This is an author produced version of a paper published in:

Ergonomics

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa22100

Paper:

http://dx.doi.org/10.1080/00140139.2015.1052020

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/
Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes

Øystein Vedaaab, Anette Harrisc, Bjørn Bjorvatnde, Siri Waagede, Børge Sivertsenb, Philip Tuckerfg & Ståle Pallesenae

a Department of Psychosocial Science, University of Bergen, Christiesgt. 125015, Bergen, Norway
b Division of Mental Health, Norwegian Institute of Public Health, Kalfarveien 31, 5018, Bergen, Norway
c Department of Health Promotion and Development, University of Bergen, Christiesgt. 13, 5015, Bergen, Norway
d Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, 5018, Bergen, Norway
e Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
f Stress Research Institute, Stockholm University, SE-106 91, Stockholm, Sweden
g Department of Psychology, Swansea University, Swansea, SA2 8PP, United Kingdom

Accepted author version posted online: 15 Jun 2015.

To cite this article: Øystein Vedaa, Anette Harris, Bjørn Bjorvatn, Siri Waage, Børge Sivertsen, Philip Tucker & Ståle Pallesen (2015): Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes, Ergonomics, DOI: 10.1080/00140139.2015.1052020

To link to this article: http://dx.doi.org/10.1080/00140139.2015.1052020

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
Title: Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes

Running head: Quick returns and health-related outcomes

Øystein Vedaa PsyDa,b, Anette Harris PhDc, Bjørn Bjorvatn PhDd,e, Siri Waage PhDd,e, Børge Sivertsen PhDb, Philip Tucker PhDf,g, Ståle Pallesen PhDa,e

aDepartment of Psychosocial Science, University of Bergen, Christiegt. 12, 5015 Bergen Norway
bDivision of Mental Health, Norwegian Institute of Public Health, Kalfärveien 31, 5018 Bergen, Norway
cDepartment of Health Promotion and Development, University of Bergen, Christiegt. 13, 5015 Bergen, Norway
dDepartment of Global Public Health and Primary Care, University of Bergen, Kalfärveien 31, 5018 Bergen, Norway
eNorwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
fStress Research Institute, Stockholm University, SE-106 91 Stockholm, Sweden
gDepartment of Psychology, Swansea University, Swansea SA2 8PP, United Kingdom

Contact information:
Øystein Vedaa (corresponding author) (oystein.vedaa@psysp.uib.no, phone +47 55 58 33 05). Department of Psychosocial Science, University of Bergen, Christiegt. 12, 5015 Bergen Norway
Anette Harris (anette.harris@uih.uib.no, phone +47 55 58 32 19), Bjørn Bjorvatn (bjorn.bjorvatn@igs.uib.no, phone +47 55 58 60 88), Siri Waage (siri.waage@igs.uib.no, phone +47 55 58 60 64), Børge Sivertsen (borge.sivertsen@fhi.no, phone +47 53 20 41
Abstract

A systematic literature search was carried out to investigate the relationship between quick returns (i.e., 11.0 hours or less between two consecutive shifts) and outcome measures of health, sleep, functional ability and work-life balance. A total of 22 studies published in 21 articles were included. Three types of quick returns were differentiated (from evening to morning/day, night to evening, morning/day to night shifts) where sleep duration and sleepiness appeared to be differently affected depending on which shifts the quick returns occurred between. There were some indications of detrimental effects of quick returns on proximate problems (e.g., sleep, sleepiness and fatigue), although the evidence of associations with more chronic outcome measures (physical and mental health and work-life balance) was inconclusive.

Key words: Quick return, Quick changeover, Short changeover, Short recovery

Practitioner summary

Modern societies are dependent on people working shifts. This study systematically reviews literature on the consequences of quick returns (11 hours or less between two shifts). Quick returns have detrimental effects on acute health problems. However the evidence regarding effects on chronic health is inconclusive.
1. Introduction

