elimination/equality rules for U8 and TS.

(d) IID* and IID® are the restrictions of IIR* and IIR®, where in all rules
in this article D[i] = 1. These are the theories of restricted and general
indezed inductive definitions.

5 The Examples Revisited

We first introduce the following abbreviations:

v +op v =0(2, (z)Ca(x,7,7))

and

M +op - +op Yn = (- ((11 +op 72) +or ¥3) +op -+ 0P Tn)

if n > 3.

17



Soif vy, ...,7v, are codes for constructors C; then v +op - - -+opyn is a code
for a constructor C. The first argument of C' codes an element ¢ of {1,...,n}.
The later arguments of C' are the arguments of the constructor C;.

In the following (—) stands for an abstraction (x) for a variable z, which is
not used later. Let (£(a) := t({a,*)), (& := ().

e The trees and forests have code v: OP5 (_y; (=2 — OPg ()1,1), where
’7(*0) = 6(17 (_)*15 (_)Li) )
Y(x1) = 4 Fop 6(1, (=)0, (=)d(1, (—)*1, (—)e)) -

Then Tree = U, _; _ (%0), Forest = Uy, (x1).

e The even number predicate has code
1£(0) +op o(N, (n)d(1, (—)n, (=)ik(S(S(n))))): OPY ),
(= OPn,(-)1,Nx1) -

e The accessible part of a relation has code
(@)0((z : I) x (z < i), (2)mo(2), (—)k): OPF (L)1
(: (Z . I) — OPI,(—)I,I) .
As a general IIR it has code
o(I,()6((z : I) x (z <), (2)mo(2), (—)e¥(4))): OPF
(= OPr (o)1,1x1) -

e The identity set has code
o(A, (a)if({a,a))) : OP, 4 y;1 (= OPasa (o)1,(axayx1) -

e For the Tait-style computability predicates for dependent types we have
I = Exp, DJi] = Exp — set. The rules given in Subsection 3.2 are incom-
plete, additional constructors have to be added by using 4+op (the current
definition actually defines the empty set). The code for the constructor
given in Subsection 3.2 is

o(Exp, (A)
5(17 (7)A7 (wA)
o(Exp, (B)
6((a : Exp) x ¥a(x,a), (y)(Bmo(y)), (¥B)
t((TI(A, B), (b)Va : Exp.Vx : a(x,a).¥p((a, ), (ba))))))))
:OP} iy p (= OPr)piig,:nxpp) -

e E. Palmgren’s higher order universe has code

7 OPlo,ny.)0p! Gset)
(= (k:{0,....n}) = OPyq o1 (1)Op! (set),Op (set)) -

where
’Y(O) ‘= 7YUniv tOP '7@0 +op - +op ’ygn +op ’yﬁo +op
Yapg TOP Yapt +0P ** * FOP Yapt, TOP Yap »
V(i) = g, topYapr  (E=1,...,n—1),
y(n) = g, -
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and
~Yuniv 18 a code for all standard universe constructors,

,ng = L(Ak) )
T8, = 0(Ak (a)u(Bk(a))) ,
TYap? = 6(17(_) .+1>7(Tf)

i

L
Yapl T 6(1

i

(To be formally correct we would have to work with N,1; instead of

{0,...,n}).

6 Further Results

There is an extended version [11] of this article which contains some additional
topics.

In particular we show the consistency of our theories by constructing a model
in classical set theory where type-theoretic function spaces are interpreted as
full set-theoretic function spaces, and some axioms for large cardinals are used
for interpreting the type of sets closed under IIR and also to interpret the logical
framework. This construction is a generalization of the model for non-indexed
induction-recursion given in [9)].

Furthermore, we show that the restricted and general form of an IIR are
intertranslatable under certain conditions. We also show how to simulate certain
forms of IIR by non-indexed inductive-recursive definitions (IR).
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