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In visualization, we use the terms data, infor-
mation and knowledge extensively, often in an 
interrelated context. In many cases, they in-

dicate different levels of abstraction, understand-
ing, or truthfulness. For example, “visualization is 
concerned with exploring data and information,”1 
“the primary objective in data visualization is to 
gain insight into an information space,”1 and “in-
formation visualization” is for “data mining and 
knowledge discovery.”2 In other cases, these three 
terms indicate data types, for instance, as adjec-
tives in noun phrases, such as data visualization, 
information visualization, and knowledge visual-
ization. These examples suggest that data, infor-
mation, and knowledge could serve as both the 
input and output of a visualization process, raising 
questions about their exact role in visualization.

There are many competing defi nitions of data, 
information, and knowledge, in different aspects of 
computer science and engineering and in other dis-
ciplines such as psychology, management sciences, 
and epistemology (the theory of knowledge).3 The 
use of the three terms isn’t consistent and is often 
confl icting. For instance, data and information are 
often interchangeable in computing (for example, 
data processing and information processing or data 
management and information management). From 
a systems perspective, however, data is referred to 
as bits and bytes stored on or communicated via 
a digital medium. So any computerized represen-
tations, including knowledge representations, are 
types of data. On the other hand, from the per-
spective of knowledge-based systems, data is a sim-
pler form of knowledge.

Researchers have attempted to clarify the tax-
onomy of terms used in the visualization com-
munity (for example, in the work of Ed H. Chi,4 
Ben Shneiderman,5 and Melanie Tory and Torsten 
Möller6). However, the terms data, information 
and knowledge remain ambiguous. This article 
doesn’t attempt to offer a different taxonomy for 
visualization. Instead, we differentiate these three 
terms from the perspective of visualization pro-

cesses. Furthermore, we examine the current and 
future role of information and knowledge in the 
development of visualization technology.

Defi nitions of Data, Information and 
Knowledge
Since we can read data, grasp information and ac-
quire knowledge, we must differentiate these terms 
in the perceptual and cognitive space. Because we 
can also store data, information and knowledge in 
the computer, we must also differentiate them in 
the computational space.

Perceptual and Cognitive Space
The data-information-knowledge-wisdom (DIKW) 
hierarchy7 is a popular model for classifying hu-
man understanding in the perceptual and cog-
nitive space. The origin of this hierarchy can be 
traced to the poet T.S. Eliot.8 Table 1 shows Rus-
sell Ackoff’s defi nitions of data, information, and 
knowledge.7

Let P be the set of all possible explicit and 
implicit human memory. The former en-
compasses the memory of events, facts, and 
concepts, and the understanding of their 
meanings, context, and associations. The lat-
ter encompasses all nonconscious forms of 
memory, such as emotional responses, skills, 
and habits.9 We can thus focus on three subsets 
of memory, Pdata  P, Pinfo  P, and Pknow  P, where 
Pdata, Pinfo, and Pknow are the sets of all possible 
explicit and implicit memory about data, informa-
tion, and knowledge, respectively.

Despite the lack of an agreeable set of the defi -
nitions of data, information, and knowledge, a 
consensus exists that data isn’t information, and 
information isn’t knowledge. Without diverting 
from this article’s scope, here we simply assume 
that Pdata, Pinfo, and Pknow aren’t mutually disjoint 
and none of them is a subset of another. Without 
losing generality, we can generalize Pknow to in-
clude wisdom, and any other high level of under-
standing, in the context of the DIKW hierarchy.
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Computational Space
Let C be the set of all possible representations in 

computer memory. Similarly, we can consider three 
subsets of representations, Cdata, Cinfo, and Cknow. 
However, data is an overloaded term in computing. 
For example, it’s common to treat programs as a 
special class of data. In many cases, it isn’t possible 
to distinguish programs from other data. Applying 
the same analogy, a computer representation of a 
piece of information or knowledge is just a par-
ticular form of data. A computer representation of 
visualization is also a form of visual data.

We hence propose to use the definitions in Table 
2 for the following discussions. With such defini-
tions, we have Cdata = C, Cinfo  Cdata, and Cknow 
 Cdata. We can easily extend the definitions in 
Table 2 to include categories of raw data (Crawdata), 
volume data (Cvolume), flow data (Cflow), software 
(Csoftware), videos (Cvideo), mathematical models 
(Cmathmodel), visual data (Cimage), and so forth. This 
also makes sense when using the category names 
as the adjectives in noun phases, such as volume 
visualization and software visualization.

