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Abstract

Combining forecasts can be based on different data or different methods or both. In
practice, many different data sets can be difficult to obtain. In this paper we propose a
combining forecasts method that uses both simulated and observed time series. Several
combining methods have been studied and the combined forecasts have been compared
with those obtained from the model fitted to the observed time series only. Simulation
studies and applications of the proposed method to real data sets show that on average
the combined forecasts are more accurate than those obtained without combining.

Key words: Combining forecasts, simulation, marginal distribution, autocorrelation struc-
ture, weighted average.

1 Introduction

Forecasting for time series is always an important issue in time series analysis. One ap-
proach to forecasting is to fit a model to an observed time series and then to forecast using
the fitted model, see for example, Box et al. (2006), Tong (1990) and Cai (2003, 2005,
2007, 2010). Another approach to forecasting is to combine forecasts that are obtained
from different methods or different data or both. Such an approach is very appealing in
that combining can reduce error arising from faulty assumptions, bias or mistakes in data.
Hence, combining forecast methods have been used in many areas. For example, Batchelor
and Dua (1995) examined forecasts of real GNP, inflation, corporate profits, and unem-
ployment for forecast horizons of 6, 12 and 18 months ahead. They found the Mean Square
Error (MSE) decreased by an average of 9.2% by combining any two economists’ forecasts.
Kumar et al. (2003) studied the prediction of Typhoon tracks and intensity by combining
forecasts from different models. Winkler and Poses (1993) examined physicians’ predic-
tions of survival for 231 patients who were admitted to an intensive care unit. Different
methods have also been proposed for combining forecasts. Clemen (1989) conducted a
comprehensive review of the evidence and found equal weighting to be accurate for many
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types of forecasting. McNees (1992) found that the mean seemed superior when the fore-
casting accuracy was measured by root MSE (RMSE), while the median seemed better if
the Mean Absolute Error (MAE) was used. Given different forecasts, Armstrong (2001)
suggested that combining them using equal weights usually performs better. Bunn and
Wright (1991) discussed issues on combining judgemental forecasts and statistical fore-
casts. McCracken and Clark (2008) derived the MSE-minimizing weights for combining
the restricted and unrestricted forecasts. Wang and Nie (2008) argued that choosing the
method which has the best forecasting result as the combining forecasts model can greatly
enhance the forecast effectiveness. Armstrong and Collopy (1992) evaluated measures for
making comparisons of errors across time series. They recommended to use the Median
Absolute Percentage Error (MdAPE) for selecting the most accurate methods if reasonable
number of series available.

In practice, it is usually very difficult to obtain several observed time series over a
period of time, which makes it difficult to combine forecasts based on different data, and
which motivated our research. Cai et al. (2008) proposed a simulation method that enables
us to generate many independent time series which mimic the observed time series to a
high standard. The method has been successfully applied to sea condition time series in
coastal engineering such as wave height and wave period etc. We expect that the simulated
time series should also help in forecasting for the following reasons. The autocorrelation
structure and the marginal distribution are two main important features of a time series.
The simulated time series obtained from the method of Cai et al. (2008) have very similar
autocorrelation structure and marginal distribution to those of the observed time series but
not exactly the same. Therefore, the simulated time series can be viewed as data coming
from different sources. As Armstrong (2001) pointed out, using different sources of data
can add useful information into a combined forecast and may also adjust for biases. We
will see later in the paper that the simulated time series do work very well.

The proposed combining forecasts method consists of four steps: The first step of the
method is to use a modified version of the simulation method of Cai et al. (2008) to obtain
simulated time series. We will use a different marginal distribution from that used by Cai
et al. (2008), which we believe is more suitable for the real data sets considered in this
paper. The second step of the method is to fit a time series model to each simulated and the
observed time series, so we have a sequence of fitted time series models. The third step is
to use each fitted model to obtain forecasts. The fourth step of the method considers how
to combine different forecasts obtained from different models so that a final conditional
forecast can be produced. Therefore, the combined forecasts contain information from
both different sources and different models. We will see that the developed forecasting
method does increase the forecasting accuracy.