Shift work is a way of organizing working time where ‘workers succeed one another at the workplace so that the total operation hours exceed the hours of work carried out by individual workers’ (ILO 1995, p.14). Increasing use of shift work and irregular work hours are believed to be driven by major societal changes with a decline in manufacturing and the rise in the service economy (Johnson and Lipscomb 2006). However, shift work often disrupts the alignment between external demands and the individuals’ internal circadian rhythm. This biorhythmic disruption is believed to be an important contributor to the increased risk of various sleep difficulties (Åkerstedt 2003) and negative health effects associated with shift work such as breast cancer, cardiovascular disease, diabetes, obesity, gastro-intestinal problems and peptic ulcer disease, among others (Baron and Reid 2014, Monk and Buysse 2013, Costa, Haus, and Stevens 2010, Gan et al. 2014, Knutsson and Bøggild 2010, Vyas et al. 2012, Wang et al. 2011). Furthermore, there is evidence to suggest that shift work may impair mental wellbeing and increases the risk for psychological distress (Vogel et al. 2012, Baron and Reid 2014). It has been suggested that some of the effects of shift work on mental health may be mediated by social difficulties in terms of imbalance between work and private life (Haines et al. 2008). Shift work has also been inferred as a risk factor for sick leave; currently, however, this seems primarily to apply to female healthcare workers on fixed evening work (Merkus et al. 2012). One recent study also indicated that shift work was associated with a chronic impairment of cognition (Marquié et al. 2014).
Some shift schedules are believed to affect workers’ health to a greater extent than
others. Night and early morning shifts cause the largest biorhythmic disruption and have accordingly been associated with the largest effects on sleep and health (Åkerstedt 2003, Sallinen and Kecklund 2010). A number of other shift characteristics have also been shown to impact sleep and health, such as the length of the shift (e.g., 8h or 12h shifts) (Lowden et al. 1998), type of shift schedule, and direction and speed of rotation (Tucker et al. 2000, Barton and Folkard 1993). An important aspect with rotating shifts concerns to what extent the time between shifts facilitates adequate rest. Quick returns refers to changeovers from evening to morning/day shifts, night to evening shifts, or morning/day to night shifts, where 11.0 hours or less free time are scheduled between shifts (European Parliament 2003). Although there are no statistics on the prevalence of quick returns, a survey on Norwegian nurses found that 81.2% reported exposure to quick returns in the past year ($n = 1990$; mean annual number of quick returns = 33.2) (Eldevik et al. 2013). Although 11.0 hours between shifts defines the upper duration of time off for quick returns, the number of hours between two shifts is often far less. The actual time for rest may be further shortened by long commutes, time for self-care and domestic chores, which consequently may result in substantial sleep deficiency in quick returns (Kecklund and Åkerstedt 1995), again possibly affecting wellbeing and health. Consequently, it is recommended that shift schedules should not feature quick returns (Knauth 1996, Kecklund and Åkerstedt 1995). This is also reflected in the recommendations of the European Working Time Directive, which emphasizes that workers are entitled to a minimum daily rest period of 11.0 consecutive hours per 24.0-hour period (European Parliament 2003).
Recent studies have shown that the effects of quick returns on sleep and fatigue can be equally severe as, or even more severe than, those of night shifts (Eldevik et al. 2013, Flo et al. 2014). Such findings highlight the need to examine the wider potential impact of quick returns. While the consequences of quick returns have been examined in previous reviews to some extent (Knauth 1996, Sallinen and Kecklund 2010, Kecklund and Åkerstedt 1995, Åkerstedt 2003), none of these reviews focused exclusively on quick returns and none used a systematic approach. The current study addresses these shortcomings by conducting a systematic literature search with the aim of consolidating the evidence on the relationship between quick returns and outcome measures ranging from health, sleep, functional ability and work-life balance.

2. Methods

Systematic searches were carried out in order to identify relevant studies for this literature review. The search combined the keywords “shift work*” OR shiftwork* OR “night work*” OR nightshift* OR “night shift*” with various thesaurus-obtained terms for quick return; including "quick return*" OR "quick change over" OR “short off-duty” OR “short turn-around*” OR “quick turn-around*” OR “short turnaround” OR “quick turnaround” OR “quick shift-change period*” OR "short rest" OR "short break*" OR "short free time" OR recovery OR "short sleep" OR "restricted sleep" OR advan* OR rotat*. The searches were conducted in the databases Web of Science, Pubmed and PsycINFO and resulted in 1214, 1100, and 455 hits, respectively. An overview of the search and selection process is presented in Figure 1. No year restriction was used and the searches were carried out throughout October 2014. The total number of hits after sorting for document type article and deleting duplicates was 1839. The search strategy
and selection of eligible studies were carried out by a single reviewer (first author). The articles were first screened for relevance by reading the title alone – a recently validated approach (Mateen et al. 2013) – which led to an initial rejection of 1210 articles. This required a further review of 629 abstracts, and finally 78 full text articles were studied. Forward citation searches were used to track down references cited by relevant sources.

Studies eligible for inclusion in the review were evaluated against a set of pre-defined inclusion criteria. The studies had to be written in English and published in peer-review journals (e.g., governmental reports were excluded). The studies had to report results from data on workers in a naturalistic or simulated shift work setting. Furthermore, the inclusion criteria were quite broad in terms of study design and quality of investigation, in an attempt to provide a complete overview of the limited research done on the subject of quick returns. However, the studies had to use a quantitative design allowing inferences about the association between health-related parameters and quick returns; and quick returns had to be clearly defined as 11.0 hours or less between two shifts. Furthermore, specific restrictions were set regarding split-shifts and sea-watch systems. These are often rotating shifts with less than 11.0 hours off between them, but were deemed different from quick returns due to the fact that these shifts are often substantially shorter and the free period between the shifts are not necessarily used for sleep. Sea-watch systems also occur in a special off-shore context where aspects such as commuting time and domestic demands are more or less eliminated, in contrast to standard land-based shift work.

3. Results
In total, 22 studies published in 21 articles were included in this review (Table 1). Taken together these studies included 14,028 subjects in which the weighted average age was 38.5 years (from the 16 studies that reported age). Eight studies were cross-sectional survey studies (Barton and Folkard 1993, Eldevik et al. 2013, Flo et al. 2012, Geiger-Brown, Trinkoff, and Rogers 2011, Kandolin and Huida 1996, Tucker et al. 2000, Tucker et al. 2010, Tucker et al. 2015), one was a longitudinal survey study (Flo et al. 2014), three were intervention studies (where quick returns were reduced or abolished) (Hakola, Paukkonen, and Pohjonen 2010, Kandolin and Huida 1996, Lowden et al. 1998), five were field studies (data collection over time in natural settings) (Axelsson et al. 2004, Sallinen et al. 2003, Signal and Gander 2007, Karhula et al. 2013, Costa et al. 2014), one was a field study which included laboratory assessments (Härmä et al. 2002) and one was a pure laboratory study (Cruz et al. 2003), one was a registry study (analyzed objective records from an injury report database) (Macdonald et al. 1997), and two studies labeled themselves as time-budget studies (i.e., they employed time-use diaries to identify activities occupying each hour of each day for a fixed period of time) (Knauth et al. 1983, Kurumatani et al. 1994). Most of the studies were based on self-report diaries and a mixture of standardized questionnaires and unstandardized questions (Barton and Folkard 1993, Eldevik et al. 2013, Flo et al. 2012, Geiger-Brown, Trinkoff, and Rogers 2011, Kandolin and Huida 1996, Tucker et al. 2000, Flo et al. 2014, Lowden et al. 1998, Karhula et al. 2013, Sallinen et al. 2003, Signal and Gander 2007, Härmä et al. 2002, Cruz et al. 2003, Kurumatani et al. 1994, Knauth et al. 1983, Hakola, Paukkonen, and Pohjonen 2010, Tucker et al. 2010, Tucker et al. 2015). Three studies used actigraphy recordings to monitor sleep and activity objectively (Axelsson et al. 2004, Signal and
Gander 2007, Costa et al. 2014), and one used objective records of injuries from the medical department at the workplace (Macdonald et al. 1997).

