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Finite Volume Solutions for Electromagnetic Induction Processing

G. Djambazova,∗, V. Bojarevicsa, K. Pericleousa, N. Croftb

aCentre for Numerical Modelling and Process Analysis, University of Greenwich, UK

bCollege of Engineering, Swansea University, UK

Abstract

A new method is presented for numerically solving the equations of electromagnetic in-

duction in conducting materials using native, primary variables and not a magnetic vector

potential. Solving for the components of the electric field allows the meshed domain to

cover only the processed material rather than extend further out in space. Together with

the finite volume discretisation this makes possible the seamless coupling of the electro-

magnetic solver within a multi-physics simulation framework. After validation for cases

with known results, a 3-dimensional industrial application example of induction heating

shows the suitability of the method for practical engineering calculations.

Keywords: electromagnetic field; induction heating; induction stirring; numerical

solution of partial differential equations; pseudo-steady state; integral boundary

condition; finite volume discretisation

1. Introduction

Induction heating and stirring is often used in the processing of conductive materials:

melting of metals and alloys, controlling the temperature and stirring of liquid silicon,

etc. Magnetic fields are also used to melt levitated samples for precise measurements of

material properties. For chemically reactive alloys the magnetic field can help contain the5

melt in ‘semi-levitation’ or ‘cold crucible’ induction furnaces.

Computer modelling of those processes can be very useful for their optimisation. The
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process usually involves several intertwined physical phenomena such as electromagnetic

induction, heat transfer, phase change, elasto-plasticity, fluid flow with free surface, and

magnetohydrodynamics.10

An efficient way to capture the true interactions among all those phenomena can be the

simulation by a single computer program [1] where the values of the solved variables

are advanced simultaneously at each iteration and at each time step of the solution pro-

cess. Some authors [2] also include thermo-mechanical (stress analysis) computations at

each step of the algorithm for cases where the deformation of the material affects the15

electromagnetic field.

The electromagnetic fields involved in induction metal processing are three dimensional,

and eddy currents are induced in the conducting objects. Their calculation has been

addressed in various ways, with or without magnetic potentials, in finite element (FEM)

and other formulations [4, 5, 6, 7]. Combining FEM and boundary element methods helps20

reduce the size of the meshed computational domain and, hence, the computational time

[8]. This work does not attempt to include a more comprehensive review of the numerous

formulations, algorithms and software implementations for modelling 3D electromagnetic

phenomena.

In this work the finite volume method is used to discretise and solve the governing equa-25

tions of electromagnetic induction. Such a formulation is compatible with the solution

procedures for the other variables in a a thermo-fluid computational model. The result-

ing computer code readily fits into the PHYSICA framework [3]. It can also be used in

combination with other finite volume PDE codes.

The algorithm described below is formulated in primary variables for the electric and30

the magnetic field and does not involve a magnetic vector potential. This presents an

alternative to the potential formulation and allows a more ‘natural’ representation of the

governing equations and of the boundary conditions on the conductor surfaces.

The implementation of the new method described here was added to a multi-physics

computational environment [3] but the method itself is generic and can be attached to35

other partial differential equation (PDE) solvers.
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The paper is organised as follows: first, the governing equations of electromagnetic induc-

tion are presented, then special attention is paid to the source term linearisation in the

quasi-steady case. Various aspects of the boundary treatment are considered, and finally

validation and sample results illustrate the applicability of the method.40

2. Equations

Maxwell’s equations in differential form describe the local relationship between the vari-

ables of the electromagnetic field. In the case of non-magnetic materials (non-ferrous

metals or steel in a certain temperature range) the magnetic permeability µ may be

assumed constant throughout the spatial domain of interest. On the other hand, in suf-45

ficiently conducting materials (including molten metals) there are no localised electric

charges, and Maxwell’s equations can be simplified to form the basis of the theory of

electromagnetism [9]:

div B = 0 (1)

curlE = −∂B/∂t (2)

curlB = µJ (3)

div E = 0 (4)

where B is the magnetic induction, E is the electric field intensity, t is time, and J is the

electric current density. Ohm’s law provides an algebraic relation between J and E, and50

for isotropic electrical conductivity σ it can be written as J = σE.