The arrangement of the paper is as follows. In Section 2, we present the forecasting
method. The simulation studies are given in Section 3, and the applications to real time
series can be found in Section 4. Finally, some comments and conclusions are given in
Section 5.
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2 The method

In practice, usually only one observed time series over a period of time is available. How-
ever, if we could generate simulated time series which possess necessary properties that the
observed time series has, then we could obtain forecasts based on both the simulated and
the observed time series. A final conditional forecast could then be produced by combining
those forecasts in a proper way. This is the basic idea of the forecasting method presented
below.

Let yt (t = 1, 2, . . . , n) be an observed time series and let F (y) be the marginal distri-
bution defined by

F (y) = G1(y)I[y≤µ] + [(1− β)G2(y) + β]I[y>µ], (1)

where
G1(y) = 1− e−(y/λ)α

, λ > 0, α > 0, y > 0

is the Weibull distribution function, and

G2(y) = 1−
[
1 +

ξ(y − µ)

s

]−1/ξ

, y > µ, 1 +
ξ(y − µ)

s
> 0

is the generalized Pareto distribution function (GPD), µ is a proper threshold value and
P (Y ≤ µ) = β.

The marginal distribution defined by (1) is a mixture of the Weibull distribution and the
GPD, which is different from that used by Cai et al. (2008). Most of the economics and
financial time series take positive values and show many extreme values over the observed
period of time. Therefore, a normal distribution may not be appropriate for describing the
marginal distribution of such time series. Although G1 could be the empirical distribution
of the observed data, taking G1 as a continuous distribution function makes the calculations
easier. More importantly, we have found that this marginal distribution performs well for
many economics and financial time series in practice, such as the dividend yields time
series considered later in this paper. Note that for other types of data different marginal
distributions may be used.

The forecasting method consists of the following four steps (a) to (d).

(a) Use a modified method of Cai et al. (2008) to obtain k time series yit (i = 1, . . . , k,
t = 1, . . . , m), where m is the length of simulated time series. To achieve this, we first
define a base process and estimate the parameters involved by using the observed time
series. The base process takes the form

zt = φ1zt−1 + φ2zt−2 + · · ·+ φpzt−p + ut + θ1ut−1 + θ2ut−2 + · · ·+ θqut−q,

where p and q are the order of the base process, φ1, . . . , φp and θ1, . . . , θq are the parame-
ters to be estimated, and ut are independently identically distributed (i.i.d.) normal random
variables with mean zero and variance σ2. Then we simulate k independent time series zit

(i = 1, . . . , k, t = 1, . . . , m) from the base process. Finally the simulated series zit are
transformed properly to the required time series yit such that they have the same autocor-
relations up to a lag, say, L and the same marginal distribution as those of the observed
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time series. For details, see Cai et al. (2008). In this paper we use the marginal distribution
given by (1), so yit can be obtained as follows: let yit = G−1

1 (Φ(zit)) if Φ(zit) ≤ β, and
let yit = G−1

2 (Φ(zit)) otherwise, where Φ(·) is the standard normal distribution function,
and G−1

1 (x) and G−1
2 (x) are the inverse functions of the Weibull distribution and the GPD

respectively. Specifically, we have

G−1
1 (x) = λ (− ln(1− x))1/α , G−1

2 (x) = w +

[(
1− x

1− β

)−ξ

− 1

]
s

ξ
.

(b) Fit a time series model to each of the simulated and the observed time series. For
illustration purposes, the fitted models are in the class of ARIMA models, but any other
types of time series models can also be used if required.

(c) Use each fitted model to obtain forecasts up to `-step ahead, where ` = 1, . . . , M .

(d) Combine forecasts in a proper way. In this paper we propose the following methods
for combining forecasts. Method 1 is an unequally weighted average method, Method 2
is a modified version of a commonly used method, and Method 3 is an equally weighted
average method. The details about each method are given below.

Method 1. Let AICi be the Akaike information criterion (AIC) value, which is a mea-
sure of the relative goodness of fit of a statistical model, and let wi be the weight of the ith
model ( i = 1, . . . , k). Then if all the AIC values are negative, let wi = AICi/

∑k
j=1 AICj;

If all the AIC values are positive, let wi = (1/AICi)/
∑k

j=1(1/AICj); If some of the AIC
values are positive and some are negative, let oi be the rank of AICi such that a smaller
AIC corresponds to a larger rank. Then wi = oi/

∑k
j=1 oj . Finally, we believe the observed

time series contains more information than the simulated time series. Therefore, the final
combined forecasts are given by

ỹn+` =
1

2

(
k∑

i=1

wiy
(i)
n+` + ŷn+`

)
, ` = 1, . . . , M, (2)

where y
(i)
n+` is the `-step ahead forecast obtained by using the ith simulated time series, and

ŷn+` is the `-step ahead forecast obtained by using the observed time series.