3.1 Sleep duration and disturbed sleep

The most common quick return appears to occur between evening and the following morning/day shifts (Table 2.). Three field studies (Axelsson et al. 2004, Sallinen et al. 2003, Costa et al. 2014), one time-budget study (Knauth et al. 1983) and one intervention study (Hakola, Paukkonen, and Pohjonen 2010) found that quick returns between evening and morning/day shifts caused shorter sleep duration. Quick returns between night and evening shifts was found to shorten sleep duration in one field study (Axelsson et al. 2004). The sleep/nap between morning/day and night shifts was investigated in one time-budget study (Kurumatani et al. 1994), one field study (Costa et al. 2014) and two laboratory studies (Signal and Gander 2007, Cruz et al. 2003). Although this sleep appeared to have a short duration (Table 2.), Cruz et al. (Cruz et al. 2003) argued that this sleep should be viewed as a nap that add to the major sleep period prior to the morning/day shift. Their analysis showed no significant differences between advancing (with quick returns) and delaying (without quick returns) shift rotations in terms of sleep duration when the nap before the night shift was combined with the major sleep period (Cruz et al. 2003). Furthermore, sleep duration appeared to increase the first night after a quick return, which is attributed to the need to recover from the quick returns (Tucker et al. 2000, Axelsson et al. 2004).

An overview of the association of quick returns and health related outcome beyond sleep duration is provided in Table 3. One field study showed that nurses reported significantly lower sleep quality after quick returns of 10.0 hours from evening to
morning shifts in an 8-hour system, compared to those with longer changeovers in a 12-hour system (Costa et al. 2014). One cross-sectional study showed that quick returns of 10.0 hours were positively associated with more frequent reports of inadequate and restless sleep among nurses (Geiger-Brown, Trinkoff, and Rogers 2011). Three survey studies support a positive association between quick returns and shift work disorder (Eldevik et al. 2013, Flo et al. 2014, Flo et al. 2012), of which one was a longitudinal study (Flo et al. 2014). One cross-sectional study also showed a positive association between quick returns and insomnia (Eldevik et al. 2013). In these survey studies exposure to quick returns were defined as occurrence within the last month (Geiger-Brown, Trinkoff, and Rogers 2011) or frequency last year (Eldevik et al. 2013, Flo et al. 2014, Flo et al. 2012). These survey studies did not report between which shifts the quick returns occurred. In contrast to these findings, however, one cross-sectional survey found that workers on a shift system with quick returns reported less sleep disturbances than workers on a system without (Barton and Folkard 1993).

3.2 Sleepiness and fatigue

The presence of quick returns from evening to morning/day shifts and night to evening shifts were associated with increased sleepiness in five studies (Axelsson et al. 2004, Eldevik et al. 2013, Flo et al. 2014, Karhula et al. 2013, Costa et al. 2014) and increased fatigue in six studies (Knauth et al. 1983, Flo et al. 2014, Eldevik et al. 2013, Barton and Folkard 1993, Lowden et al. 1998, Tucker et al. 2010). Two intervention studies found that reduction in the number of quick returns of 9.0 hours between evening and morning shifts improved self-reported sleep and alertness (Hakola, Paukkonen, and Pohjonen 2010) and caused less tiredness compared to a control group (Kandolin and Huida 1996).
It should however be noted that the intervention in the latter study consisted of both reducing quick returns and increasing personal involvement in shift planning, thus it was not possible for the authors to separate the effect of the two parallel interventions (Kandolin and Huida 1996). One survey study suggested quick returns of 8.0 hours (from night to evening and morning to night shifts) as the likely cause of a marginally more rapid decline in workers self-report alertness levels over the duration of a shift, compared to shift systems without quick returns (Tucker et al. 2000). One study used archival accident records to compare two shift systems which differed with respect the presence of a quick return of 8.0 hours between the night and evening shifts (Macdonald et al. 1997). Risk for accidents appeared to be higher during evening shifts that followed a quick return, which was initially interpreted as a detrimental effect of quick returns on risk for accidents (Macdonald et al. 1997). However, it was subsequently suggested by one of the study’s authors that the difference may have been attributable to the different shift sequences of the two shift systems (Spencer, Robertson, and Folkard 2006).

Two field studies have investigated sleepiness and quick returns from morning/day to night shifts. One found quick returns of 10.0 hours in a 8-hour system to increase sleepiness compared to longer changeovers in a 12-hour system (Costa et al. 2014). The other found quick returns of 8.0 hours or less represented a smaller risk for sleepiness than a changeover period of 16.0 hours or more (Härmä et al. 2002). The latter observation was believed to be due to the fact that a significantly larger proportion of people with quick returns took naps before night work compared to those with longer changeover periods (Härmä et al. 2002, Cruz et al. 2003). In addition, the nap between morning/day and night shifts in quick returns tends to be of longer duration (2.8 hours)
compared to those with longer changeover periods to the night shifts (1.9 hours) (Cruz et al. 2003).

