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Abstract: A simple technique for generating trains of ultrafast pulses is
demonstrated in which the linear separation between pulsescan be varied
continuously over a wide range. These pulse trains are used to achieve
tunable quasi-phase-matching of high harmonic generationover a range
of harmonic orders up to the harmonic cut-off, resulting in enhancements
of the harmonic intensity in excess of an order of magnitude.The peak
enhancement of the harmonics is clearly shown to depend on the separation
between pulses, as well as the number of pulses in the train, representing an
easily tunable source of quasi-phase-matched high harmonic generation.
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1. Introduction

High harmonic generation (HHG) offers a straightforward approach for generating ultrafast
pulses of coherent radiation with photon energies which canexceed 1keV [1]. The high degree
of temporal and spatial coherence afforded by HHG makes it anattractive source for a host
of applications including studies of ultrafast processes in condensed-matter systems [2], high-
resolution imaging [3], and attosecond metrology [4]. However, the adoption of HHG in many
applications is limited by poor conversion efficiency, resulting in low mean photon flux and
low peak brightness. The low conversion efficiency of HHG is largely due to a phase mismatch
between the driving laser field and the harmonics created at different points in the generating
medium. This phase mismatch is the result of dispersion in the partially ionized medium in
which harmonics are generated, and causes the intensity of each generated harmonic to oscillate
with propagating distance between zero and some maximum value with an oscillation period
of 2Lc, where the coherence lengthLc = π/∆kq, and∆kq is the wavevector mismatch given by
∆kq = qk0 − kq, wherek0 andkq are the wave vectors of the fundamental andqth harmonic,
respectively. Therefore, in the presence of a phase mismatch the maximum harmonic intensity
which can be achieved is that which can be generated over a single coherence length.

Under certain conditions it is possible to achieve true phase-matching (∆kq = 0). For exam-
ple, in the case of harmonics generated in a gas-filled hollow-core waveguide phase-matching
can be achieved by balancing the waveguide and plasma dispersion with that of the neutral
atoms [5]. This technique has been shown to dramatically increase the flux of harmonic sources.
However, phase-matching of this type will only work up to a certain level of ionization above
which it is no longer possible to balance dispersion. Since higher order harmonics are generated
at higher laser intensities, this means that phase-matching can only be achieved up to a certain
harmonic order.

Quasi-phase-matching (QPM) is an alternative technique for overcoming phase mismatch,
in which harmonic generation is suppressed in regions wherethe locally generated harmonic
radiation is out-of-phase with the harmonic beam. Suppressing multiple out-of-phase regions,
or zones, allows the radiation from the remaining in-phase zones to combine coherently such
that the output harmonic intensity can, in principle, be increased by a factorN 2 above that for a
single coherence length, whereN is the number of contributing zones. A significant advantage
of QPM is that it can be achieved for all harmonics up to the harmonic cut-off.

QPM has previously been demonstrated using a variety of different methods. For example,
QPM has been achieved through the use of hollow-core waveguides with modulated inner-
diameters [6], by using spatially separated gas cells [7], or by utilizing mode beating in a cap-
illary waveguide [8]. QPM can also be achieved using a train of counter-propagating laser



pulses [9, 10, 11]. For pulse train QPM (PTQPM) harmonic generation is suppressed in those
regions in which the driving laser pulse overlaps with a counter-propagating pulse, with sup-
pression being caused by a rapid variation in the phase of theharmonics as the driving pulse
and counter-propagating pulses pass through each other, effectively scrambling harmonic gen-
eration in this region. A counter-propagating pulse train consisting ofN pulses can suppress
HHG in N separate regions, leavingN + 1 unsuppressed regions. Since the harmonic inten-
sity of a quasi-phase-matched source scales with the squareof the number of in-phase zones
the harmonic intensity for PTQPM should scale asN 2 = (N +1)2, so long as the pulses are
suitably matched toLc. In PTQPM the pulse train forms a modulation moving at a velocity
of approximately−c with respect to the driving pulse. It has been shown that spatiotemporal
QPM leads to a shift in the frequency of the generated harmonics such that the qth harmonic
has a frequency of∆ωq = qω0−∆ω , whereω0 is the frequency of the driving laser [12]. As
a consequence the wave vector mismatch becomes∆kq = ∆ωn(ωq)/c+∆k′q, where∆k′q is the
wave vector mismatch in the absence of a pulse train. For the case of a pulse train with period
Λ = w+ d = 2w, wherew andd are the pulse width and separation, respectively, the correct
matching condition to achieve QPM can be written asd = 2mLc, wherem = 1,2,3, ... is the
order of the QPM process andLc is the coherence length measured in the absence of the pulse
train.