Figure 1 shows a typical visualization process, 
illustrating instances of data, information, and 
knowledge in both computational space and per-
ceptual and cognitive space. Hence, the need for 
visualization is based on the difficulties humans 
face in acquiring a sufficient amount of informa-
tion (Pinfo  Pinfo) or knowledge (Pknow  Pknow) di-
rectly from a data set (Cdata  Cdata). The process of 
creating visualization is a function that maps from 
Cdata to the set of all imagery data, Cimage. It trans-
forms a data set Cdata to a visual representation Cim-

age, which facilitates a more efficient and effective 
cognitive process for acquiring Pinfo and Pknow.

A Visualization Process is a Search Process
Given a data set Cdata, a user first makes decisions 

about which visualization tools to use for exploring 
the data set. The user then experiments with dif-
ferent controls, such as styles, layout, viewing posi-
tion, color maps, and transfer functions, until he 
or she obtains a satisfactory collection of visualiza-
tion results, Cimage. Depending on the visualization 
tasks, satisfaction can come in many forms. For 
example, the user may have obtained sufficient in-
formation or knowledge about the dataset, or may 
have obtained the most appropriate illustration 
about the data to assist others in the knowledge 
acquisition process.

Such a visualization process is fundamentally 
the same as a typical search process, except that 
it is usually much more complex than plugging a 
few keywords into a search engine. In visualiza-
tion, the tools for the “search” tasks are usually 
application-specific (for example, network, flow, 

Table 1. Russell Ackoff’s definitions of data, information, and knowledge in 
perceptual and cognitive space.7

Category Definition

Data Symbols

Information Data that are processed to be useful, providing answers to 
“who,” “what,” “where,” and “when” questions

Knowledge Application of data and information, providing answers to 
“how” questions

Visualization

Cctrl

Cdata

Computational space

Interaction

Perceptual and
cognitive space

Cimage

Pknow

Pinfo

Figure 1. A typical visualization process, where interaction provides the primary means for reducing the search 
space in visual exploration. Cdata, Cctrl, and Cimage denote input data, control parameters and visualization 
results stored in computer memory, respectively. Pinfo and Pknow represent the information and knowledge 
acquired by the user.

Table 2. Building time as a function of data size.

Category Definition

Data Symbols

Information Data that represents the results of a computational 
process, such as statistical analysis, for assigning meanings 
to the data, or the transcripts of some meanings assigned 
by human beings

Knowledge Data that represents the results of a computer-simulated 
cognitive process, such as perception, learning, 
association, and reasoning, or the transcripts of some 
knowledge acquired by human beings
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volume visualization). The parameter space for the 
“search” is normally huge (for example, exploring 
many viewing positions or trying out many differ-
ent transfer functions). The user interaction for 
the “search” sometimes can be very slow, especially 
in handling very large datasets. Figure 1 depicts 
the process with a large interaction box that con-
nects from the user to the control parameters, Cctrl, 
which are also data.

In fact, over the past two decades, much empha-
sis has been placed on improving the speed of vi-
sualization tools, so users can carry out interactive 
“searches” faster, explore bigger parameter spaces, 
and hopefully find satisfactory results quicker.

However, with the growing amount of data and 
increasing availability of different visualization 
techniques, the search space for a visualization 
process is also expanding. Like the Internet search 

problem, interactive visualization alone is no lon-
ger adequate.

Information-Assisted Visualization
In recent years, researchers have introduced an 

assortment of techniques for visualizing complex 
features in data by relying on information ab-
stracted from the data. Here, we consider Cinfo 

in the computational space as well as Pinfo in the 
perceptual and cognitive space. Figure 2 illustrates 
an information-assisted visualization process. 
Some techniques use information captured in the 
visualization process to improve visualization ef-
ficiency and effectiveness. Table 3 gives examples 
of such information.

In information-assisted visualization, the sys-
tem provides the user with a second visualization 
pipeline (see Figure 2), which typically displays the 
information about the input dataset. But it can 
also present attributes of the visualization process, 
the properties of the results, or characteristics of 
the user’s perceptual behaviors. The user uses such 
information to reduce the search space for optimal 
control parameters, hence making the interaction 
much more cost effective.

Such techniques provide an intrinsic interface be-
tween the scientific-visualization and information-
visualization communities. With the increasing 
size and complexity of data, the use of information 
to aid visualization will inevitably become a neces-
sity rather than an option.