3.3 General health and wellbeing

Quick returns were positively associated with self-reported stress in one cross-sectional study (Tucker et al. 2015). Two intervention studies found that reduction of quick returns of 9.0 hours from evening to morning shifts led subjects to report better general health and social wellbeing (Hakola, Paukkonen, and Pohjonen 2010) as well as less mental strain and stress (Kandolin and Huida 1996). The former study did however not find any effects of reduction of quick returns in terms of reported occurrence of diseases or sickness absence (Hakola, Paukkonen, and Pohjonen 2010). One survey study found that workers on a shift system with quick returns reported poorer physical health than among those on systems without quick returns (Barton and Folkard 1993). However, this was not observed in another survey study comparing workers on a shift system which included quick returns of 8.0 hours (from night to evening and morning to night shifts) to those on other systems without quick returns (Tucker et al. 2000). In addition, three survey studies, of which one was longitudinal, did not find any associations between quick returns and measures of mental health (Flo et al. 2014, Eldevik et al. 2013, Barton and Folkard 1993), nor did changes in the number of quick returns have any effect on reported symptoms of depression or anxiety over time (Flo et al. 2014).

One survey study found that workers on a shift system with quick returns reported more social and domestic disruption and less job satisfaction, than those working on a shift system without quick returns (Barton and Folkard 1993). In one intervention study, reduction of quick returns of 9.0 hours between evening and morning shifts improved the
workers self-reported wellbeing at work and their leisure time activities (Hakola, Paukkonen, and Pohjonen 2010). The reduction of quick returns in this study also led workers to report higher mental work ability, although there were no significant changes on the more general work ability index (Hakola, Paukkonen, and Pohjonen 2010). In one intervention study, reduction of quick returns of 9.0 hours between evening and morning shifts improved the social climate at work regarding support from supervisors and relationship with colleagues (Kandolin and Huida 1996). As pointed out earlier, the intervention in the latter study also included increased personal involvement in shift planning that unfortunately represents an obvious confounding variable. Reduction of quick returns of 9.0 hours from evening to morning shifts in another intervention study did not have any effect on the workers’ social and family life (Hakola, Paukkonen, and Pohjonen 2010). No negative effect was observed on self-reported social and domestic disruption in a cross-sectional study comparing workers on a shift system which included quick returns of 8.0 hours (from night to evening and morning to night shifts) to those on other systems without quick returns (Tucker et al. 2000).

4. Discussion

The aim of this review was to synthesize evidence on the relationship of quick returns (i.e., a break between shifts of 11.0 hours or less) and health-related outcomes. It is reasonable to expect that limited time for rest between shifts will impose a corresponding shortening of sleep duration. In most cases, quick returns involve short rests of 8.0 or 9.0 hours between shifts. The actual time for rest between the shifts may however be significantly shorter than this, when subtracting actual time for departure from work, long commutes, time to unwind before sleep, and to eat and freshen up before the next shift.
Time-use studies have shown that social- and leisure activities remain a priority for individuals and are likely to be exchanged for sleep time (Basner et al. 2007). Domestic chores may further shorten the time for sleep in quick returns, which may affect female workers more than men due to gender inequality in households (Rotenberg et al. 2008, Silva, Rotenberg, and Fischer 2011). In line with this, the result from this review indicated a shortening of sleep duration to 6.5 hours or less with quick returns. Previous studies have shown that repeated restriction of sleep to 6.0 hours or less per night substantially impairs neurobehavioral functions (Van Dongen et al. 2003). This is of particular concern, given that the typical occupations exposed to quick returns are within health care, industrial production facilities, transport industry and aviation, where high levels of cognitive functions are critical for safety and where lapses in attention easily can have fatal outcomes. However, few studies have investigated partial sleep deprivation that occurs at intermittent intervals, as is often the case with quick returns. Although one study appeared to suggest detrimental effects of quick returns on risk for accidents (Macdonald et al. 1997), a retrospective re-analysis of the results have called into doubt that interpretation of the findings (Spencer, Robertson, and Folkard 2006).

Sleep duration appeared to be differently affected depending on which shifts the quick returns occur between. The results from this review indicate that while the shortest sleep durations seemed to occur between morning/day and night shifts, somewhat longer sleeps took place between night and evening shifts and the longest sleeps were between evening and morning/day shifts. This is consistent with the fact that the time for rest between shifts in the three types of quick returns occurs at different points within the circadian rhythm and the homeostatic sleep drive. The free periods associated with the
three types of quick returns fall during the evening, day and night, respectively. The
desire and the possibility to spend the free time asleep may also be less during daytime or
evening, due to social and family activities, as in the case with the free periods between
night to evening and morning/day to night shifts. A night shift followed by an evening
shift may be the worst quick return in terms of sleep deficit (Kecklund and Åkerstedt
1995). Sleep is rapidly initiated after a night shift, but often difficult to maintain
compared to a normal night’s sleep

(Järrestedt, Kecklund, and Knutsson 1991). The
sleep time between morning/day and night shifts should be appended to the major sleep
period that occurs before the morning/day shift, as this will serve as a more accurate
indicator of how much rest the workers have actually attained compared to those with
longer changeover periods to the night shifts (Cruz et al. 2003). The number of hours
needed for rest between shifts may also vary depending on which shifts the quick returns
occur between, where time needed for recovery presumably is highest after night shifts.