Assuming that B is sufficiently continuous so that its temporal and spatial derivatives

may be swapped, taking the curl of (2), after substitution only one variable is left:

curl (curlE) = −µ∂(σE)/∂t. (5)

The electrical conductivity σ depends on the temperature which changes with time. How-

ever, on the time scale of the electromagnetic processes, σ may be assumed constant in55

time. Then, using the mathematical identity curl (curlE) = grad(div E) −∇
2E and (4),

equation (5) may be simplified into:

∇
2E = µσ

∂E

∂t
. (6)
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The transient term and the diffusion term of the general conservation equation usually

solved by Computational Fluid Dynamics (CFD) codes can easily be recognised in the

above equation (6). So CFD codes may be used directly for transient simulations of60

electromagnetic phenomena just by switching off the convection term and providing the

necessary boundary conditions.

In induction melting only alternating currents are used with typical frequencies in the

range 1 to 10 kHz. The time scale of the electromagnetic phenomena is at least 50

times smaller then the time scale of the fluid phenomena. Consequently, the modelling of65

the fluid flow in the process requires the pseudo-steady solutions of the electric and the

magnetic fields rather than their time-dependent behaviour.

Assuming that a periodic solution exists with a circular frequency ω: E = ER cos ωt +

EI sin ωt, and substituting into (6), the following system results:

∇
2ER = µσωEI (7)

∇
2EI = −µσωER. (8)

This system consists of six scalar equations for six unknown functions. The transient70

terms have disappeared and have been replaced by source terms. The magnitude of these

source terms is substantial and they need to be linearised with respect to the unknown

variables in order to achieve convergence within the CFD code; this is discussed in the

next section.

From the solved values of ER and EI the components of the magnetic field B can be75

recovered according to (2) as

BR = −
1

ω
curlEI (9)

BI =
1

ω
curlER (10)

with the curl operators evaluated numerically from the partial spatial derivatives of E.

The charge conservation constraint (4) results in two more equations for the same

variables: div ER = 0 and div EI = 0. One way of insuring non-divergence of the electric

field vectors is by solving separately for their irrotational part (−∇ϕR,I) and rotational80
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part (E′

R,I), the final solution being the sum of the two fields:

ER = E′

R −∇ϕR (11)

EI = E′

I −∇ϕI . (12)

The equations for the two scalar electric potentials ϕR and ϕI that are obtained from

(11), (12) and (4)

div (∇ϕR,I) = ∇
2ϕR,I = div E′

R,I (13)

can easily be solved in the same finite volume framework.

When (11) and (12) are substituted into (7) and (8) additional source terms appear and85

the equations for the rotational components become

∇
2E′

R = µσωE′

I + ∇
2(∇ϕR) − µσω∇ϕI (14)

∇
2E′

I = −µσωE′

R + ∇
2(∇ϕI) + µσω∇ϕR. (15)

Hence, the PDE system to solve will have eight equations (14, 15 and 13) with the eight

unknowns being all three components of E′

R and E′

I plus ϕR and ϕI . These are second

order diffusion type equations where the right-hand side (RHS) of each one depends on

unknowns ‘belonging’ to other equations from the system. An iterative approach to the90

numerical solution of the system is followed, i.e. the RHS is calculated from the values

of the unknowns at the previous iteration. For better stability and convergence of the

algorithm, partial linearisation of the RHS is done which transfers part of the RHS to

the diagonal of the system matrix (solved at each iteration) and which is discussed in the

following section.95

2.1. Force and heat

The purpose of treating a metal charge or a conducting liquid (e.g. molten silicon) with

electromagnetic induction is to add heat and to stir the melt, so it is essential to accu-

rately predict the forces acting and the heat released in the liquid material. In a unit of

conducting volume the electromagnetically generated instantaneous Lorentz force F and100