Knowledge-Assisted Visualization
In a visualization process, the user’s knowledge 
is an indispensable part of visualization. For in-

Table 3. Examples of information used in visualization.

Information categories Examples

Information about the input data 
set

Abstract geometric and 
temporal characteristics

Skeletons, features, events

Topological properties Contour tree for volume data, vector 
field topology, tracking graph for 
time-varying data

Statistical indicators and 
information measurements

Histogram, correlation, importance, 
certainty, entropy, mutual 
information, local statistical 
complexity

Information about the results Color histogram, level of cluttering

Information about the process Interaction patterns, provenance

Information about users’ 
perceptions

Response time, accuracy

Processing

Supporting visualization pipeline

Visualization

Visualization

Cctrl

Cdata

Computational space

Interaction

Perceptual and
cognitive space

Cimage

CimageCinfo

Pknow

Pinfo

Figure 2. Information-assisted visualization, where an additional pipeline displays information about the input 
data to help the user reduce the search space in the main visualization process. 
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stance, the user might assign specific colors to dif-
ferent objects in visualization according to certain 
domain knowledge. The user might also choose 
different viewing positions because the visualiza-
tion results can reveal more meaningful informa-
tion or a more problematic scenario that requires 
further investigation.

Meanwhile, the lack of certain user knowledge 
is often a major obstacle in deploying visualization 
techniques. The user might not have received ade-
quate training about how to specify transfer func-
tions, or might not have sufficient time or navigation 
skills to explore all possible viewing positions.

Both scenarios suggest the need for knowledge-
assisted visualization. The objectives of knowl-

edge-assisted visualization include sharing domain 
knowledge among different users and reducing the 
burden on users to acquire knowledge about com-
plex visualization techniques. It also enables the 
visualization community to learn and model the 
best practice, so that powerful visualization infra-
structures can develop and evolve.

Researchers and developers often incorporate 
some general or domain knowledge into visualiza-
tion systems, either intentionally or unintention-
ally. For example, a default transfer function in a 
volume visualization system may capture the do-
main knowledge about a specific modality. If a vi-
sualization system could collect a large repository 
of such knowledge, it could then choose an ap-

We can resolve the ambiguity in various statements 
that consist of the terms data, information and knowl-

edge by tagging such terms using the set notations, P, C, 
and their subsets. The following list of definitions from 
various publications is given below to help make these 
terms clearer:

Data [Cdata]: a representation of facts, concepts, or in-
structions in a formalized manner suitable for communica-
tion, interpretation, or processing by human beings or by 
automatic means.1

Information [Pinfo or Cinfo]: the meaning that is currently 
assigned [by human beings or computers] to data [Cdata] 
by means of the conventions applied to those data [Cdata].1

A useful definition of visualization might be the bind-
ing (or mapping) of data [Cdata] to representations [Cimage, 
Cauditory, Ctactile, and so on] that can be perceived. The 
types of bindings could be visual, auditory, tactile, etc., or 
a combination of these.2

If researchers try to read the data [Cdata], usually 
presented as vast numeric matrices, they will take in the 
information [Pinfo] at snail’s pace. If the information [Cinfo] 
is rendered graphically, however, they can assimilate it at a 
much faster rate.3

[Visualization] transforms the symbolic [Cdata] into the 
geometric [Cimage], enabling researchers to observe their 
simulations and computations.4

[Information (Cinfo) visualization is] the use of computer-
supported, interactive, visual representations [Cimage] of 
abstract data [Cinfo] to amplify cognition.5

Information [Pinfo or Cinfo] is born when data [Cdata] are 
interpreted [by human beings or computers].6

Information [Pinfo and Cinfo] has both qualitative and 
quantitative aspects.7

The amount of information [Pinfo and Cinfo] conveyed in 
an event depends on the probability of the event.7

Knowledge [Cknow] is the symbolic representation of 
aspects of some named universe of discourse … We define 

data [Cfacts or Crawdata but not Cdata because Cknow  Cdata] 
as the symbolic representation of simple aspects of some 
named universe of discourse … The amount of informa-
tion [Pinfo] obtained by the receiver of a message is related 
to the amount by which that message reduces receiver’s 
uncertainty about some aspect of the universe of discourse 
(Shannon).8

Knowledge [Pknow]: understanding, awareness, or familiar-
ity acquired through education or experience. Anything that 
has been learned, perceived, discovered, inferred, or under-
stood. The ability to use information [Pinfo and/or Cinfo].9 

