=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Physics Letters B

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa22041

Paper:

Hollowood, T. & Miramontes, J. (2014). Symplectic deformations of integrable field theories and AdS/CFT. Physics
Letters B, 739, 214-217.

http://dx.doi.org/10.1016/j.physletb.2014.10.060

Distributed under the terms of a Creative Commons Attribution Non-Commercial (CC-BY-3.0)

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa22041
http://dx.doi.org/10.1016/j.physletb.2014.10.060 
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

Symplectic Deformations of Integrable Field Theories and AdS/CFT

Timothy J. Hollowood*
Department of Physics, Swansea University, Swansea, SA2 8PP, U.K.

J. Luis Miramontes'
Departamento de Fisica de Particulas and IGFAE,
Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
(Dated: July 7, 2015)

Relativistic integrable field theories like the sine-Gordon equation have an infinite set of conserved
charges. In a light-front formalism these conserved charges are closely related to the integrable
modified KdV hierarchy at the classical level. The latter hierarchy admits a family of symplectic
structures which we argue can be viewed as deformations of the relativistic sine-Gordon symplectic
structure. These deformed theories are integrable but no longer relativistic and the basic excitations
of the theory, the solitons, have an interesting non-relativistic dispersion relation that in a certain
limit becomes the dispersion relation of dyonic giant magnons of string theory in the AdS/CFT
correspondence. We argue that the deformed classical theories can be lifted to quantum theories
when the sine-Gordon theory is embedded in a larger theory that describes the string world-sheet

sigma model in AdS;s x S°.

1. The sine-Gordon theory is the most iconic relativis-
tic integrable field theory in 1 + 1 dimensions. It even
plays a role as a limited sector of the integrable structure
that lies behind the hidden Integrability of the AdS/CFT
correspondence. In this case, classical integrability can
be seen explicitly on the world-sheet of the string, and
the sine-Gordon theory describes the sector where the
string moves in R x S? € AdSs x S°.

What is interesting is that it provides a very simple
arena to describe certain integrable deformations of the
string world-sheet sigma model that potentially yield de-
formations of the complete AdS/CFT duality. The ap-
proach in this letter is complementary to the approach of
[1-5] who consider integrable deformations of the string
world-sheet sigma model directly in the Hamitonian for-
malism. Here, we shall follow [6-8] and work in a light-
front formalism that makes the relation with the well-
known integrable hierarchies and the soliton solutions
more concrete.

2. The sine-Gordon equation takes the form
04+0_¢p+sing =0, (1)

where 2+ = t + x are light-cone coordinates. It is fa-
mously integrable since there exists an infinite series
of conserved charges Q) of odd spin s. The pair
p+ = Q(ﬂ) are the components of the energy-momentum
vector. All these charges Poisson commute in the classi-
cal theory:

Q. Q")) =0. (2)

It is useful, in the following, to work in a light-front for-
malism on surfaces x— = const. The Poisson bracket is
then

{o(a®,27),040(y",27)} =d(=" —y*) . (3)

The conserved charges generate Hamiltonian symme-
tries that are conveniently written in terms of ¢ = 94 ¢

0
aio = 2.0} )

where £ = t(&1. The flow t® is identified with the
mKdV equation

8%) = -0}q— gtf&q : (5)
while the other positive flows t*), s > 0, are polynomial
in ¢ and its Jy-derivatives and give the whole mKdV
hierarchy of integrable equations. In contrast, the nega-
tive flows t(*), s < 0, turn out to be non-local. The first
non-trivial one is

dq 1 1 .
— =cos¢p 0" (cos@p I sin¢
ot(=3) + ( + ) (6)

+ sin ¢ 8;_1 (sin ¢8_T_1 sin gb) .

Written in terms of ¢ = 0_¢ = —8;1 sin ¢, the negative
flows give another copy of the mKdV hierarchy.

It is a key property that such an integrable hierarchy
can be described in terms of a multi-Hamiltonian struc-
ture [9-11], so that the same flows can be written in terms
of an infinite set of other Poisson brackets

Jq
Ot(£s)

5Q(is:|:2n)

5q ’
with both s and s + 2n > 0. Here, #,, are the non-local
differential operators

— {q’ Q(:ts:t2n)}(:t2n) — 9:Fn (7)

On = (=1)"(0% + 0+q0 ' )" 04 = 00600 (8)
Notice that in (7) there are two separate towers, since

{q, Q(is)}(ﬁ") =0 for s—2n<0 (9)



for each value of s > 0. All the Poisson brackets are co-
ordinated, meaning that any linear combination is also
a valid Poisson bracket and so satisfies the Jacobi iden-
tity. For n # 0, they are non-local, and their rigorous
description is still an open problem (see [12, 13] and the
references therein). The original symplectic structure (3)
is { , }© which is the only relativistic invariant one,
and 0, provides the, so-called, second Hamiltonian struc-
ture [9, 10].
The combination