Joule heat Q are [9]

F = J × B (16)

Q = J · E = σE2. (17)
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Time-averaging of these sinusoidal quantities over one period yields the mean (quasi-

steady) values

Fmean = 0.5 (JR × BR + JI × BI) (18)

Qmean = 0.5 σ (E2
R + E2

I). (19)

2.2. Useful particular cases

The number of unknown variables can be reduced in two-dimensional models. Let us105

assume that the magnetic induction B has only one component in the z-direction Bz = B,

and the other two components are zero. Then from equations (1), (2), and (3) we can

obtain:

∂B

∂z
=

∂Ex

∂z
=

∂Ey

∂z
= Ez = 0 (20)

∂Ey

∂x
−

∂Ex

∂y
= −

∂B

∂t
(21)

µσEx =
∂B

∂y
, µσEy = −

∂B

∂x
(22)

Note that (4) is automatically satisfied when (22) is true. Also, in non-conducting areas

(σ = 0), ∂B/∂x = ∂B/∂y = 0 which means110

B = const . (23)

For regions with σ = const a single time-dependent equation for the magnetic induction

may be obtained by further differentiating (22) and substituting into (21):

∂2B

∂x2
+

∂2B

∂y2
= µσ

∂B

∂t
(24)

In the quasi-steady case a convenient set of two differential equations for the magnetic

induction variables results which is a two-dimensional scalar version of (7) and (8):

B = BR cos ωt + BI sin ωt (25)

∂2BR

∂x2
+

∂2BR

∂y2
= µσωBI (26)

∂2BI

∂x2
+

∂2BI

∂y2
= −µσωBR. (27)

Further simplification is possible in the one-dimensional case which can be useful for a115

surface parallel to the magnetic field vector lines. In (22) if it is assumed that Ex = 0, it
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follows that ∂B/∂y = 0, and (26) and (27) are reduced to ordinary differential equations

along x. It can be verified by substitution that their solution will be

BR = B0 exp(−
x

δ
) cos

x

δ
, BI = B0 exp(−

x

δ
) sin

x

δ
(28)

where δ is defined by the equation µσωδ2 = 2, and B0 is the magnetic induction on the

surface at the beginning of each cycle. Then from (22) we obtain120

ER =
ωδ

2
(BR + BI) , EI =

ωδ

2
(BI − BR). (29)

One-dimensional approximation is appropriate for analysis of higher-frequency cases (with

thinner electromagnetic skin depth δ) and where the curvature of the surface is not great

with the magnetic field lines parallel (or almost parallel) to it. Two-dimensional computa-

tion can be applied to non-axisymmetric middle cross-sections of longer billets or crucibles

where the magnetic field lines become parallel to the treated surfaces. The above partic-125

ular cases are also very useful for validating the general, 3-dimensional implementations

as this can be seen in section 5.

3. Source terms linearisation

The general conservation equation solved by most CFD codes is in the form

∂(ρφ)

∂t
+ div (ρuφ) = div (Γφ gradφ) + Sφ. (30)

where ρ is the fluid density, u is the fluid velocity, Γφ is the diffusion coefficient, φ is the130

unknown conserved variable, and Sφ is the source term. To achieve convergence of the

iterative solution process in many cases it is necessary to represent the source term in the

form

Sφ = SC − SP φ (31)

with SP > 0. This technique is called linearisation of the source term, and it often

represents the physical dependence of the source term on its variable [10].135

Consider the pair of equations (26) and (27); the result will apply also to the three

components of the vector equations (7) and (8). These equations are particular cases of
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the general conservation equation (30) where the transient term and the convection term

on the left-hand side are set to zero and the diffusion coefficient is Γφ = 1.