In previous experiments on PTQPM the required pulse trains were generated either by in-
serting glass plates inside a grating stretcher in order to generate different delays for different
frequencies of a stretched pulse [9, 10], or by using a sequence of birefringent plates in which
the thickness of each successive plate was doubled, producing a train of pulses with uniform
pulse separation [11]. In both cases the width and separation of the pulses within the train is
fixed by the choice of optical plates, determining the valuesof Lc which can be efficiently
matched. In order to fully exploit the benefits of PTQPM simple techniques for generating
versatile pulse trains are required, which allow the frequency of the QPM output to be tuned.

In this paper a simple technique for generating tunable pulse trains is shown to allow
continuously-tunable QPM over a wide range of harmonic orders.

2. Generation of tunable pulse trains

A train of femtosecond-duration pulses may be generated by passing a single chirped pulse
through a birefringent plate, as first described by Yano et al. [13], and subsequently by Robinson
et al. [14]. In that technique a linearly-polarized chirpedlaser pulse is passed through a multiple-
order waveplate orientated with its fast axis at 45◦ to the plane of polarization of the laser
pulse. A linear polarizer is then placed after the waveplatesuch that its transmission axis is
parallel to the original plane of polarization of the laser pulse. In order for light to be transmitted
through the combination of polarizer and waveplate a phase-shift of 2nπ (n an integer) must be
introduced between the field components polarized paralleland perpendicular to the fast axis
of the waveplate. This condition will only be met for certainfrequencies and, since the pulse is
chirped, the radiation transmitted by the polarizer will bemodulated to form a train of pulses.
For a linearly chirped laser pulse the spacing between pulses d will be approximately uniform
across the train and given by

d =
πc
bl

1

β ′
oe −β ′

oo
(1)

wherec is the speed of light,l is the thickness of the waveplate,b is the frequency chirp
parameter (such that the instantaneous frequency isω0 + 2bt), and 1/β ′

oe and 1/β ′

oo are the
group velocities of theo ande rays, respectively [15]. For a given waveplate material,d is
therefore determined by the thickness of the waveplate and the linear chirp of the stretched
pulse.



Fig. 1. Schematic of technique for generating tunable pulsetrains. G: grating stretcher P:
polarizer (a) Waveplate axes in same orientation as axes of wedge-pair so thatl′ = ∆L+Lp.
(b) Waveplate axes at 90◦ to axes of wedge-pair so thatl′ = |∆L−Lp|. Fig. (b) illustrates
the case of∆L = Lp, such thatl′ = 0.

In order to match to arbitrary coherence lengths it would be desirable to be able to contin-
uously tune the pulse separationd. From Eq. (1) it is clear thatd can by varied by changing
the thickness of the waveplatel. In the experiments described herel could be varied contin-
uously over a wide range by using a multiple-order waveplatein combination with a pair of
birefringent wedges, as illustrated in Fig. 1. This arrangement effectively produces a waveplate
of variable thicknessl′. If the axes of the waveplate have the same orientation as those of the
wedge-pair thenl′ = ∆L+Lp, whereLp is the thickness of the waveplate and∆L is the thick-
ness of the wedge-pair, which can be varied between∆Lmax and∆Lmin by changing the insertion
of the wedges. However, if the waveplate is orientated with its axes at 90◦ to the axes of the
wedge-pair thenl′ = |∆L−Lp| since the phase-shift introduced in the wedge pair will now be
offset by that introduced in the waveplate. By choosingLp such thatLp = ∆Lmin it is possible
to tunel′ continuously from 0 to a maximum∆Lmax +Lp simply by varying the insertion of the
wedge-pair and selecting the appropriate waveplate orientation.