0=—01+20)—0_1 (10)

gives the Poisson bracket of the gauge-fixed world-sheet
sigma model of the bosonic string moving on R x S*
[6, 7, 11], which is non-relativistic once the Virasoro con-
straints are imposed. One can now imagine deforming
the theory by changing the symplectic structure. In par-
ticular we shall be interested in the deformation inspired
by (10)

(0,0} 5 (3 W), =& (fafz{q), 72
(11)
+(1+ 074 {®, ¥} — o 2{a, \IJ}(Z)) ,

where o € [1,00] and & is an overall normalization. It
is clear that for finite o the deformed theory will not be
relativistic either. In this new theory one can ask what
are the energy and momentum. We can identify these as
the generators of space-time translations

aiq = {Qapi}o' ) (12)

giving

pi _ KZ_l ZU—ZnQ(iZHil) ) (13)

n=0

3. The picture above generalises to a class of gen-
eralised sine-Gordon (GSG) theories that are associated
to any symmetric space F/G [14]. They describe the
Pohlmeyer reduction of sigma models with F/G as tar-
get. A symmetric space is naturally associated to an
involution o_ of the Lie algebra f that provides the de-
composition into eigenspaces f = g @ p, with o_(g) = g
and o_(p) = —p. We can then construct a twisted affine
loop algebra by associating each elements of g and p with
appropriate powers of an arbitrary parameter z:

=@ (02 @p2tt) . (14)

The basic field is v € G C F. The equation-of-motion
can be written in Lax form as an f-valued connection
with light-cone components

Ly(2) =08y +7 101y - 2A,

15
L (2)=0_—2z"'9"Ay, (15)

where z is the spectral parameter and A is a constant
element of p. The equation-of-motion is then the flatness
condition

[£4(2), L-(2)] =0 . (16)

The theory can be formulated in a manifestly relativis-
tic way as a gauged WZW model for the field y € G C F
gauged with respect to a subgroup H C G defined as the
centraliser of A acting as ¥ — hyh~'. The WZW model
is then perturbed by the potential term Tr(y~!AyA).
The level k of the WZW term is the discrete coupling
of the theory. In the on-shell gauge A, = 0 the equation-
of-motion is precisely the flatness condition (16) [15].

The sine-Gordon theory itself is the example
SO(3)/S0O(2) with

1 0 0 0-10
vy=|(0 cos¢ sing|, A=[1 0 0]. (17)
0 —sin¢g cos¢ 0 0 0

In this case there is no WZ term and the coupling k
needs not be quantised. The theory has a set of conserved
quantities Q[b] for each element of the affine algebra such
that b € Cent (Ker ady). For sine-Gordon theory one has
Q(2n+1) _ Q[22n+1A}.

The next simplest theory is associated to the symmet-
ric space S® = SO(4)/SO(3) and is constructed via the
obvious generalisation of (17). This is the complex sine-
Gordon theory. In this case, embedding SO(3) in the
bottom right-hand corner of the 4-dimensional defining
representation of SO(4), Kerad, contains 2 elements

0-100 000 0
111 000 000 O

Afi 0000 TTlooo0 -1 (18)
00 00 001 0

Here, 7 is the generator of H = SO(2). This means that
there are now two infinite series of commuting conserved
quantities Q[z2"*1A] and Q[z?"7]. The pair Q[z*'A] are
once again identified with the light-cone components p.,
up to a scaling. But now there is a new spinless charge
Q7] which is simply the SO(2) charge of the complex
sine-Gordon theory.

The whole story of the Poisson brackets goes through
exactly as for the sine-Gordon theory [8]. When formu-
lated on the field ¢ = y~1d, 7, one can write

(@, 0} = —/daz* T (a(adAD;) D+E> :

(19)

where Dy = 91 + ¢. For SO(3)/SO(2) these Poisson
brackets reduce to those given in (7) up to an overall fac-
tor of % Just as in the sine-Gordon case, one can define a
family of symplectic structures {F, G}, and we normalize
it with k = 4n[k(1—1/0%)]7L. In the limit 0 — oo with k



fixed we recover the Poisson bracket of the GSG theory.
However, in the alternative limit ¢ — 1 as kK — oo with
g = k(0 —o~1)/4r fixed, one finds the Poisson bracket of
the gauge-fixed bosonic string sigma model on R x F/G
where ¢ is the sigma model coupling. Note that in this
case the non-local looking form of the Poisson bracket is
an artefact of the gauge fixing procedure [6].