Method 2. This method uses the AIC weights defined by (see, for example, Burnham
and Anderson, 2002)

wi = e−0.5∗AICi/
∑k

j=1 e−0.5∗AICj , i = 1, . . . , k.

Similar to Method 1, the final combined forecast can be calculated by using (2).

Method 3. This method uses equal weights. So the final `-step ahead combined forecast
is the average value of those `-step ahead forecasts obtained from both the simulated and
observed time series.

Note that, in Method 1 and Method 2, a model with a smaller AIC value always corre-
sponds to a larger weight, hence will make a bigger contribution to the final forecasts. The
rationale behind this is that models with smaller values of AIC are favored on the basis of
fit and parsimony.
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It is worth mentioning that in the literature of time series analysis, it is also possible to
use some re-sampling schemes to obtain simulated time series, such as bootstrap methods.
Härdle et al. (2003) gave a review on this topic. However, those types of simulation
methods are very different from our method. One of the main differences is that those
methods cannot simultaneously guarantee the similarities of the autocorrelation structures
and the marginal distributions between the observed and simulated time series, but our
method can. Therefore, when treating simulated time series as data coming from different
sources, our simulated time series are of more required properties. However, a thorough
investigation on different forecasting methods needs to be carried out in the future.

3 Simulation studies

Many simulation studies have been conducted in order to investigate the performance of
the forecasting method. Each time we have similar results. To save space, we only show
two simulation studies in this section.

3.1 Simulation study 1

Consider a data generating process

yt = 0.1yt−1 + 0.4yt−2 + 0.02yt−3 + εt, (3)

where εt are i.i.d. with density function given by

f(ε) =
Γ(a + b)

Γ(a)Γ(b)
εa−1(1− ε)b−1, a > 0, b > 0,

where a = 0.1 and b = 2, which were chosen arbitrarily. We used the statistical software
R to simulate a time series of length 550 from model (3). In the following we only used
the first 500 values for obtaining forecasts but leave the last 50 values for checking the
forecasting accuracy. So the last 50 values will not be used to produce combined forecasts.
We call this time series the observed time series and show it in Figure 1(a) (darker curve).
It is seen that the time series has many large values. Hence the marginal distribution should
be skewed to the right.

By applying the developed method to the observed time series, we obtained the esti-
mated marginal distribution (1) with

G1(y) = 1− e−(y/0.0837)0.8856

, G2(y) = 1−
[
1− 0.3494(y − 0.3)

0.2256

]1/0.3494

for y > 0.3, 1− 0.3494(y−0.3)
0.2256

> 0 and β = P (y ≤ 0.3) = 0.93.

The estimated base process is given by

zt =
10∑

j=1

φ̂jzt−j + ut,
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Table 1: Estimated parameter values of the base processes

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5

Simulation 1 0.0197 0.4269 0.0033 0.0023 −0.0054
Simulation 2 0.3935 0.2039 0.0557 0.0927 0.0307

φ̂6 φ̂7 φ̂8 φ̂9 φ̂10 σ̂2

Simulation 1 −0.0546 −0.0144 −0.0470 0.1099 0.0143 0.8040
Simulation 2 −0.0968 0.0131 0.0461 0.0292 0.0109 0.5923

where φ̂j can be found in Table 1.

We generated 1001 independent time series zit (i = 1, . . . , 1001, t = 1, . . . , 500) each
of length 500 from the estimated base process and then transformed them into the yit pro-
cesses. For convenience, the first simulated time series y1t was used for comparing the
marginal distributions of the observed and the simulated time series. Figure 1(a) also shows
the simulated time series y1t (lighter curve). It is seen that both time series look very similar.
Figure 1(b) checks the marginal distributions: the histogram corresponds to the observed
time series and the continuous curve corresponds to the estimated density function of the
simulated time series y1t. Obviously, they are also in a good agreement with each other.
This is further confirmed by Figure 1(e) which shows the QQ-plot of the observed and the
simulated time series. To check the auto-correlation structure, we produced the autocor-
relation function (acf) plot of the observed time series up to lag 10 in Figure 1(c). Then,
we calculated the average acf values over the remaining 1000 simulated time series and
plotted the average acf in Figure 1(d). Clearly, on average, the auto-correlation structure of
the simulated time series is very similar to that of the observed time series.