Examining the source terms, it can be seen that each of the unknown variables, BR and140

BI , appears in the source term of the other variable’s equation. Also, each variable may

have its own sources due to the boundary conditions. Assume that each variable’s own

sources can be represented in the form (31). The discretised finite volume forms of the

complete equations (26) and (27) will then be:

n
∑

f=1

Af

BR,f − BR

df

+ cR − pRBR − qBI = 0 (32)

n
∑

f=1

Af

BI,f − BI

df

+ cI − pIBI + qBR = 0. (33)

Here the summation is done over all the n faces (f) bounding a given cell in the mesh, Af145

are the face areas, BR,f and BI,f are the values of the variables in the neighbouring cells

across f , df are the distances between the neighbouring cell centres, q = µσωV where V

is the cell volume; cR = (SC)BR
V , pR = (SP )BR

V , cI = (SC)BI
V , and pI = (SP )BI

V are

the respective linearised sources.

Equation (32) may be rearranged to form an expression for BR. This expression can be

used to remove BR from equation (33). Likewise (33) can be used to enable the removal

of BI from (32). If the sums are split, denoting

ΣR =
n
∑

f=1

Af

BR,f

df

, ΣI =
n
∑

f=1

Af

BI,f

df

, Σ0 =
n
∑

f=1

Af

df

,

the discretised finite volume equations (32) and (33) can be written in the form:150

n
∑

f=1

Af

BR,f − BR

df

+

(

cR − q
ΣI + cI

Σ0 + pI

)

−

(

pR +
q2

Σ0 + pI

)

BR = 0 (34)

n
∑

f=1

Af

BI,f − BI

df

+

(

cI + q
ΣR + cR

Σ0 + pR

)

−

(

pI +
q2

Σ0 + pR

)

BI = 0. (35)

The terms ΣI (in the BR-equation) and ΣR (in the BI-equation) each contain the other

unknown variable. In the implementation, those values are taken from the previous iter-

ation of the non-linear iteration loop. This means the linearisation of the source terms

shown above is only partial but it helps transfer part of the magnitude of the source term

onto the system matrix diagonal which makes the iterative solution of the linear system155

more stable. This form of the linearised source expressions is not ideal because one of the
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equations still contains a negative coefficient in front of neighbouring values of the other

variable. However, with a relaxation factor in the range 0.75 to 0.95, converged solutions

have been obtained for most sets of boundary conditions.

4. Boundary conditions160

Boundary conditions may be specified on the surface of the conducting objects. In this

way the computational domain only covers the bodies with induced currents, and the

action of the external driving coil is taken into account via Biot-Savart integration for the

points on the surface. Symmetry may be used to reduce the size of the computational

domain. In most cases that is azimuthal symmetry, and for vector quantities boundary165

expressions are also presented in this section.

4.1. Surface boundaries

Faraday’s equation(2) and the condition that there is no normal current through the

surface provide the necessary boundary conditions.

4.1.1. Induction condition170

In the quasi-steady case (25) Faraday’s law of electromagnetic induction is represented

by two vector equations:

curlER = −ωBI , curlEI = ωBR. (36)

The two vectors of the magnetic induction BR and BI can be evaluated separately using

the Biot-Savart formula (43) with the corresponding current density fields JR = σER and

JI = σEI .175

A local coordinate system is considered (n, a, b) with an origin in the middle of a given

cell face on the surface. Axis n is defined by the outward normal vector to the face, axis

a has the direction of the vector defined by the first and the second corner points of the

face, and axis b is in the direction of the cross product n× a of the first two unit vectors.

After expanding curlER and curlEI in the local coordinate frame the induction boundary180
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condition (36) becomes:

∂EnR

∂b
−

∂EbR

∂n
= −ωBaI ,

∂EnI

∂b
−

∂EbI

∂n
= ωBaR (37)

∂EaR

∂n
−

∂EnR

∂a
= −ωBbI ,

∂EaI

∂n
−

∂EnI

∂a
= ωBbR. (38)

The components of J and E normal to the surface of the conducting bodies are zero.