In order to demonstrate this technique, cross-correlations of the pulsetrains were recorded
for different wedge thicknesses and waveplate orientations. The pulse trains were formed by
stretching 35fs pulses to approximately 10ps using a grating stretcher comprising a single 880
lines/mm Au-coated grating used at a 20◦ degree angle of incidence. The 1st order beam was
reflected onto the grating four-times using the combinationof a horizontal and vertical retro-
reflector. The efficiency of the grating into 1st order was 80%so that the throughput of the
stretcher was 40% . The stretched pulse was then passed through the wedge-pair-waveplate
combination with its polarization at 45◦ to the axes of the variable waveplate. The wedge-
pair used in these experiments comprised two quartz wedges,anti-reflection coated for 800nm,
25mm high and 50mm wide with thin and thick edges of 1mm and 15mm, respectively. The
finite size of the laser beam limited∆Lmin to 8mm and∆Lmax to 24mm. The waveplate was a
7.7mm thick quartz plate, so thatLp ≈ ∆Lmin. After the variable waveplate the stretched pulse



was passed though a linear polarizer, so that only the horizontal polarization was transmitted
which, together with the stretcher efficiency, resulted in atotal pulse train generation efficiency
of 20%. We note that with an optimized stretcher design the efficiency of the pulse train optics
could be increased close to the theoretical maximum efficiency of 50%.
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Fig. 3. Measured variation of pulse separation,d, and number of pulses,N, in the pulse
train with effective waveplate thickness,l′. The open and closed symbols are for waveplate
orientations of 0◦ and 90◦, respectively. The dashed lines are fits to the measured data.

Fig. 2 shows the measured cross-correlations of the pulse trains generated using the extreme
values of∆L for both waveplate orientations, demonstrating that high contrast pulse trains are
produced across the full range ofl′. The robustness of this technique is illustrated in Fig. 2
(b) and (c), corresponding in both cases tol′ ≈ 16mm. The resulting cross-correlations are
shown to be almost identical, except for a temporal shift dueto the optical path introduced
by the difference in∆L. The parameters of pulse trains generated by various valuesof l′ and
for different orientations of the wedge pair and waveplate are shown in Fig. 3. It is seen that
d ∝ 1/l′, as expected, and can be varied continuously from approximately 0.3−5mm. Since the
total stretch of the pulse is determined byb, which is fixed by the grating stretcher, the number



of pulsesN ∝ b/d ∝ l′, as confirmed by the data in Fig. 3.

3. Quasi-phase-matching with tunable pulse trains

3.1. Experimental setup

QPM using the pulse trains described above was studied usinga 1 kHz Ti:sapphire laser sys-
tem which produced linearly polarized pulses of energy of 2.8mJ, duration 35fs, and centre
wavelength 800nm. A schematic diagram of the experimental arrangement is shown in Fig. 4.
The output of the Ti:sapphire laser was split into a 0.6mJ driver beam used to generate har-
monics and a 2.2mJ counter-propagating pulse used to generate the pulse train. The energy of
each beam could be controlled independently by use of a waveplate-polarizer combination. The
pulse train was generated by passing the counter-propagating pulse through the optical system
described in the previous section. The point of collision between the driver and the pulse train
could be varied using a computer-controlled timing slide. The polarization of the pulse train was
parallel to that of the driver beam, with the result that the least amount of energy is required to
achieve QPM [16].

Fig. 4. Schematic of expermental setup. TS: timing slide, GS: grating stretcher, QW: quartz
wedge-pair, QP: quartz plate, P: polarizer, W:λ/2 waveplate.

The driver beam and counter-propagating pulse train were coupled into opposite ends of a
glass hollow-capillary waveguide using f = 500mm lenses such that the focal spots of both
beams were closely matched to the lowest-order mode of the waveguide. The waveguide was
100mm long with an inner-core diameter of 102µm. Narrow slots were cut 2.5mm and 38mm
from the exit (i.e the end closest to the spectrometer) of thecapillary to allow gas to be injected
into the waveguide. A similar slot was located 48mm from the exit, allowing gas to leave the
waveguide. The short gas region and long run-in region of this waveguide design served to
improve the mode quality of the driving laser pulse, while minimizing ionization-induced defo-
cusing. The waveguide was filled with 14mbar of Ar gas throughthe slots at 2.5mm and 38mm,
ensuring a constant pressure between these gas inlets. The transmissions of the driving beam
and the pulse train were 55% and 50%, respectively. The generated harmonics passed through



a 2mm diameter hole in the mirror used to couple the counter-propagating beam into the cap-
illary, and entered a flat-field spectrograph containing a gold-coated grating with a spacing of
1200 lines/mm and a cooled soft x-ray CCD.