Knowledge base: the assembly of all the information 
[Cinfo] and knowledge [Cknow] of a specific field of interest.9

References
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propriate transfer function based on the attributes 
of an input data set. Figure 3 (page xx) shows a 
visualization pipeline supported by a knowledge 
base (Cknow), that stores knowledge representations 
captured from expert users. The system can use 
rule-based reasoning to establish an appropriate 
set, or several optional sets, of control parameters 
which can significantly reduce the search space, 
especially for inexperienced users. The system 

component for reasoning is commonly called an 
inference engine in knowledge-based systems (or 
expert systems).

The shortcomings of such a system include the 
difficulties in specifying comprehensively what 
knowledge to capture and the inconvenience 
of collecting knowledge from experts. This con-
strains the deployment of such a system to specific 
application domains.

While there are many examples of information-assisted 
visualization, the development of knowledge-assisted 

visualization is in its infancy. Here we selectively describe 
several examples of information-assisted visualization in 
the literature, while accentuating the use, or potential use, 
of knowledge in a few visualization systems. These exam-
ples are intended to reinforce the viewpoints of this article, 
rather than provide a comprehensive survey.

Information-Assisted Visualization
The following examples show four different approaches 
to information-assisted visualization. The first three ap-
proaches make use of geometrical, topological and statis-
tical information about the input data, respectively. The 
last approach guides the user by measuring the quality of 
visualization results.

Curve-Skeleton
Curve-skeletons are 1D geometrical representations ab-
stracted from 3D objects in an input data set. Such infor-
mation can be used to aid visualization tasks, including 
virtual navigation, reduced-model formulation, visualiza-
tion improvement, and animation. For example, in virtual 
endoscopy, curve-skeletons can specify collision-free paths 
for navigation through human organs.1

Isosurface Topology
Isosurface topology, which is typically represented as a 
contour tree, provides abstract insight into the structural 
relationship and connectivity between isosurfaces in a data 
set. In volume visualization, such information can help 
users distinguish features in different topological zones, 
comprehend complex relationships between isosurfaces, 
and design effective transfer functions.2

Local Statistical Complexity
Local statistical complexity (LSC) is an information-theo-
retic measure that tells how much information from the 
local past is required to predict the dynamics in the local 
future. Given a time-varying data set, we can assign each 
data point an LSC value. Higher LSC values indicate regions 
that feature an extraordinary temporal evolution, whereas, 
lower values indicate temporal patterns that occur fre-

quently in the data set.3 Figure A demonstrates how such 
information can help users generate a visualization that 
highlights temporally important features.

Data Abstraction Quality
Measuring the quality of visualization results, such as 
visual density and clutter, provides users with useful guid-
ance in synthesizing the most effective visualization. One 
measurement is data abstraction quality, measuring the 
degree to which the visualization results convey the origi-
nal data set. Such information enables users to determine 
the optimal abstraction level for a given visualization task. 
It can also help the user compare different visualization 
methods in terms of their capability of maintaining domi-
nant characteristics of the original dataset while reducing 
the data’s size and detail.4

Knowledge-Assisted Visualization
The following examples represent visualization systems 
that exhibit some key features of knowledge-assisted 
visualization. They demonstrate both the feasibility and 
potential of knowledge-assisted visualization. 

Viewpoint Mutual Information
From Figures 2 and 3 in the main article, we can observe 
that one transition path of information-assisted visualization 
to knowledge-assisted visualization is to automate reasoning 
about the information abstracted from the input data. Ivan 
Viola and his colleagues give a classic example of such a 
transition, where viewpoint mutual information (VMI) that 
measures the dependence or correlation between a set 
of viewpoints and a set of objects in a data set is used to 
determine the optimal viewpoint.5 The fundamental dif-
ference between this approach and the above-mentioned 
examples of information-assisted visualization is that users 
don’t make decisions according to the processed VMI. 
Instead, a relatively simple rule for minimizing VMI is used 
to determine viewpoint transformation automatically. Such 
a rule can be seen as a piece of knowledge hard-coded in 
the system.