The reduced sleep duration with quick returns is probably also an important
contributor to the reports of restless sleep and increased occurrence of sleep disturbances
with quick returns. The biorhythmic disruption caused by quick returns, particularly by
those that include night shifts, may underlie the associations between quick returns and
shift work disorder – as also pointed out by others (Eldevik et al. 2013, Flo et al. 2014).
Moreover, it is easy to imagine that the recognition of limited hours available for rest
during a quick return may increase individuals’ intention to sleep. Increased sleep effort
is identified as one of the key elements of insomnia maintenance (Broomfield, Gumley,
and Espie 2005), which may throw light upon the positive association found between
quick returns and insomnia (Eldevik et al. 2013). The presence of quick returns was in
most studies associated with increased sleepiness and fatigue, which highlight the need for more time to recover between shifts. One exception however was quick returns from morning/day to night shifts, which in one study was suggested to reduce the risk for sleepiness during the night shifts (Härmä et al. 2002). This was believed to be due to the more frequent and longer sleeps/naps taken by the workers before the night shifts during quick returns, compared to those with longer changeover periods before the night shifts (Härmä et al. 2002, Cruz et al. 2003). As noted above, this sleep/nap should be appended to the major sleep period, which introduces a more accurate indicator of how much rest the individual actually has attained. These observations nevertheless suggest that a quick return to the night shift may enable more sleep closer to the night shift, which subsequently may enhance the individual's level of functioning on the night shift. Such effects would be consistent with evidence that naps on the night shift improve alertness and functional ability (Ruggiero and Redeker 2014). However, it remains unclear whether these apparent benefits of quick returns to the night shift outweigh any disadvantages of such double shifts, and it should be noted that one study observed increased sleepiness with these quick returns (Costa et al. 2014).

The consequences of shift work on physical and mental health-related outcomes are widespread and well documented (Baron and Reid 2014, Monk and Buysse 2013, Costa, Haus, and Stevens 2010, Gan et al. 2014, Knutsson and Bøggild 2010, Vyas et al. 2012, Wang et al. 2011, Vogel et al. 2012). The mechanisms believed to underlie the negative health outcomes of shift work include biorhythmic disruption and sleep deprivation (Knutsson 2003), both of which are also present with quick returns. There were some indications of better general health and wellbeing when fewer quick returns
were introduced in an intervention study, but no substantial changes in occurrence of diseases or sickness absence (Hakola, Paukkonen, and Pohjonen 2010). In terms of mental health, there were consistent reports of no relations with exposure to quick returns (Flo et al. 2014, Eldevik et al. 2013, Barton and Folkard 1993). Taken together there is as of yet no clear indication of quick returns as a substantial risk factor for physical or mental health-related problems. Needless to say, more research is warranted before firm conclusions can be drawn on this matter. Meanwhile, many workers are supportive of quick returns due to the longer consecutive free periods they generate (Kandolin and Huida 1996, Schroeder, Rosa, and Witt 1998). It is a matter of speculation as to whether the cost of enduring quick returns on chronic outcome measures – such as physical and mental health – may be equalized by the recovery gained from the extra free time it contributes to.

Work outside regular daytime has been found to complicate family and private life activities (Albertsen et al. 2008). Overall, most reports on the balance between work and private life in this review portray quick returns as an unfavorable shift characteristic (Barton and Folkard 1993, Hakola, Paukkonen, and Pohjonen 2010, Kandolin and Huida 1996). However, some of the results indicated no effect of quick returns on social and family life (Hakola, Paukkonen, and Pohjonen 2010). The results from one study are difficult to interpret due to a parallel intervention with increased personal involvement in shift planning (Kandolin and Huida 1996), and not all studies found an effect of quick returns on work-life balance (Tucker et al. 2000). In an intervention study that aimed at increasing work-life balance, it appeared that more work time control and the ability to adjust working hours to personal needs were more important for the work-life balance-
related measures than actual changes in working hours (Albertsen et al. 2014). Taken together, there is little evidence to conclude on the relation between quick returns and work-life balance. The ambiguity in the studies may reflect the fact that despite the proximate problems associated with quick returns, the workers seem to favor the longer free periods it generates (Kandolin and Huida 1996, Schroeder, Rosa, and Witt 1998). For example, the midwives studied by Kandolin and Huida (1996) reported that the longer free periods accumulated due to quick returns made it easier to combine shift work and social life.

4.1 Limitations and further direction

A potential limitation is that, while the inclusion criteria were agreed by all authors, only one of the authors conducted the literature search (first author). In mitigation, it should be noted that previous research has shown that single reviewers on average miss less than 10 percent of eligible reports (Edwards et al. 2002). Relevant findings may have been lost due to stringent inclusion criteria; for example, some studies were deemed relevant by content but excluded due to the fact that they were not published in peer review journals (Saito and Kogi 1978, Della Rocco and Cruz 1995, 1996, Cruz and Della Rocco 1995, Schroeder, Rosa, and Witt 1995). Relevant studies may also have been excluded prematurely after reading the abstract in cases where quick returns were not highlighted in the abstract. However, forward citation searches were carried out that may have intercepted important studies where this was the case. Another limitation with this review, which also reflects a limitation in the literature, pertains to the fact that quick returns are often defined as short rest of 11.0 hours or less between shifts. Since workers
are entitled to a minimum daily rest period of 11.0 hours (European Parliament 2003) it seems more correct to define quick returns as less than 11.0 hours in future studies.