3.2. Results

For various values ofl′ the harmonic spectrum was recorded (using 1s exposures) as afunction
of the collision point,z, of the driver and pulse train. Asl′ was increased from an initial value of
2mm suppression and coherent oscillations were observed for q = 21−25. Asl′ was increased
further the harmonic showing the greatest QPM enhancement was shifted to higher orders, as
d became matched toLc. This behaviour is clearly seen in Fig. 5 which shows the normalized
intensity in a 1nm bandwidth centred on each harmonic as a function of z for harmonicsq =
27−31 at each value ofl′. For increasingq the observed oscillations and enhancements are seen
to occur at higher values ofl′, corresponding to matching smaller values ofLc, as expected. It
is also observed that for increasingq and l′ the maximum enhancement which is achieved
increases, sinceN ∝ l′, enabling matching to occur over a larger number of zones at higher
photon energies. We note that for the experimental arrangement described here true phase-
matching by balancing the waveguide and plasma dispersion could only be achieved up to
q = 25, however by varyingl′ it was possible to achieve QPM up to the cut-off harmonic,
q = 33. In Fig. 5 the peak of the enhancements for each harmonic order is seen to shift to lower
values of delay asl′ increases due to the change in optical path as∆L increases. Achieving
the maximum enhancement via PTQPM for a particular harmonicorder therefore requires both
matchingd to Lc, as well as optimizing the collision point within the waveguide.
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Fig. 5. Normalized harmonic signal in a 1nm bandwidth for harmonicsq = 27−31 as a
function of collision point for different values ofl′. As q increases enhancements are ob-
served to occur at larger values ofl′, corresponding to matching shorter coherence lengths.
The asterisk in each case indicates the value ofl′ at which the maximum enhancement
is observed. The signal has been normalized to the average obtained in the same spectral
window over 30 exposures in the absence of the pulse train.

Fig. 6 shows the spectrum of the generated harmonics in the absence of a pulse train. Also
shown is the maximum signal which could be achieved for each harmonic order by PTQPM for
optimized values ofl′ and the collision point. It can be seen that the output of eachharmonic



can be optimized by correct tuning of the pulse train. Suppression, rather than enhancement,
was observed for harmonics belowq = 25, consistent with the fact that for these harmonics
strong absorption and long coherence lengths prevent efficient QPM.
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line shows the transmission through 5mm of 14mbar Ar (corresponding to the total length
of the pulse train).

PTQPM requires sufficient intensity in the counter-propagating pulses to suppress HHG in
regions of destructive interference. To understand this indetail the dependence of QPM on
the intensity of the pulse train was therefore investigatedfor two pulse train configurations:
l′ = 12mm corresponding to enhancement ofq = 31, andl′ = 2mm corresponding to strong
suppression ofq = 23. For each configuration, scans were performed for different pulse train
intensities. The results of these measurements are shown inFig. 7. It can be seen that maximum
suppression and enhancement for both low and high order harmonics occur at approximately
80% of the maximum counter-propagating beam intensity, demonstrating that the enhance-
ments observed in these experiments are not limited by the intensity available in the counter-
propagating pulse train.

The technique for generating pulse trains used in this experiment results in pulse trains of
the formA(z)cos2(2πz/d), as observed in the frame of the driving pulse, whereA(z) is the
envelope of the pulse train. Each pulse in the train will therefore have a different peak intensity,
and consequently will have a different contribution to QPM,depending on its position relative to
the peak of the envelope. In addition, the shape of individual pulses within the train means that
not all points on a pulse will result in the same level of suppression — points at the beginning of
the pulse will have little effect, while those at the peak of the pulse will have the largest effect.
Using the results of Fig. 7 it is possible to incorporate these effects into a simple numerical
model of PTQPM. The expected output of harmonicq may be calculated by integrating the
growth equation given by

dEq

dz
= sq(z)exp(−iπz/Lc)−

αq

2
Eq (2)

whereEq is the amplitude,αq is the power absorption coefficient of harmonicq [17], andsq(z)
is the strength with which harmonics are generated. For these calculations the pulse train was
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Fig. 7. (a) Normalized harmonic signal as a function of the collision point for different
powersP of the pulse train for: (a)q = 31, l′ = 12mm; (b)q = 23, l′ = 2mm. (c) Measured
suppression ofq = 23 (blue circles) and enhancement ofq = 31 (red squares) as a function
of P. The pulse train power has been normalized to the maximum pulse train power.