Predetermined Ranking
Jock D. Mackinlay, Pat Hanrahan and Chris Stolte capture 

Examples of Visualization
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An alternative approach is to establish a visual-
ization infrastructure, where the system can sys-
tematically collect, process and analyze data about 
visualization processes. Using case-based reason-
ing, it can infer knowledge from cases of successes 
and failures, common associations between data 
sets and control parameters, and many other pat-
terns exhibited by visualization tasks, tools, users, 
and interactions. Such knowledge might include 

a popular approach, commonly used parameter 
sets, the best practice, an optimization strategy, 
and so forth. Figure 4 (page xx) shows such an 
infrastructure.

Such an infrastructure is general purpose and 
can support multiple application domains. It can 
potentially enable applications to benefit from 
the best practice as well as software developed for 
other applications. Developers can build such an 

a noticeable amount of generic knowledge as ranks of 
different visualization designs.6 This enables the visualiza-
tion system to automatically take users through a design 
process for creating a visualization. The stored ranks and 
ranking conditions are essentially a collection of expert 
knowledge.

Ontology Mapping
The determination of visualization designs and parameters 
should depend on the input data. One approach is to extract 
semantic information from the input data and try to find the 
best match with the semantic information of visualization de-
signs (for example, treemaps and graphs) and the associated 
parameters (for example, size and axes). Owen Gilson and 
his colleagues7 use three ontologies, which are knowledge 
representations, to store (a) the domain-specific semantics 
about a class of input data, (b) the semantics about avail-
able visualization designs, and (c) the ontological mapping 
from (a) to (b). With these three ontologies, the system ranks 
different visualization designs dynamically according to the 
input data, and presents a set of highly-ranked visualization 
designs to the user automatically.

Workflow Management
VisTrails is a visualization infrastructure that provides users 
with workflow management.8 It can capture and store a 
huge amount of data about input data sets, user interac-
tion, and visualization results in visualization processes. 
VisTrails exhibits some of the primary characteristics of the 
knowledge-supporting infrastructure shown in Figure 4 in 
the main article, though it currently has limited automated 
reasoning. Such an infrastructure has great potential to be 
developed into an infrastructure for knowledge-assisted 
visualization.
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Figure A. The local statistical complexity (LSC) of flow around a delta 

wing (the gray triangle). Four stream surfaces indicate the vortices 

on top of the wing. The two isosurfaces in blue and light blue 

separate regions that hold LSC values within the range [14.7;15] and 

[11;15], respectively. High LSC values point the user to distinctive 

regions that might feature significant temporal events. (Source: 

Heike Jänicke, University of Leipzig, copyright 2008, used with 

permission.)3
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infrastructure upon advances in other areas of 
computing technologies, including semantic com-
puting, autonomic computing, knowledge-based 
systems, data warehousing, machine learning, and 
search engine optimization.

The development of visualization could follow 
a path similar to other computing technolo-

gies, such as speech processing, computer vision, 
and Web technology. Thus, one likely development 
path for visualization is

Computational space

Perceptual and
cognitive space

Interaction

ReasoningProcessing

Knowledge-based system

Cctrl

Cdata

Pknow

Pinfo

Cimage

Cknow
Cinfo

Visualization

Figure 3. Knowledge-assisted visualization with acquired knowledge representations. The system stores expert 
knowledge about specific applications and complex visualization techniques, and uses such knowledge, in 
conjunction with rule-based reasoning, to automate part of a visualization process. 

Processing Reasoning

Other visualization processes

knowledge supporting infrastructure

Computational space

Interaction

ReasoningProcessing

Cctrl

Cdata

Pknow

Pinfo

Cimage

Cknow
Cinfo

CinfoCdata

Visualization

Perceptual and
cognitive space

Figure 4. Knowledge-assisted visualization with simulated cognitive processing. The system makes use of the 
data passing through the visualization pipeline over time, and transforms such data to knowledge using case-
based reasoning. This alleviates the difficulties of transcribing the knowledge of expert users.
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■■ from offline visualization,
■■ to interactive visualization,
■■ to information-assisted visualization, and
■■ to knowledge-assisted visualization.

Interactive visualization has matured, whereas 
information-assisted visualization is still undergo-
ing a significant amount of development. With a 
large amount of information being collected lo-
cally and globally, a transition to knowledge-as-
sisted visualization is inevitable.

As a discipline, visualization has thrived on 
helping application users transfer data (Cdata) in 
the computational space to information (Pinfo) and 
knowledge (Pknow) in the perceptual and cognitive 
space. As a discipline, we need infrastructures to 
collect data about visualization processes and to 
transfer this data to information and knowledge 
to further our understanding and enhance visual-
ization technology..�
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