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Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to

certain driving conditions. Chaotic oscillations of resonating systems with negative and positive

spring constants are identified to investigate in this paper. Parametric driver imposed on these two

systems affects nonlinear behaviours, which has been theoretically analyzed with regard to

variation of driving parameters (frequency, amplitude). Systematic calculations have been

performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870295]

The research of nonlinear dynamics of the resonators

has attracted many attentions due to their recent implementa-

tion in micrometre and nanometre scales.1,2 The application

of such micro and nanoresonators has recently been

expanded to high sensitivity sensors,3,4 and nonlinear energy

harvesting devices.5 Duffing resonator is a classical dynamic

system, known for its additional cubic spring constant, which

is the main cause of the nonlinearity. Duffing oscillators can

be excited to chaotic vibrations at certain driving conditions.

There have been two cases where Duffing system could

vibrate chaotically. A ferromagnetic cantilever enclosed in a

frame with two permanent magnets magnetizing the tip of

the cantilever vibrates under an external excitation applied to

the frame (schematically shown in Figure 1(a)). This oscilla-

tion system has been experimentally investigated and has

exhibited chaotic vibrations.6 Magnetic forces applied on the

cantilever cause the dynamic system exhibiting negative lin-

ear spring constant. The other type of Duffing resonator that

could have chaotic vibrations is the clamped-clamped beam

with a parametric pump.7 The periodic behaviour of this type

of oscillators has been experimentally demonstrated for min-

iaturized devices.8 In terms of polarity of the spring constant,

we categorized Duffing oscillators into two types with nega-

tive and positive linear spring constants, respectively.

Parametric driven Duffing oscillators with positive linear

spring constant have been extensively studied in the context

of MEMS (Microelectromechanical Systems).9 MEMS oscil-

lators utilising parametrically excited non-interdigitated

combdrive actuators have been designed and characterized

to demonstrate the tuning of oscillator stiffness.10 The pres-

ence of chaos was also discovered in this type of MEMS

oscillators.11 Experimental study of dynamic bifurcation,

especially at edge of instability in a MEMS resonator has

been presented in Ref. 12. Bifurcation of MEMS Duffing res-

onators were investigated using a bi-state controller.13 This

bi-state control of parametric resonance was further detailed

in Ref. 14. Spring softening and hardening phenomena of an

electrostatically actuated MEMS combdrive resonator has

been analyzed theoretically in Ref. 15. The next paradigm

shift for research in nonlinear vibrations of these two

Duffing systems is to unveil whether the nonlinearity can be

precisely controlled. In this work, we added a parametric

pump to the system with negative spring constant to investi-

gate controllability of chaos and adjusted driving conditions

to the parametric driven Duffing system with positive spring

constant to investigate chaos control.

For the negative spring constant system shown in Figure

1(a), there is a non-dimensionalized expression to describe

its dynamic behaviour.6 For the purpose of investigating

chaos controllability, herein we introduced a parametric

driver by adding a variable term �A cos(xpt) to the linear

spring constant. The new non-dimensionalized equation for

the motion along z-axis of this system becomes

€z þ d _z þ ðb� A cos xptÞzþ az3 ¼ c cos xt; (1)

where d is the linear damping rate, b and a are the linear and

cubic spring constants, respectively. c is the amplitude of the

external harmonic excitation. A is the amplitude of the para-

metric pump. x and xp are the frequencies of the external

excitation and the pump, respectively. t is the time series.

Simulation was performed for the un-pumped scenario

(A¼ 0) using the same parameters in Ref. 16 to validate the

method. The simulated Poincare diagram, shown in Figure

1(c), closely matches.16 To predict, whether the Eq. (1) has

chaotic solutions, Melnikov’s method is applied.17,18 In

order to conduct Melnikov analysis, Eq. (1) is rewritten as

_x ¼ y

_y ¼ �bx� ax3 þ eð�d0yþ c0cosðxtÞ þ A0 cosðxptÞxÞ;
(2)

where x¼ z, y ¼ _z, ed0 ¼ d, ec0 ¼ c, eA0 ¼ A, e is a small pa-

rameter, hence the unperturbed form of the Eq. (2) is

_x ¼ y

_y ¼ �bx� ax3:
(3)

Equation (3) is a Hamiltonian system. Its Hamiltonian can be

expressed as

H ¼ 1

2
y2 þ 1

2
bx2 þ 1

4
ax4: (4)

The Hamiltonian is conserved. One can derive easily that

Eq. (3) has two homoclinic orbits C6, which are given bya)Email: L.Li@swansea.ac.uk
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C6 : ðx0ðtÞ; y0ðtÞÞ ¼ 6
ffiffiffi
2
p

SechðtÞ;7
ffiffiffi
2
p

SechðtÞ � tanhðtÞ
� �

:

(5)