modeled asp(z) = exp(−z2/2σ2)cos2(2πz/d), where 2σ is the 1/e2 half-width of the pulse
train measured in the laboratory frame. The intensity dependence of the harmonic suppression
was modelled by assumingsq(z) = 1−F(p(z)), whereF is a threshold function such thatF = 1
for p(z)> 0.8= 1 andF = 0 for p(z)< 0.3= 0, as observed experimentally. The enhancement
in this model was determined by integrating Eqn. 2 over a fixednumber of coherence lengths
with the pulse train modulation, and then normalizing this with the integrated output without
the pulse train modulation (sq(z) = 1 at all points). For each harmonic order,Lc was determined
from the matching condition (d = 2Lc), using the fit to the measured values ofd shown in Fig.
3.
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Fig. 8. (a) Maximum measured enhancement of harmonic ordersq = 25− 33 as a func-
tion of l′. (b) Calculated enhancement of harmonic ordersq = 25−33 as a function ofl′

(dashed lines) including the intensity dependence of the harmonic suppression as measured
experimentally. The solid lines in (b) show the calculated enhancements of harmonic orders
q = 25−33 without including the intensity dependence of the harmonic suppression.

The maximum measured enhancements for harmonic ordersq = 25− 33 at each value of



l′, as well as the calculated enhancements, are shown in Fig. 8.Broad qualitative agreement is
seen between the experimental results and calculated enhancements. The maximum measured
enhancement shifts to higher values ofq asl′ is increased, as expected. Enhancements can be
tuned up to the cutoff harmonic, with a 16-fold increase in signal being observed forq = 31,
corresponding to an estimated mean photon flux of 7x107 photons sec−1. This estimation is
based on the transmission of the aluminium filters in the spectrograph, the grating efficiency,
and the quantum efficiency of the CCD camera at this photon energy. It is also observed that
as l′ increases so too does the enhancement, sinceN ∝ l′ allowing PTQPM to be achieved
over a larger number of zones. The calculated harmonic enhancements in Fig. 8 (b) show that
the intensity dependence of the harmonic suppression only results in a slight increase in the
range of values ofl′ for which QPM is observed and does not have a large impact on the
resulting enhancements. The lower than expected enhancements observed forq = 25 and 27
compared with the calculated enhancements of these harmonics may be due to longitudinal
variation of Lc, preventing the output of multiple in-phase zones to coherently combine. It
has previously been shown that even small changes inLc are sufficient to prevent PTQPM
over multiple zones [11]. The measured and calculated enhancements also show that the range
of l′ for which significant enhancement is observed becomes narrower for increasing q. This
narrowing occurs because QPM becomes increasingly selective of a particular harmonic order
as the number of contributing zones increases due to the increasing number of pulses in the
train, as has previously been demonstrated in the case of PTQPM [10].

4. Conclusion

We have demonstrated a method for generating continuously tunable pulse trains and shown
that they can be used for quasi-phase-matching high-order harmonics. Tuning of the QPM
spectrum was demonstrated over a range of harmonic orders upto the harmonic cut-off by
tuning the pulse train parameters. A maximum QPM enhancement of more than an order of
magnitude was observed forq = 31, and a simple numerical model was found to be in good
agreement with the data. The pulse trains generated in this work are scalable to large numbers
of pulses, can match to coherence lengths on the order of tensof microns, and in principle
may also be used to generate pulse trains with nonuniformd [18]. The ability to match to
short coherence lengths combined with the favourable scaling of increasingN for decreasing
values ofd afforded by these pulse trains offers an attractive route for achieving high-brightness
tunable QPM sources at photon energies well beyond those which are possible with true phase-
matching.
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