However, the quantities EnR, and EnI are equal to zero only for the given cell face on the

surface. (If the surface is not flat, the n-components of the neighbouring faces are nonzero

with respect to the local coordinates.) This means that their derivatives with respect to a185

and b are not zero and have to be evaluated. This may be done in the following way. Let ra

is the curvature radius of the surface in the plane (a, n). In the vicinity of the observation

point on the surface the intersection of plane (a, n) with the surface is a circular arc. Let α

be the central angle sweeping that arc. Then the projection onto axis n of the tangential

vector of magnitude Ea turning along the arc will be En = −Ea sin α. Differentiating this190

with respect to a, bearing in mind that a = raα, the equation ∂En/∂a = −(Ea/ra) cos α

is obtained which for the location of interest, α = 0, gives

∂En

∂a
= −

Ea

ra

(39)

∂En

∂b
= −

Eb

rb

. (40)

The second equation (40) can be derived for the plane (b, n) in exactly the same way as

(39); then these equations can be applied to the R and I parts in (37) and (38) in order

to obtain expressions for the normal derivatives of the tangential components:195

∂EbR

∂n
= ωBaI −

EbR

rb

,
∂EbI

∂n
= −ωBaR −

EbI

rb

(41)

∂EaR

∂n
= −ωBbI −

EaR

ra

,
∂EaI

∂n
= ωBbR −

EaI

ra

. (42)

It can be seen that the above boundary sources are in a linearised form (31). The only

difficulty is that they are in local coordinates, and the solved variables are global compo-

nents of the field vectors. This means that it may not be possible to take advantage of

the linearisation. This should not be a problem if the surface curvature is not to high. A

backward transformation is done from local to global coordinates to determine the actual200

fluxes of the x, y, and z components of the solved variables. Usually the Biot-Savart

evaluation of the magnetic induction will be implemented in global coordinates, then the

forward transformation will provide the necessary local components of BR and BI .
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4.1.2. The singular integral of Biot-Savart

Given the electric current density (JR, JI) within the time-harmonic (pseudo-steady)205

approximation, the corresponding induced magnetic field can be calculated as

BR,I =
µ

4π

∫

space

JR,I × r

r3
dV (43)

r = robservation − rsource

where the volume integral is taken over all space, i.e. all conducting bodies including the

excitation coil. On the surface where it is needed for the boundary conditions the integral

is singular as r tends to zero.

On a cell-centred mesh, like the one PHYSICA uses, it may be possible to avoid the singu-210

larity by evaluating the integral for the nodes (vertices) of the mesh and then interpolating

for the face centres. In most cases, however, finer meshes are needed, and the accuracy

of this approach is not sufficient.

An alternative method was developed based on a derived analytical expression for the

integral value induced by a thin cylindrical slab (like a coin) at the points of its axis.215

The mesh cells lying immediately below the surface observation point (down to a certain

specified depth) are processed in this way, and the contributions of all the other cells are

calculated directly with the Biot-Savart formula (43). This approach was observed to give

improved results. Problems still exist for neighbouring cells that lie off the normal axis

and are still very close to the observation point since no analytical expression is used for220

their contributions.

Local mesh refinement around the singularity is the third approach that has been inves-

tigated. When the contribution of each element of the mesh is being calculated, the ratio

between its size and the distance from the element centroid to the observation point is

considered. If that ratio is lower than a certain limit (0.35 was found to give sufficient225

accuracy at a reasonable computational cost) the usual piecewise constant integration is

performed, else the element is split into eight (for a hexahedral element) equal volumes,

each with their own centroid, and their contributions are evaluated separately. The den-

sity of the finite volume mesh depends on the ‘skin layer’ of the electromagnetic field, and

the thickness of the skin layer depends on the frequency and the electrical conductivity.230
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For the cases of induction heating considered in this work, one-level local mesh refinement

was found to perform best of the three methods described.