To check the forecasting performance of the method, we first simulated another 100
time series each of length 500 from the estimated base process. Then, by using the statis-
tical software R, we obtained the best fitted ARIMA model to each of the 100 simulated
and the observed time series and predicted future values up to 50 steps ahead. Finally, we
combined the forecasts by using different methods presented in step (d) of the developed
forecasting method. The accuracy of the combined forecasts were measured by RMSE and
MdAPE shown in Table 2, where Method 4 corresponds to the results obtained from the
model fitted to the observed time series only. It is seen that, under RMSE, the combined
forecasts obtained from Method 1 and Method 2 are at least as good as those obtained from
Method 4, while those from Method 3 are worse. On the other hand, under MdAPE, all
the MdAPE values for this simulation study are significantly less than that for Method 4,
suggesting that combining does improve the accuracy of forecasts in this study.

3.2 Simulation study 2

A time series of length 550 was simulated from the model

yt = 0.7yt−1 + 0.1yt−2 + εt − 0.3εt−1, (4)

where εt are i.i.d random variables following an exponential distribution with rate 2. Again
we leave the last 50 values for checking the forecasting accuracy only. Similarly, we call
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Figure 1: (a) Observed (darker curve) and simulated (lighter curve) time series. (b)
Marginal distributions. (c) (d) auto-correlation structures. (e) QQ-plot of the observed
and the simulated time series in Simulation study 1.

Table 2: RMSE and MdAPE values between forecasts and actual observed data in the
simulation studies

RMSE
Method 1 Method2 Method 3 Method 4

Simulation study 1 0.143 0.143 0.145 0.143
Simulation study 2 0.670 0.666 0.673 0.671

MdAPE
Method 1 Method2 Method 3 Method 4

Simulation study 1 94.66% 83.90% 86.9% 108.7%
Simulation study 2 22.58% 22.67% 22.96% 22.64%
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this series the observed time series and show it in Figure 2(a) (darker curve).

The estimated marginal distribution of the observed time series is given by (1), where

G1(y) = 1− e−(y/2.0019)2.8494

, G2(y) = 1−
[
1− 0.3660(y − 3)

0.7773

]1/0.3660

for y > 3, 1− 0.3660(y−3)
0.7773

> 0 and β = P (y ≤ 3) = 0.952.

The same base process as that in Simulation study 1 was used with the estimated pa-
rameters also shown in Table 1. Figure 2 checks the marginal distributions and the average
auto-correlation structure of the simulated time series, which shows that they are very sim-
ilar to those of the observed time series.
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Figure 2: (a) Observed (darker) and simulated (lighter) time series. (b) Marginal distribu-
tions. (c) (d) auto-correlation structures. (e) QQ-plot of the observed and the simulated
time series in Simulation study 2.

Table 2 also shows the performance of the combined forecasts in this simulation study.
Again, under RMSE, methods 1 and 2 perform better than methods 3 and 4, while under
MdAPE, all methods performed similarly, but Method 1 is the best and Method 2 is only
0.03% larger than that of Method 4. So according to MdAPE, Method 1 is the best in this
simulation study.

In summary, the simulation studies show that the simulated time series are very similar
to the observed time series and can be used for producing combined forecasts. In gen-
eral the combined forecasts obtained from Method 1 and Method 2 are better than those
obtained from Method 3 and those obtained from the observed time series only.
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Table 3: Estimated parameter values of the base processes for HSI and FIN time series

HSI time series
φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7

0.6422 0.1296 0.1171 0.0370 0.0536 −0.0691 −0.1411

φ̂8 φ̂9 φ̂10 φ̂11 φ̂12 φ̂13 φ̂14

−0.1157 0.1059 0.1200 −0.0115 0.0487 −0.0523 −0.0497

φ̂15 φ̂16 φ̂17 φ̂18 φ̂19

−0.0293 −0.020 0.0340 0.0299 0.0162
FIN time series

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6 φ̂7

0.4993 0.2107 0.1014 0.0614 -0.0168 −0.0433 0.0009
φ̂8 φ̂9 φ̂10 φ̂11 φ̂12 φ̂13 φ̂14