In general, the predominance of cross-sectional studies of quick returns is a limitation as it precludes inferences about causality. There is also a predominance of female subjects due to the large survey studies on health personnel (Geiger-Brown, Trinkoff, and Rogers 2011, Flo et al. 2014). This may reflect a bias within the field since research results are not always generalizable between the sexes (Holdcroft 2007). Many studies also rely on subjective measures, which increases the risk for systematic errors due to inaccurate recollections and other biases related to subjective reports (Weiss 1995, Podsakoff et al. 2003). Furthermore, quick returns were often not the primary target for investigation in studies but nevertheless suggested as an explanatory factor. The study designs are thus not always ideal to make inferences about the specific ramifications of quick returns, primarily due to rudimentary definitions of quick returns and lack of control over the confounding effect of other variables (e.g., parallel interventions, direction of rotation, shift length). The three quick returns differentiated in this review (evening to morning/day, night to evening, morning/day to night) are distinct both from a theoretical and practical point of view, and future studies should make an effort to differentiate between their respective consequences. Moreover, the combined nap and major sleep period in quick returns between morning/day and night shifts should be used in future studies, as this appears to serve as a more accurate indicator of how much rest the workers in total have achieved compared to those with longer changeover periods (Cruz et al. 2003). This issue also has a bearing on the interpretation of previous studies where this is has not been taken into account.
Future field, laboratory and intervention studies should attempt to compare the three quick returns with longer changeovers to the same respective shifts, which will give a more accurate indication of the specific consequences of short time for recovery between shifts. Both acute and long-term consequences of quick returns need to be studied. The acute consequences of quick returns may include the immediate detrimental impacts on sleep between the shifts, and sleepiness, functioning (e.g., cognitive and motoric) and risk of accidents during the second shift in a quick return. The accumulated detrimental impact of quick returns on these outcomes across the workweek should also be investigated. The long-term consequences of quick returns warrant large-scale prospective studies on physical and mental health-related outcomes, sickness absence and work-life balance. Future studies should also prioritize objective measurement of both shift exposure (e.g., by use of payroll data) and of the various outcome measures, so as to reduce the risk for systematic errors due to subjective reports (Weiss 1995, Podsakoff et al. 2003). Some individuals are able to work shifts without experiencing negative consequences (Saksvik et al. 2011). Research is needed to identify personality variables that predict tolerance of shift characteristics, such as quick returns, so as to inform personnel selection and individualized shift scheduling. Furthermore, an important question for future research is whether female workers experience more detrimental effects of quick returns than males, due to the extra burden placed on the former group in terms of domestic chores (Rotenberg et al. 2008, Silva, Rotenberg, and Fischer 2011). In this regard it should also be noted that females on average report a somewhat longer sleep need than males (Ursin, Bjorvatn, and Holsten 2005). In determining how much recovery time is needed between shifts it seems important to assess the amount of time needed for
commuting and other activities (time to eat, self-care, social and leisure activities, domestic chores, etc.) during a quick return.

4.2 Conclusion

In summary, the results from this review suggest that quick returns shorten sleep duration, cause more disturbed sleep, and in most cases increase reports of sleepiness and fatigue. There are some indications of a detrimental effect of quick returns on the balance between work and private life. The degree to which quick returns disrupt workers general health and wellbeing remains unknown. However, there have been relatively few studies to date examining how quick returns affect sleep and health-related outcomes, and even fewer that have had this as their primary target for investigation. Consequently, the quality of evidence regarding the impact of quick returns remains rather weak, thereby limiting the certainty of these conclusions.

References

"Work-life balance among shift workers: results from an intervention study about self-
rostering." International Archives of Occupational and Environmental Health 87:265-274.

Hits after initial searches
(N = 2769):
- Web of Science: 1214
- Pubmed: 1100
- PsycINFO: 455

Sorting for article and deleting duplicates
(n = 930)

Potentially eligible study reports
(n = 1839)

Excluded based on reading title alone
(n = 1210)
- Deemed not relevant
- Review/Commentary
- Non-English
- Not published in peer review journal
- Not possible to interpret the relation of QR and health-related outcome
- Split-shift / Sea-watch systems

Excluded based on reading abstract
(n = 551)

Excluded based on reading full text
(n = 59)

Studies included from elsewhere
(n = 2)

Full text articles included
(n = 21)
Figure 1. Literature search and selection on quick returns and health-related outcome.

Table 1. Literature review summary of studies on the relationship between quick returns and health.

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample</th>
<th>Shift system</th>
<th>Quick returns</th>
<th>Outcome variables</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axelsson et al (2004)</td>
<td>N = 56</td>
<td>Rapidly rotating three shifts (N-E-M) with two quick returns within 36.0h.</td>
<td>E-M/D 8.0-9.0h, N-E 8.0-9.0h, M-D-N 8.0-9.0h</td>
<td>Sleep (actigraphy)</td>
<td>QR shortened sleep duration to 4.8h (N-E) and 5.5h (E-M), relative to a reported habitual sleep need of 8h and a recovery</td>
</tr>
</tbody>
</table>
sleep of 8.6h. QR increased sleepiness.

Costa et al. (2014)
\(N_{\text{field}} = 30 \) (incl. QR)
17 female compared to 2x12 schedules.
13 male
34.3 yrs.

Fast rotating 3x8
10.0h - 7.0h Sleep QR from E-
M shifts (actigraphy)
Sleepiness reduced sleep quality and sleep duration to 5.6h (7.8h on rest days). Sleepiness was higher with QR (3x8 system) to morning and night shifts compared to longer changeovers to these shifts (2x12 system).

Karhula et al. (2013)
\(N = 95 \) Three shift
9.9h - -
Sleepiness A high job strain group
Physical and mental workload had more quick returns
(among others) than a low job strain group. QR caused more sleepiness in the high job strain group. Subjective recovery was lowest in shift combinations of short time-off periods before the shifts. Sallinen et al. (2003) N = 230 All male, 43.2 yrs. Rr. = 55.4 yrs. Irregular shift system. Sleep (diary data) shortened sleep duration to 5.0 h. In 30% of the E-M combinations, the free time between the shifts was caused more sleepiness than in the high job strain group. QR group. QR caused more sleepiness than in the low job strain group and others. The free time between the shifts was short.
Signal and Gander (2007) N = 28
9 female 19 male
35.4 yrs.a
Rr. = 78.0%
Counterclockwise, rapidly rotating schedule
- - 11.0h Sleep/nap (actigraphy and sleep diary)
Ninety percent slept/napped in the QR from M/D-to-N, with an average duration of 2.2h.