Another issue with the Biot-Savart integral is the computational cost of its evaluation for

large problems. Every cell of the mesh has to be visited for every cell face on the surface

at every iteration. Unlike with the differential equations, symmetry cannot be used here235

to save computation. Clustering the cells into sub-domains can help: for each cluster,

depending on the distance to the observation point, either its average values are used or

the individual contributions of its cells are calculated. This is straightforward to describe

in words but needs careful coding.

4.1.3. Normal current condition240

No electric current can flow out of a conductor into an insulator. Consequently, the

normal to the surface components of the electric field vectors ER and EI must reduce to

zero on the conductor surface. On a cell-centred mesh a linear profile can be assumed

∂En

∂n
=

0 − En

df

= −
1

df

(Exnx + Eyny + Eznz) (44)

where n is the direction of the outward to the surface unit normal vector n(nx, ny, nz),

df is the distance from the cell centre immediately below the surface to the cell face on245

the surface, En is the local normal component of either of the vectors ER and EI , and

(Ex, Ey, Ez) are the solved global components of those vectors, all cell-centre values.

As with (41) and (42), the normal current condition (44) also needs to be transformed

from local to global coordinates before it can be used. This can be done by differentiating

with respect to n the transformation equations for Ex, Ey, and Ez. The result is in250

linearised form (31) with the previous iteration values of the other two vector components

appearing in the SC part.

4.2. Symmetry and material boundaries

For the usual symmetry boundary condition the normal derivatives of the solved quantities

are set to zero. With azimuthal symmetry in a cylindrical geometry the above is quite255

correct for the scalar variables and the axial components of the vector variables. However,

the remaining two vector components need special attention in this case.
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In fact, what is required is to make the radial (Er) and the azimuthal (Ea) components

of a given vector E(Ex, Ey, Ez) stay constant across the azimuthal symmetry plane, i.e.

to ensure260

∂Er

∂α
= 0 ,

∂Ea

∂α
= 0. (45)

where α is the azimuthal angle in cylindrical coordinates. By differentiating with respect

to α the transformation expressions Er = Ex cos α+Ey sin α and Ea = Ey cos α−Ex sin α

it can be shown that the equations

∂Ex

∂α
= −Ey ,

∂Ey

∂α
= Ex (46)

are equivalent to (45). The above relations express the azimuthal symmetry condition in

terms of the solved quantities in the global Cartesian coordinate frame. At implementation265

it would be best to use the outward normal derivatives at the symmetry planes instead

of the α-derivatives, then n = ±rα with r being the cylindrical radius of the centre of

the given face on the symmetry plane, and the sign depends on which side of the sector

domain is being considered. Strictly speaking, expressions (46) use the face values, and

on a cell-centred mesh the solved quantities are available at the cell centroids. Assuming270

linear variation from the centroid to the face centre, new expressions involving only the

cell values can be derived. They appear in the form (31) with SP = df/(r
2 + d2

f ) where

df is the small distance between the cell centroid and the azimuthal symmetry face.

Discontinuities arise at material boundaries between two conductors with different

electrical conductivity. The principle of charge conservation requires that the normal275

electric current should be the same either side of any face in the mesh. This means that

σ1E1n = σ2E2n (47)

where E1n and E2n are the face values of the solved electric field vectors in the two

materials. If (47) is ignored and the mesh is continuous, the diffusive equations (7) and

(8) will smear the jump over several cells across the interface. If that is undesirable, source

terms need to be introduced in every pair of cells across the material boundary. Again a280

transformation from local to global coordinates is needed for the implementation of this

boundary condition.
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5. Validation

It is natural to start testing the numerical procedures with simple cases that are easily

verifiable. The one-dimensional test with analytical solution (28) and (29) is presented285

in Figure 1. The 1D computational domain of length 55 mm is divided into 20 mesh cells

clustered towards the right end which represents the metal charge surface. This variable

mesh spacing allows better resolution within the electromagnetic skin depth (δ = 8.5 mm

in this case) without using fine mesh everywhere in the domain. (Such clustering of the

mesh becomes especially important in 3-dimensional cases since it leads to significant290

savings in computational time.) Sinusoidal in time magnetic field is prescribed with

amplitude 0.2 T on the charge surface and frequency 7000 Hz. The Biot-Savart integral

is not used in this test. Two different numerical results are compared with the exact

solution: the result of solving (7) and (8) with boundary conditions (42) is marked “solve