In Eq. (5), x0(t) and y0(t) correspond the coordination of a

specific point on the orbit. Moreover, x0(t) and y0(t) will be

used in solving the Melnikov function. The Melnikov func-

tion M(t0) of Eq. (2) is then obtained as

Mðt0Þ ¼
ð1
�1

y0 �dy0 þ c cos xðtþ t0Þð½

þA cos xp tþ t0ð Þ � x0

�
�dt; (6)

t0 is the time of flight from a point (x0(t), y0(t)) to the point

(x0(0), y0(0)) on the homoclinic connection. Substituting (5)

into (6), Eq. (6) is then re-organized into three integrals

summed together, M(t0)¼M1 þ M2 þ M3

Mðt0Þ ¼ �
4

3
d6

ffiffiffi
2
p

cpx Sech
px
2

� �
sinðxt0Þ

þ Apxp
2Csch

pxp

2

� �
sinðxpt0Þ: (7)

According to the Melnikov method, the first variation of dis-

tance function between stable and unstable manifolds of

homoclinic orbits is proportional to Melnikov function.

When chaotic motion arises in the system, there exist simple

zeros in the Melnikov function (7), which implies stable and

unstable manifolds intersect transversely with each other.

Parameters in Eq. (7) will be carefully chosen in order to

have real root t0, which indicates that the system can possi-

bly be at the chaotic state. It should be noted that the

Melnikov method is a necessary condition. In this paper, in

order to conduct a quantitative study on the parametric effect

to the Duffing system, we choose d¼ 0.2, b¼�1, a¼ 1,

c¼ 0.3, A¼ 0.2, x¼ 1; and xp 2 0:8; 10½ � as a varying pa-

rameter. The system remains in the chaotic state when

xp¼ 0.17 The varying range of the xp is selected according

to the Melnikov function described above. As the pump fre-

quency xp increases from 0.8x to 10x, solving Eq. (2) will

find out the impact to the system nonlinearity due to the

pump frequency xp. To unveil this impact quantitatively,

Maximum Lyapunov exponent (MLE) of Eq. (1) will be cal-

culated. MLEs are used to indicate the separation rate of two

nearby trajectories in a chaotic system. MLEs of system

described by Eq. (1) have been calculated numerically as

pump frequency xp varying from 0.8x to 10x, and results

are shown in Figure 2(a). It is seen from the results that the

MLE is only negative as xp is x, 1.5x, 2x, 3x, respectively,

meaning at these frequency points, chaotic motion of the

Duffing oscillator changes to periodic motion. Apart from

these four points, the MLE is positive which means the sys-

tem is still at chaotic state. This result indicates that precise

chaos control of the Duffing oscillator can be achieved

through accurately varying the frequency of the parametric

pump. In order to further understand why the system is at

periodic state at these four points and the accuracy of the

chaos reconfigurability, Melnikov method is employed.

Taking xp¼ 1 as an example, Eq. (7) is solved for t0 ranging

from 0 to 1 � 106, other parameters remain exactly same as

in previous calculations. It is seen from Figures 3(a) and 3(b)

that as xp¼ 1.0001x and xp¼ 0.9999x, there are many

points where M(t0)¼ 0, which indicates that it is possible for

the system to reach chaotic states. However, when xp¼x, it

is shown in Figure 3(c) that M(t0) does not have 0 solution,

which means that the system will not reach chaotic state,

hence it has been completed suppressed. Here, the ratio of

pump frequency change is defined as rx¼ (xp � x)/x. It is

noted that Eq. (7) has two forms ( 6 ); only minus sign is

used in the calculation, as the equation with plus sign gives

FIG. 1. (a) Schematic picture of a

Duffing oscillating system with nega-

tive spring constant. Figure 1(b)

Scanning electron micrograph on the

left shows a device made by Roukes

group. (Reprinted with permission

from R. B. Karabalin, X. L. Feng, and

M. L. Roukes, Nano Lett. 9, 3116

(2009). Copyright 2009 American

Chemical Society.7) In this type of sys-

tems, from theoretical analysis pre-

sented in this paper, chaos can be

remained for a limited time period.

Figure 1(c) simulated Poincare section

of the non-parametric strange attractor

for verifying the method.
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impractical results. To demonstrate the sensitivity of the

parametric chaos control, calculations are conducted for time

section t0 at the first point, where the M(t0) is zero versus the

ratio pump frequency change. It is seen from Figure 3(d) that

the relationship between logarithmic t0 and logarithmic rx is

almost linear. This indicates that as the pump frequency

change gets smaller, the system takes longer time to return to

chaotic state. When the pump frequency is exactly same as

the frequency of the external exciting force, the chaos is

completed suppressed. However, the case of xp being

exactly same as x is very difficult to achieve in practice,

hence strictly speaking, the suppression cannot hold for long

time in reality. The closer the xp to the x, the longer time

the suppression holds.