Field and laboratory study:

Härmä et al. (2002) N = 230
All male system.
43.2 yrs.a
Rr. = 55.4a
Irregular shift system. < 8.0h < 8.0h < 8.0h Sleepiness Napping QR of <=8.0h from M/D-to-N was associated with a smaller risk of sleepiness than changeover
Sixty two percent of QR-subjects took a nap before the night shift compared to 27% non-QR.

Laboratory study:

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Rotating</th>
<th>Sleep</th>
<th>Sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruz et al. (2003)</td>
<td>16</td>
<td>advancing (with QR)</td>
<td>(actigraphy)</td>
<td>duration was</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>delaying three shift</td>
<td>and sleep</td>
<td>5.5h for QR</td>
</tr>
<tr>
<td></td>
<td>40.9 yrs.</td>
<td></td>
<td>diary)</td>
<td>(E-M) and</td>
</tr>
<tr>
<td></td>
<td>93.3</td>
<td></td>
<td></td>
<td>5.6h for non-QR to morning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>shift, not significant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sleep/nap duration was</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8h for QR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(M-N) and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5h for non-QR to night</td>
</tr>
</tbody>
</table>

Downloaded by [Philip Tucker] at 02:31 17 June 2015
shift, not significant when nap was combined with major sleep period. QR-subjects napped more often before the night shift, 79% compared to 57%, respectively.

Registry study:

| Macdonald et al. (1997) | N = 3337 Steel industry workers | Three shift system. | - | 8.0h | - | Archival accidents records | Workers with QR (N-E) had a higher relative risk for accidents during evening shifts compared to morning |
Survey studies:

<table>
<thead>
<tr>
<th>Barton and Folkard (1993)</th>
<th>N = 261</th>
<th>Advancing (with specified 8.0h) and delaying specified shifts were compared.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>female</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>242</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
<td>specified</td>
</tr>
<tr>
<td></td>
<td>39.4 yrs.</td>
<td>specified</td>
</tr>
</tbody>
</table>

QR was associated with reports of more fatigue, social disruption and domestic disruption. Also, advancing shifts without QR were associated with more sleep, relative to workers without QR.
Eldevik et al. (2013) N = 1990

Permanent schedules and specified specified specified Fatigue Annual number of QR was not specified
female rotating two and Anxiety and depression with
33.1 yrs. three shifts.

Rr. = Annual number of
38.1% QR (<=11.0h).

Flo et al. (2012) N = 1968

Permanent schedules and specified specified specified excessive sleepiness and fatigue, shift work disorder and insomnia.
90.2% female rotating two and
three shifts.

Rr. = Annual number of
38.1% Annual number of QR (<=11.0h).
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Schedules</th>
<th>Sleepiness</th>
<th>Fatigue</th>
<th>Anxiety</th>
<th>Depression</th>
<th>Pathological Fatigue</th>
<th>Inadequate Sleep</th>
<th>Restless Sleep</th>
<th>QR Predicted</th>
<th>Annual Number of QR</th>
<th>Risk of Shift Work Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flo et al. (2014)</td>
<td>1224</td>
<td>Permanent</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Shift work disorder</td>
<td>Annual number of disorder</td>
<td>Sleepiness</td>
<td>Fatigue</td>
<td>Anxiety</td>
<td>Depression</td>
<td>Pathological Fatigue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rotating two and three shifts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.6 yrs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rr. = 38.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>followed-up</td>
<td></td>
</tr>
<tr>
<td>Geiger-Brown, Trinkoff, and Rogers (2011)</td>
<td>2246</td>
<td>Fixed, rotating or long shifts. QR</td>
<td>Not</td>
<td>specified</td>
<td>specified</td>
<td>specified</td>
<td>sleep</td>
<td>associated</td>
<td>Restless sleep</td>
<td>increased</td>
<td>odds of reporting</td>
<td>inadequate and restless</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(>10.0h) once or more per month.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rr. = 62.0%</td>
<td></td>
</tr>
</tbody>
</table>
Kandolin and Huida (1996)
Study I
N = 640
All female
Rr. = 74.0%
Three-shift work.
9.0h - - Tiredness
Twenty eight percent of the midwives on the morning shifts experienced tiring, which was suggested mostly due to QR.

Tucker et al. (2000)
N = 61
98.0% male
Rapidly rotating 8.0h systems.
8.0h 8.0h Sleep QR increased sleep duration
Shift alertness on recovery
Physical nights.QR and mental was
health associated
Social and with a
domestic marginal
disruption decline in alertness
during a shift.
No association between QR and physical
and mental health or social and domestic disruption.

Tucker et al. (2010)
N = 336
50.0% female
28.7 yrs.
Rr. = 46.0%
Junior doctors on various shift schedules (QR of <10.0h the last 7 days)
Sleep QR were likely to occur after on-call shifts, and shorter sleep duration was reported after these shifts. The restricted sleep increase risk for insufficient recovery, resulting in greater fatigue the next day.

Tucker et al. (2015)
N = 799
53.5% male
Physicians on various shift schedules
Sleep Stress QR were positively associated
42.9 yrs. (frequency of QR)
Rr. =
53.1%

Intervention studies:

Hakola, N = 75
Paukkonen, 95% female
and Pohjonen (2010) 46.0 yrs.
A change from backward to forward two/three shift rotation.
9.0h -
Sleep
Reduction of QR increased sleep duration from 6.5h \(^1\) to 7.0h \(^1\),
Alertness improved sleep and alertness,
General health both social and at work,
Wellbeing and leisure time activities.
Work ability general health,
Leisure-time wellbeing
Downloaded by [Philip Tucker] at 02:31 17 June 2015
Kandolin and Huida (1996)

Study II

N = 58 All female 39.2 yrs.a Two parallel interventions: fewer QR and increased personal involvement in shift planning.