E”, and the result of solving (26) and (27) with fixed-value boundary conditions is marked295

“solve B”. Excellent agreement is observed with only a minor error where numerical

differentiation is used (22) to post-process results.

An axisymmetric test case relevant to magnetic levitation has been used to verify a

pseudospectral method for modelling induction melting [11]. The test case, which also has

an analytical solution, is of the electric current induced in a conducting sphere by a coaxial300

current ring. The presented results are for frequency 6000 Hz, electrical conductivity of

the sphere 4 × 106 S/m, electromagnetic skin depth δ = 3.25 mm, radius of the sphere

37.5 mm, radius of the single current loop 60 mm and amplitude of the current 1000 A.

The finite-volume computational domain covers a 9o wedge (slice) of the sphere with

its axis of symmetry being the axis of the current-carrying ring. Azimuthal symmetry305

boundary conditions, as described in the previous section, are applied on the meridional

planes either side of the wedge. The Biot- Savart integral boundary condition is applied

on the outer surface of the wedge. When doing this, the remaining 39 spherical sectors

which are not in the computational mesh are taken into account by rotating the vectors

of the electric current density of the main slice accordingly around the axis of symmetry.310

In Figure 2 the electric current density along the radius in the equatorial plane of the

sphere is shown at the beginning of a cycle and at a quarter of a cycle. The numerical

solution “solve E” was obtained as described above, however, here the magnetic field
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on the surface is not known, and it was calculated using (43). It can be seen that the

agreement is very good, but it is not perfect. This is due to the accuracy with which the315

particular implementation of the software handles the singularity of (43).

In the two-dimensional case a constant boundary condition (23) may be specified along

the surfaces of the conducting bodies which makes this case very useful for test purposes.

In Figure 3 results are compared of two separate simulations of a cross-section of an

induction-heating device. The external part represents the water-cooled copper ‘fingers’320

of the ‘cold crucible’ with electrical conductivity 4.1 × 107 S/m and electromagnetic skin

depth 0.94 mm. The internal part (to the left of the drawing) represents the metal

charge to be melted which has electrical conductivity 500000 S/m and electromagnetic

skin depth 8.5 mm. The driving frequency is 7000 Hz. The upper part of the figure shows

the solution of (7) and (8) with a constant value of the magnetic induction (BR = 0.1 T,325

BI = 0) specified along the surface boundaries. The azimuthal extent of the domain is

30o, and azimuthal symmetry conditions (46) are applied on the artificial boundaries.

This result is referred to as “solve E”.

The second simulation, “solve B”, of the same problem is performed by solving (26) and

(27) with the same fixed value of 0.1 T used as surface boundary condition. On the330

azimuthal boundaries simple no-flux symmetry may be used for the two scalar quantities

BR and BI . The surface conditions are applied to all surfaces, including both sides of the

slits in the crucible, with the only exception being the hole in the middle whose walls are

approximated as symmetry planes. The electric field is recovered from the solution of the

magnetic field using (22) by means of numerical differentiation.335

The lower part of Figure 3 presents the difference in the calculated real part of the electric

field vector ER using methods “solve E” and “solve B” as percentage of the maximum

value of the magnitude of ER in the domain. The maximum difference is below 2% which

is very encouraging.