For further illustrating dynamic properties of the system

when varying the parametric frequency, phase portraits for

xp being 0.8 x, x, 1.5 x, 2 x are calculated, and results are

shown in Figure 4. It is seen that the system is chaotic when

xp¼ 0.8 x. When the xp increases to x, 1.5 x, 2 x, phase

portraits are calculated to be a single circle, and periodic sol-

utions, respectively. The chaos control due to the amplitude

of the parametric pump is also investigated. In this case, the

frequency of the pump xp is fixed at x, and the amplitude A
varies from 0.05 to 0.2, while other parameters are same as

in previous calculations. MLEs have been calculated, and

results shown in Figure 2(b) indicates that less impact to the

Duffing oscillator when the parametric pump amplitude is

small, and the impact becomes more significant as the ampli-

tude increases. This is reasonable as the larger the amplitude

of the parametric perturbation, the more significant influence

it imposes to the Duffing system.

The positive linear spring constant system with paramet-

ric driven studied in this work was experimentally realized

by Harrington and Roukes7,19 as shown in Figure 1(b). It was

constructed by a suspended doubly clamped beam supported

by two parametric pump beams. The resonator was driven by

a varied electrostatic force, and the parametric pumping

force was generated by applying a periodical current to the

two supporting beams, while the whole structure is exposed

in a magnetic field. The varied pumping force stretches or

compresses the doubly clamped resonating beam along its

longitude, adjusting its linear spring constant. To study its

nonlinear dynamics, a previous established one-dimensional

elastic beam theory was used.20,21 The following equation to

describe the in-plane motion of the parametric pump driven

doubly clamped resonator is as follows:

€zðtÞ þ ðx2
0 þ k0p cos ðwpx0tÞÞzðtÞ þ d _zðtÞ þ az3ðtÞ

¼ 2F0 cosðwdx0tþ /Þ; (8)

where d ¼ �f1=ðqSÞ, a ¼ 8Ep4=ð9qL4Þ, k0p ¼ kp4p2=ð3LÞ,
F0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
f0= qSð Þ, x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p4EI=ð3qSL4Þ

p
, xp ¼ wpx0,

and xd ¼ wdx0. S and L are the cross-sectional area and

length of the doubly clamped beam. E is the Young’s modu-

lus, and I¼wd3/12 is the moment of inertia of the beam’s

cross-section area. w and d are width and thickness, respec-

tively. q is the mass density, xp is the pump frequency, and kp

is the pump amplitude which can be changed via modulating

magnetic field B or the current applied to the pump

beams. f0¼pe0VdcVac=ðhðlnð4h=dÞ2ÞÞ and f1¼�pPTk=4vT ,22

where the electrical potential is V¼VdcþVac cosðxdtþ/Þ, in

which Vdc and Vac are dc and ac components, and xd as the

drive frequency. h is the gap between the beam and the elec-

trode. In this work, the gap is assumed to be constant as the

vibration of resonator is very small. P and Tk are the air pres-

sure and temperature, respectively, vT¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTk=m

p
is the air

molecule velocity at Tk. kB is the Boltzmann constant. In order

to arrive at Eq. (8), we have employed Galerkin’s method23

which assumes that the displacement in the z direction is z(t)
� u(x), z(t) and u(x) are the time-dependent amplitude

and eigenmode deflection, respectively. uðxÞ¼ð2=3Þ1=2

1�cosð2px=LÞ½ � is assumed, and it satisfies the boundary con-

ditions uð0Þ¼uðLÞ¼u00ð0Þ¼u00ðLÞ¼0.20 Re-writing Eq. (8)

into a two-degree-of-freedom model

FIG. 2. Calculated MLEs of the Duffing system (negative spring constant)

with a parametric pump with (a) varying frequency xp and (b) varying am-

plitude A.

FIG. 3. Calculated M(t0) and chaos control sensitivity of the Duffing system

(negative spring constant) with the parametric pump (A, xp). (a) Calculated

M(t0) for xp¼ 1.0001x. (b) Calculated M(t0) for xp¼ 0.9999x. (c)

Calculated M(t0) for xp¼x. (d) Chaos control sensitivity for xp near x.

Horizontal axis is the time section t0 for the first M(t0)¼ 0, and vertical axis

is the difference between the pump frequency and the external driving

frequency.