0.0676 0.0645 −0.0788 −0.0340 0.0061 0.0389 −0.0184

φ̂15 φ̂16 φ̂17 φ̂18 φ̂19

0.0227 −0.0476 0.0895 0.0074 −0.0406

4 Applications

In this section, we apply the forecasting method to the dividend yields series of the Hang
Seng Index (HSI) and its two sub-indexes: Finance (FIN) and Commerce & Industry (C&I).
HSI is one of the earliest stock market indexes in Hong Kong and has become the most
widely quoted indicator of the performance of the Hong Kong stock market. The time series
are the monthly data recorded from 1986 to 2002 and were retrieved from the database in
the website of the Hang Seng index Services Limited. The time series plots of the observed
series are given in Figure 3.

Note that in the following, we only used the first 192 values to obtain forecasts and
leave the last 12 observed values for checking the forecasting accuracy.

The estimated marginal distribution for HSI has

G1(y) = 1− e−(y/0.0459)3.3470

, G2(y) = 1−
[
1− 0.4444(y − 0.06)

0.0159

]1/0.4444

for y > 0.06, 1− 0.4444(y−0.06)
0.0159

> 0 and β = P (Y ≤ 0.06) = 0.8333.

The base process is estimated by

zt =
19∑
i=1

φ̂izt−i + ut, (5)

where ut are i.i.d. N(0, 0.3235), and the estimated parameters are given in Table 3.

The estimated marginal distribution for FIN has

G1(y) = 1− e−(y/0.0397)4.4550

, G2(y) = 1−
[
1− 1.1262(y − 0.05)

0.0101

]1/1.1262

9



for y > 0.05, 1− 1.1262(y−0.05)
0.0101

> 0 and β = P (Y ≤ 0.05) = 0.9375.

The base process takes the same form as that given by (5), where ut are i.i.d. N(0, 0.3463),
and the estimated parameters are also given in Table 3.

For C&I series, the estimated marginal distribution has

G1(y) = 1− e−(y/0.0335)2.9977

, G2(y) = 1−
[
1− 0.5655(y − 0.047)

0.0049

]1/0.5655

for y > 0.047, 1− 0.5655(y−0.047)
0.0049

> 0 and β = P (Y ≤ 0.047) = 0.9375.

The base process is estimated by

zt = 0.5253zt−1 + 0.3885zt−2 + ut,

where ut are i.i.d. N(0, 0.2227).

We simulated a time series from each of the base processes and transformed them into
the required time series. Figure 3 shows three observed time series (dark curves) followed
by the simulated time series (grey curves). It also shows the QQ-plot of the simulated and
the observed time series. Obviously, the marginal distributions of the observed and the
simulated time series are very similar.
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Figure 3: Observed (darker curve) and simulated (lighter curve) HSI, FIN and C&I time
series and the corresponding QQ-plots.

To check the autocorrelation structure of the simulated and the observed time series, we
obtained 1000 simulated time series each of size 192 for each of the HSI, FIN and C&I time
series, calculated the acf up to lag 10 for each simulated time series, obtained the average
acf over the 1000 simulated time series, and calculated the acf of the observed series. The
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Figure 4: Autocorrelation structures of the simulated and the observed HSI, FIN and C&I
time series.

results are shown in Figure 4. Clearly, on average, the autocorrelation structures of the
simulated and the observed time series are also very similar.

To check the forecasting performance, we simulated three sets of time series for each
of the observed time series. Each set contains 200 time series, and each time series in the
first set has length m = 192 (i.e. the length of the observed time series), in the second set
has m = 300 and in the third set m = 400. Then we fitted a sequence of ARIMA(p, d, q)
models with p, q = 0, 1, 2, 3, 4 and d = 1 to each time series. By using the best fitted
models for each time series we obtained forecasts up to 12-step ahead. These forecasts
were then combined using the methods given in Section 2 to produce final conditional
forecasts for each observed time series. Finally, the combined forecasts were compared
with the actual observed data according to RMSE and MdAPE. The results are given in
Table 4, where the row named “Average” provides the column average RMSE and MdAPE
for each method among different observed time series.