6. Results and Discussion340

A three-dimensional example is taken from a project on recycling silicon processing waste

[12] where the non-conducting crucible often has square cross-section (Figure 4).
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The meshed computational domain covers 1/4 of the volume of molten silicon inside the

crucible with y = 0 and x = 0 being symmetry planes. The side of the square cross-

section is 35.4 mm and the height of the melt volume is 65 mm. The external coil is345

represented as 10 rings of electrical current lines with radius 47 mm spaced vertically at

17 mm from each other with the lowest turn located 50 mm below the lower end of the

meshed volume. The amplitude of the coil current is 544.5 A and its frequency is 3000

Hz. The electromagnetic skin depth in this case is 8.3 mm.

The 3-dimensional calculation according to (7), (8), (9) and (10) shows the amplitude of350

the vertical z-component of the magnetic induction on the inner crucible wall (the outer

surface of the meshed volume) is around 38 mT on average (Figure 5). For comparison,

this value was prescribed as the boundary condition of the “solveB” 2-dimensional imple-

mentation based on (26) and (27) in a square domain with the same side length as the 3D

one. As it can be seen in Figure 6 and 7, the resulting electromagnetic field, force field355

and heat sources are quite similar. Both comparisons are between values at height 1/3

from the top of the domain in the 3D case “solve E” and the corresponding 2D results

“solve B”.

The similar cross-section values are expected as the electromagnetic field has nearly 2-

dimensional structure at the chosen height. However, near the top and the bottom of the360

domain, significant deviation from the from the 2D pattern is observed (Figures 4 and 5)

which justifies the need for 3D modelling capability.

7. Conclusions

The finite volume method has been applied to the solution of the equations of electro-

magnetic induction. Primitive variables have been used rather than a magnetic vector365

potential. Only the charge of the induction furnace (the conducting body or liquid where

eddy currents are induced) is included in the meshed computational domain, and the in-

fluence of the driving coil current is accounted for by means of integral equations. In this

way the same mesh can be used simultaneously for all aspects of the modelled physics:

electromagnetism, fluid flow, turbulence, heat transfer, etc. This common mesh would370

also be very useful in true magnetohydrodynamic cases where the induction and the flow
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are closely coupled (inter-dependent on each other).

In two-dimensional quasi-steady simulations for the cross-sections of induction furnaces,

selecting the real and imaginary part of the magnetic induction as solved variables is the

most accurate and computationally efficient approach. This option needs an estimate of375

the magnetic field strength between the coil and the charge to be prescribed as boundary

condition (and the solution re-iterated if necessary). Solving for the electric field vector

and for an additional scalar potential (real and imaginary parts) is a generic option for 3-

dimensional quasi-steady models. This full model does require calculation of the magnetic

field integral for all cell faces on the surface of the charge which may lead to longer380

computational times but a clustering approach to the implementation of the integral

evaluation (where cells further away from the observation point are clustered together and

only their average is used in the calculation) helps reducing the run time even without

parallel computation.

Extensive validation of the new 3-dimensional method was accomplished by comparing385

with (a) 1D theoretical results, (b) 2D cross-section results and (c) 2D axisymmetric

analytical results in a vertical plane perpendicular to the cross-sectioning plane. A fully

3-dimensional example shows the applicability of the method to real industrial problems,

in this case - the electromagnetic field in a volume of silicon remelted in a crucible with

a square cross-section with the aim of purifying it and reusing it in photo-voltaic cells.390

The procedures described in this paper provide a method for modelling the operation

of induction furnaces, as well as closely coupled magnetohydrodynamic phenomena in

complex geometries. They are most useful in cases of visible penetration of the magnetic

field into the heated charge, e.g. more than 2% of the radius or equivalent size parameter.

The smaller the electromagnetic skin depth, the more clustered towards the surface of the395

charge the computational mesh needs to be in order to achieve adequate resolution. For

even higher frequencies when the mesh at the surface would become impractically fine,

there is no need to solve numerically the PDEs of the electromagnetic field; instead, the

1-dimensional analytical result (28, 29) can be integrated over a chosen suitable depth

and the resulting force and heat applied as source terms in the corresponding fluid and400

thermal PDEs.
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Figure 1: Validation results for 1D test problem
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