9.0h - - Mental strain and stress (and more self-roster) Tiredness caused less Social tiredness, less climate and mental strain support and stress, from the colleagues and psychosocial climate at work. But, 68% wanted back to the old schedule (with QR)

did not decrease occurrence of diseases or sickness absence, and did not affect social and family life, among others.
because of the longer free periods generated between working weeks.

Lowden et al. (1998) N = 34

82.6% male

38.1 yrs.

85.0% Rr. =

A change from rotating three-shift (8-hour system with QR) to two-shift (12-hour system).

Sleep and alertness Fatigue

QR in the 8-hour system increased sleep problems and fatigue. The QR in the 8-hour system was suggested as substantial explanatory factors as to why the 12-hour system seemed superior on satisfaction with work hours, sleep,
and time for social activities.

Time-budget studies:

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Shift System</th>
<th>Time Budget</th>
<th>Time Budget Diary</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knauth et al. (1983)</td>
<td>120</td>
<td>Three-shift system</td>
<td>8.0h - 8.0h</td>
<td></td>
<td>After 50% of the afternoon shifts the working night sleep time, was limited to about 6.5h due to a QR to the morning time. Reports of persistent fatigue were believed to come about due to the QR.</td>
</tr>
<tr>
<td>Kurumatani et al. (1994)</td>
<td>182</td>
<td>Three-shift system</td>
<td>- - 7.5h</td>
<td></td>
<td>QR between D-N frog budget diary shortened</td>
</tr>
</tbody>
</table>
28.8 yrs.
Rr. =
80.8%

including sleep duration
sleep time, work time, etc.
to 2.4h. A strong positive correlation was observed between total sleep time and the period between two consecutive shifts, which indicated that >16h between shifts is required to allow >7h of sleep.

Note. QR = Quick Returns (11 hours or less between two shifts). E-M/D, N-E and M/D-N refer to the quick returns from Evening to Morning/Day, Night to Evening, and Morning/Day to Night, respectively. Rr. is short for Response rate.

*Weighted mean of a given quality that in the original study was reported from two or more sub-groups.

Table 2. Differences in sleep duration between three types of quick returns.
<table>
<thead>
<tr>
<th></th>
<th>Quick returns (QR)</th>
<th>Sleep duration without QR</th>
<th>Sleep duration with QR</th>
<th>E to M/D</th>
<th>N to E</th>
<th>M/D to N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axelsson et al. (2004)</td>
<td>8.0-9.0h</td>
<td>8.0h<sup>a</sup></td>
<td>5.5h</td>
<td>4.8h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Costa et al. (2014)</td>
<td>10.0h/7.0h<sup>b</sup></td>
<td>7.8h</td>
<td>5.6h</td>
<td>-</td>
<td>2.3h</td>
<td></td>
</tr>
<tr>
<td>Cruz et al. (2003)</td>
<td>8.0h</td>
<td>-</td>
<td>5.5h</td>
<td>-</td>
<td>2.8h</td>
<td></td>
</tr>
<tr>
<td>Sallinen et al. (2003)</td>
<td>8.3h</td>
<td>-</td>
<td>5.0h</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Knauth et al. (1983)</td>
<td>8.0h</td>
<td>-</td>
<td>6.5h</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hakola, Paukkonen, and Pohjonen (2010)</td>
<td>9.0h</td>
<td>7.0h<sup>c</sup></td>
<td>6.5h<sup>c</sup></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Signal and Gander (2007)</td>
<td>11.0h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2h</td>
</tr>
<tr>
<td>Kurumatani et al. (1994)</td>
<td>7.5h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.4h</td>
</tr>
</tbody>
</table>

Notes: QR = Quick Returns; E = Evening shift; M/D = Morning/Day shift; N = Night shift. ^aReported habitual sleep need. ^bQuick returns from E-M = 10.0h and from M-N = 7.0h. ^cThe weighted average sleep duration of the three age groups studied by Hakola et al.

Table 3. Summary of associations of quick returns on health-related outcome.
Three types of quick returns

<table>
<thead>
<tr>
<th>E to M/D</th>
<th>N to E</th>
<th>M/D to N</th>
<th>QR type not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick returns associated with detrimental effects on:</td>
<td>Quick returns associated with beneficial effects on:</td>
<td></td>
<td>Quick returns not associated with effects on:</td>
</tr>
<tr>
<td>sleep quality¹, sleepiness¹, fatigue⁹,¹⁰,¹²,¹³</td>
<td>sleepiness⁴, fatigue⁹,¹⁴</td>
<td></td>
<td>occurrence of diseases¹², sickness absence¹², general work ability¹², social and family life¹²</td>
</tr>
<tr>
<td>sleepiness¹, fatigue¹⁰,¹⁴, accidents*¹⁵</td>
<td>sleepiness⁴, fatigue⁹,¹⁴</td>
<td></td>
<td>physical health¹⁴, social and domestic disruption¹⁴</td>
</tr>
<tr>
<td>general health¹², social wellbeing¹², stress¹³, wellbeing at work and leisure time activities¹², mental work ability¹², social climate at work¹³</td>
<td>physical health¹⁴, mental health³,⁴,⁶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: QR = Quick Returns; E = Evening shift; M/D = Morning/Day shift; N = Night shift.

*A retrospective re-analysis of the results called into doubt the interpretation of the findings in terms of accidents (Spencer, Robertson, and Folkard 2006).