Table 4 shows that on average, the performance of the method depends on the value
of m. It is seen that the accuracy does not increase as the value of m increases and the
best results correspond to m = 300 in these applications. This is because when m is
much larger than the observed time series, more extreme values would be expected in the
simulated time series. In these applications, the forecasts obtained from the simulated time
series were based on the ARIMA models which are not appropriate for time series with
many extreme values. Therefore, we would expect that when m is much larger than the
observed time series, other time series models should be used, and we leave this for further
investigations in the future.

Table 4 also shows that on average the forecasts obtained from Method 4 are worse
than the combined forecasts obtained by using methods 1 and 2 when m ≤ 300. Note that
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Table 4: RMSE and MdAPE values between the actual observed data and the forecasts
obtained from the best fitted models for HSI, FIN and C&I time series.

m = 192

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.010 0.009 0.009 14.09% 20.09% 17.31% 16.76%
FIN 0.008 0.007 0.010 0.007 16.15% 14.60% 20.95% 15.10%
C&I 0.004 0.003 0.009 0.004 18.50% 8.86% 50.87% 20.96%

Average 0.007 0.007 0.009 0.007 16.25% 14.52% 29.71% 17.61%
m = 300

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.009 0.007 0.009 14.21% 17.58% 13.74% 16.76%
FIN 0.007 0.005 0.009 0.007 15.97% 9.97% 20.48% 15.10%
C&I 0.004 0.002 0.010 0.004 19.23% 11.50% 52.68% 20.96%

Average 0.006 0.005 0.009 0.007 16.47% 13.02% 28.97% 17.61%
m = 400

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.011 0.008 0.009 15.32% 21.00% 15.23% 16.76%
FIN 0.008 0.008 0.010 0.007 16.47% 17.49% 21.30% 15.10%
C&I 0.004 0.008 0.011 0.004 18.34% 41.27% 57.64% 20.96%

Average 0.007 0.009 0.010 0.007 16.71% 26.59% 31.39% 17.67%
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among different combining methods, the average performances of Methods 1 and Method
2 are better than others in both the simulation studies and the applications. This is because
Method 3 uses equal weights, so both good models and bad models make equal contribu-
tions to the combined forecasts. In our case, we used the simulated and the observed time
series, and we know the simulated time series do not contain all the information that the
observed time series has. Therefore, it is reasonable to expect that the model based on the
observed time series should make bigger contributions to the combined forecasts. Hence,
using unequally weighted methods should be more appropriate here.

To check the effects of the models used for producing forecasts, we also carried out the
following investigation. Consider the HSI time series first. Three sets of simulated time
series based on the observed HSI were obtained. Each set contains 100 time series and each
series has length m = 192, 300 and 400 for the first, second and third set respectively. For
each simulated time series, we fitted a sequence of ARIMA(p, d, q) models, where d = 1,
p, q = 0, 1, . . . , 4. Then all fitted models were used to obtain combined forecasts up to 12-
steps ahead for HSI, which were then compared with the actual observed values via RMSE
and MdAPE. Finally, the average RMSE and MdAPE were calculated for different methods
and different m values respectively. Similar work was done for FIN and C&I series. Table 5
shows the RMSE and MdAPE values, where the row named “Average” corresponds to the
column average of the RMSE and MdAPE values, i.e. the average among the observed
time series, which further confirmed that the average performances of methods 1 and 2 are
much better than that of Method 3 and that of the method based on the observed time series
only. Furthermore, all the column average RMSE values in Table 5 are less than those in
Table 4, but no significant improvements for the average MdAPE values. This may suggest
that using the best model or using all the fitted models in the same class of time series
models may not help significantly in improving the forecasting accuracy, and this is also in
good agreement with Collopy and Armstrong’s (1989) argument, that is, when combining,
the models should be as different as possible.