In the deformed theory the energy, momentum and
U(1) charge become

E= ﬁ(a__i_l/o,)ZU—|2n+1\Q[22n+1A] ,

4
nez
k . — n n
p= (0= 1/0) 3 sign(n)o P HIQEP AT, ()
nez
_ Kk —2|n| 7,20
Q= 4ﬂ_2£;<7 Q"] .

so that p7 = (€E £ p)/2, with £ = (02 —1)/(0? +1).

4. This identification is supported by taking a soliton
of the GSG theory and evaluating its energy, momentum
and charge [16-18]. A soliton depends on the complex
parameters z+ = e~ 0+,

Q[zi(2n+1)A] _ 4sin((2n + 1)a) SF (010

+2n 4sin(2na) 2n6
Qlz""1] = TGJF , n>0,
and so
E N P _io |:Z:F_O_i1 zi—‘,—gil]
o+1/c o—1/0c 2mi E1F 1ot E gl
(22)
and
k (0z1)2 =1 0% —(27)2
Q= - log | : B 23
omi 8 g2 — (2t)2 (027)2 -1 (23)

When the soliton is semi-classically quantized using the
Bohr-Sommerfeld method, the charge Q is an integer and
so this fixes a = «a().

One can verify that tanh® = OF/9p which identifies
f as the rapidity. The dispersion relation of the solitons
then follows as [22]

sin? (%) — €2 gin? (i’ig) — (1 - €?)sin? (%) . (24)

Note that, written in this way, it can be presented as an
exact equation by giving the exact o(g, k) below.

In the relativistic limit ¢ — oo this gives the usual
relativistic dispersion relation of the GSG theory

4K? Q
E? —p*= —= sin? (g—k) ) (25)

In the string sigma model limit, ¢ — 1 as k — oo, we
have

B? = 0% + 1697 sin? (-
+ 16g° sin 1) (26)
which is the dispersion relation of the dyonic giant
magnons [19].

5. In order to complete the relation to the AdS/CFT
one needs to add fermions. This is done by taking F/G
to be a semi-symmetric space. In the case of AdS5 x S°
the semi-symmetric space is [20, 21]

PSU(2, 24)/Sp(2,2) x Sp(4) (27)

and the GSG theory is then an N = (8, 8) supersymmet-
ric theory with H = SU(2)* R-symmetry.

In this context there is an exact conjecture for the
S-matrix of the deformed theory based on a quantum
group deformation of the magnon S-matrix of the string
sigma model with deformation parameter ¢ = exp (iw / k)
[22, 23]. The dispersion relation of the magnon/soliton
excitations are precisely given in the quantum theory by
(24) with integer charges Q but with the exact relation

o —o ' =dgsin(n/k) . (28)

These excitations transform in particular representations
of the quantum supergroup U, (psu(2|2))*? which in-
cludes U, (H) as its bosonic subgroup.

It is possible to check the S-matrix ansatz in the semi-
classical limit, that is g, k — oo with fixed ratio g/k. In
addition, the states with large charge, that is those where
Q/k is fixed as k — oo, are realised as semi-classical
soliton states in the field theory. The S-matrix of these
states can then be compared against the classical scat-
tering of the solitons of the deformed GSG theory using
the Jackiw-Woo formula [25]

S(E) ~ exp lz / " p AHE| (29)

where At(FE) is the classical time delay experienced by
one soliton as it moves through another. In the deformed
theory, the time delay is equal to that in the GSG the-
ory because the equation-of-motion is independent of the
deformation, but the energy must be the deformed quan-
tity (20). The soliton time delays can be extracted from
the exact two soliton solutions constructed by the dress-
ing method in [17] as will be shown elsewhere.

6. To compare with the work of [1-5], note that the
deformation of the string sigma model considered in those
references corresponds to taking k imaginary. This means
that ¢ = e~ /29 is real and o = €%’ and so this excludes a



direct connection with the GSG model. The deformation
parameter of [1-5] is

e=sing . (30)

which is restricted to [0,1]. The deformation with real
q is also considered in [26] (g there is our 2¢g and v =
€), where it is shown that the corresponding deformed
action constructed in [5] is consistent with the S-matrix
of [22, 23] at leading order in perturbation theory.

If one naively takes the deformed action of [5] and takes
q to be a complex phase, then the action is no longer real.
This is mirrored by the S-matrix in the vertex representa-
tion which is not unitary. However, unitarity at the level
of the S-matrix can be restored by transforming from the
vertex to the IRF representation [24]. In the relativistic
limit ¢ — oo this transformation is consistent with the
topological quantization of soliton boundary conditions
required to make sense of the WZ term in the Lagrangian
formulation [18]. However, it remains to be seen how to
implement the vertex-to-IRF transformation at the level
of the action for generic values of o.
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