FIG. 4. Calculated phase portrait of the Duffing system (negative spring

constant) with the parametric pump (A, xp).
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_z1 ¼ z2

_z2 ¼ �ðx2
0 þ k0p cosðwpx0tÞÞzðtÞ � d _zðtÞ

� az3ðtÞ þ 2F0 cosðwdx0tþ /Þ: (9)

Based on the Eq. (9), first, we studied the parametric amplifi-

cation by setting a low voltage V in which the resonator is

vibrating in its linear regime, i.e., Vdc¼ 100 mV and

Vac¼ 10 mV. We set the pump frequency and amplitude as

wp¼ 2, / ¼ p=2 and k0p ¼ 0:005x2
0. Other parameters are

taken as d¼ 10 nm, w¼ 30 nm, L¼ 3 lm, q¼ 2332 kg/m3,

E¼ 169 GPa, Tk¼ 300 K, P¼ 0.05 atm, h¼ 1 lm, and

m¼ 5.6 � 10�26 kg.22 From the calculated results in linear

region (Figure 5(a)), we can see the amplitude has increased

to 2.88 � 10�10 m in the driving frequency sweep

(0.95<wd< 1.052), Furthermore, we investigated the ampli-

tude increase under different phase / and wp, which are var-

ied in [0, p/2] and [0, 2], respectively. Keeping other

parameters unchanged, it is seen from Figure 5(b) that the

peak of the increase occurs when /¼p/2 and wp¼ 2, which

are consistent with the trend of parametric amplification both

in theoretically and experimentally.21,24 As the parameters

used in this work are different, quantitative comparison was

not made.

Furthermore, the device will be vibrating in nonlinear

regime, specifically, the vibration of the resonator will be in

transient chaotic state if the driving force increases to such

an extent. For investigating the chaos controllability, in the

following simulation, we increased the voltage to Vdc¼ 20 V

and Vac¼ 12 V, and keep the rest of parameters unchanged

but with kp¼ 0 (without pump). It is found from the results

that the system is in the transient chaos before T¼ 15 000 (T

is a nondimensionalized time series, T¼x0 t), and then the

chaotic state is transformed into periodic state when

T¼ 1 500 000. It should be noted that we have employed the

relation z0 ¼ z/h. When the parametric pump is turned on, the

transient chaos disappears quicker compared with the system

without the pump, especially on certain wp and kp. The bifur-

cation diagram of Eq. (9) when wp is varying from 0.8 to 1.1

in time interval [0, 15 000] was calculated and shown in

Figure 6. From Figure 6(a), it is seen there are many periodic

states on certain pump frequencies. In contrast, as shown in

Figure 6(b), the system is still chaotic without the parametric

pump. Furthermore, the MLE as wp varying from 0.8 to 1.6

was calculated. It is shown in Figure 7 that the MLE is

becoming negative more and more as time increases, which

means the transient chaos in the parametric pumping system

will enter periodic state eventually but with less time.

Besides, we explored the impact of kp
0 when wp¼ 2 is fixed.

It is interesting to find from the phase portraits shown in

Figure 8 that the kp
0 has the effect to modulate the phase

shape. With the increasing kp
0, the number of intersections in

the periodic trajectory increases, leading to increased number

of periodic states.

To conclude, Duffing resonators with negative and posi-

tive spring constants driven by parametric pump were inves-

tigated to unveil the controllability of chaotic vibrations.

Calculations were conducted to the two types of dynamic

systems using established methods such as Melnikov’s

method, MLE, and Galerkin’s method. All calculations used

parameters from previous experiments except for varying

driving conditions. For the negative spring constant system,

a precise reconfigurability (60.0001x) has been demon-

strated at the frequency point xp¼x. Calculation also shows

that this reconfigurability can be further increased by extend-

ing t0. Nevertheless, the time period during which the chaos

being suppressed can be very long if the mismatch is suffi-

cient small. The impact due to the amplitude of the

FIG. 5. Calculated parametric pumping effect to a Duffing system (positive

spring constant) in periodic region. The results are consistent with experi-

mental results in Ref. 16. (a) Displacement vs. parametric frequency. (b)

Displacement vs. parametric amplitude.

FIG. 6. Bifurcation diagram of displacement of the Duffing oscillator with

positive spring constant when varying wp in [0.8, 1.1]. (a), kp¼ 0.005w0, the

time interval T is [0, 15 000]. (b), kp¼ 0 with calculated time interval in the

same range of (a).

FIG. 7. MLE of the Duffing oscillator (positive spring constant) with wp

varying in [0.8, 1.6].

FIG. 8. Calculated phase portraits of Duffing oscillator (positive spring con-

stant) when wp¼ 2.
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parametric pump has also been investigated. It is shown that

as the amplitude increases, the impact becomes greater. For

the positive spring constant Duffing system, transient chaos

has been demonstrated, which can be controlled using the

parametric pump. Varying parametric pump frequency and

amplitude, it was found that the transient chaos entre the per-

iodic state with less time than the system without parametric

driving. This work theoretically validated dynamic behav-

iours of two typical systems, stable (positive spring constant)

and unstable (negative spring constant). Results of this work

will serve a future reference for design of the parametric

driven Duffing oscillators.

The authors thank College of Engineering, Swansea

University, the U.K. Leverhumle Trust, and Chinese

Scholarship Council for support.
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