It is worth emphasizing that the above fitted AR(19) and AR(2) models are not the
models for the original observed HSI, FIN and C&I data, but they are the base processes
which were used to capture the autocorrelation structure and marginal distribution of the
observed time series. The AR(19) and AR(2) processes were also used to obtain time se-
ries which will be transformed to the final simulated time series that we need. The order of
the base process is decided by comparing the autocorrelation structures and the marginal
distributions of the simulated and the observed time series in order to ensure that the simu-
lated time series is of high quality. There is no need to check whether all the parameters of
the base process are significant or not. For C&I process, we found that a much lower order
of the base process works fine. Finally, we choose to forecast up to 12 steps ahead because
the original time series are not long and 12 steps cover a whole year ahead forecasts.

5 Conclusions and discussion

In this paper we propose a combining forecasts method that uses both simulated and ob-
served time series. The simulation studies and applications to real time series show that
the forecasting method is able to produce more accurate forecasts compared with those ob-
tained by using the observed time series only. This is because the simulated time series can
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Table 5: Average RMSE and MdAPE values for different methods and different lengths of
the simulated time series

m = 192

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.008 0.006 0.009 14.04% 15.42% 11.50% 16.76%
FIN 0.007 0.007 0.008 0.007 16.06% 15.48% 17.51% 15.10%
C&I 0.004 0.003 0.012 0.004 21.14% 14.56% 64.52% 20.96%

Average 0.006 0.006 0.009 0.007 17.08% 15.15 % 31.18% 17.61%
m = 300

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.008 0.007 0.009 14.36% 14.82% 12.28% 16.76%
FIN 0.007 0.006 0.008 0.007 16.02% 11.24% 17.49% 15.10%
C&I 0.004 0.002 0.011 0.004 19.27% 11.17% 60.71% 20.96%

Average 0.006 0.005 0.007 0.007 16.55% 12.41% 30.16% 17.61%
m = 400

RMSE MdAPE
Methods 1 2 3 4 1 2 3 4

HSI 0.008 0.011 0.008 0.009 15.52% 20.54% 14.39% 16.76%
FIN 0.008 0.007 0.009 0.007 16.50% 16.07% 18.51% 15.10%
C&I 0.004 0.003 0.010 0.004 17.33% 11.16% 56.82% 20.96%

Average 0.007 0.007 0.009 0.007 16.45% 15.92 % 29.91% 17.61%
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be treated as new data coming from different sources, and this is also because individual
forecasts are obtained from different models. Therefore, the combined forecasts contain in-
formation from both different sources and different models, which increases the forecasting
accuracy.

As the method requires that the marginal distribution does not depend on time, it is not
appropriate to apply the method to any observed time series that do not satisfy this condi-
tion. On the other hand, the method can be used to time series with any auto-correlation
structures. We found that the marginal distribution proposed in the paper is a suitable can-
didate for the HSI, FIN and C&I time series. However, for other types of time series, the
method for obtaining the simulated time series needs to be modified so that high quality of
simulated time series can be obtained.

In this paper we only showed the results corresponding to the base process which takes
an AR form of time series models. The order of the base process can be determined ac-
cording to the QQ-plots and the acf plots such as those shown in Figure 3 and Figure 4.
Our experience with the method shows that after only several test runs an appropriate order
of the base process can be chosen. In practice, we often know the maximum lag L value
of the auto-correlation function that we are interested in. In this case, we could choose this
maximum lag value as the order of the base process.

Our study suggests that the performance of the developed method depends both on the
length of the simulated time series and on the models used for producing forecasts. We feel
that the optimal length of simulated time series is certainly worth further investigation in
the future.

It is worth mentioning that the performance of the developed forecasting method also
depends on the quality of the simulated time series, while the quality of the simulated time
series depends on the quality of the estimated autocorrelation structure and the estimated
marginal distribution of the observed data, which requires suitable length of observed se-
ries. Therefore, if the observed time series are very short, for example, with only 8 ob-
servations or fewer, the developed method should not be used, but the damped trend and
no-change models could be considered. See, for example, Collopy and Armstrong (1989).

Graefe et al. (2010) pointed out that forecasts from different methods that use different
data may lead to bracketing and low correlations of errors, and in such situations, the
gains from combining can be substantial. However, few studies directly analyzed this ex
ante condition. One of the difficulties in carrying out such direct analysis might be the
availability of the required data sets. This paper suggests that the simulated time series can
be used for this purpose and that combining does help in improving forecasting accuracy.
However, a thorough analysis on this ex ante condition by using simulated time series needs
to be carried in the future.
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