

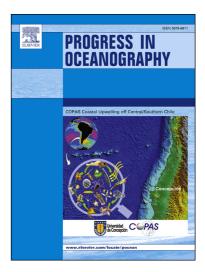
Cronfa - Swansea University Open Access Repository
This is an author produced version of a paper published in : Progress in Oceanography
Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa22273
Paper: Polimene, L., Mitra, A., Sailley, S., Ciavatta, S., Widdicombe, C., Atkinson, A. & Allen, J. (2015). Decrease in diatom palatability contributes to bloom formation in the Western English Channel. <i>Progress in Oceanography, 137</i> , 484-497
http://dx.doi.org/10.1016/j.pocean.2015.04.026

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Accepted Manuscript

Decrease in diatom palatability contributes to bloom formation in the Western English Channel

L. Polimene, A. Mitra, S.F. Sailley, S. Ciavatta, C.E. Widdicombe, A. Atkinson, J.I. Allen


PII: S0079-6611(15)00093-2

DOI: http://dx.doi.org/10.1016/j.pocean.2015.04.026

Reference: PROOCE 1580

To appear in: Progress in Oceanography

Received Date: 28 June 2014
Revised Date: 13 October 2014
Accepted Date: 22 April 2015

Please cite this article as: Polimene, L., Mitra, A., Sailley, S.F., Ciavatta, S., Widdicombe, C.E., Atkinson, A., Allen, J.I., Decrease in diatom palatability contributes to bloom formation in the Western English Channel, *Progress in Oceanography* (2015), doi: http://dx.doi.org/10.1016/j.pocean.2015.04.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	Decrease in diatom palatability contributes to bloom formation in the Western English Channel
3	
4	L. Polimene* ¹ , A. Mitra ² , SF Sailley ¹ , S. Ciavatta ¹ , CE Widdicombe ¹ , A. Atkinson ¹ , JI Allen ¹
5	
6	¹ Plymouth Marine Laboratory
7 8	² Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea SA2 8PP, UK
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ABSTRACT: The aim of this paper is to investigate the role of phytoplankton nutritional status in the formation of the spring bloom regularly observed at the station L4 in the Western English Channel. Using a modelling approach, we tested the hypothesis that the increase in light from winter to spring induces a decrease in diatom nutritional status (i.e. an increase in the C:N and C:P ratios), thereby reducing their palatability and allowing them to bloom. To this end, a formulation describing the Stoichiometric Modulation of Predation (SMP) has been implemented in a simplified version of the European Regional Seas Ecosystem Model (ERSEM). The model was coupled with the General Ocean Turbulence Model (GOTM), implemented at the station L4 and run for ten years (2000-2009). Simulated carbon to nutrient ratios in diatoms were analysed in relation to microzooplankton biomass, grazing and assimilation efficiency. The model reproduced <i>in situ</i> data evolutions and showed the importance of microzooplankton grazing in controlling the early onset of the bloom. Simulation results supported our hypothesis and provided a conceptual model explaining the formation of the diatom spring bloom in the investigated area. However, additional data describing the microzooplankton grazing impact and the variation of carbon to nutrient ratios inside phytoplanktonic cells are required to further validate the proposed mechanisms. *Corresponding author: luca@pml.ac.uk
26	
27	
28	KEY WORDS: diatom bloom, phytoplankton stoichiometry, zooplankton assimilation
29	efficiency, Station L4
30	
31	

INTRODUCTION

32

55

Phytoplankton blooms are important events triggering a series of processes and trophic 33 34 interactions which impact the whole marine ecosystem, from biogeochemical cycles to 35 secondary production and fisheries (Legendre, 1990; Irigoien et al. 2005). These blooms 36 manifest as a dramatic increase in the phytoplankton standing stock over a relatively short 37 period of time. Some studies have emphasised the role of the physical environment in creating the conditions 38 required for a bloom (Huisman et al., 1999; Taylor and Ferrari 2011; Smyth et al, 2014) 39 40 while others have suggested that biotic factors such as grazing and phytoplankton physiology 41 could also play a critical role (Irigoien et al., 2005; Mitra and Flynn 2006). However, a conceptual model integrating the contribution of abiotic and biotic elements to the formation 42 and evolution of a phytoplanktonic bloom is still lacking. 43 44 Recently, Smyth et al (2014) suggested that the air-sea heat flux play a crucial role in triggering phytoplankton blooms in the Western English Channel. By analysing historical 45 of 46 time series data, station L4 south Plymouth (http://www.westernchannelobservatory.org.uk), these authors found that the beginning of the 47 phytoplankton blooms regularly (on average by 30 days) follows the inversion of the net heat 48 49 flux (NHF) into the ocean from negative to positive. Positive NHF (i.e., heat flux from 50 atmosphere to ocean) decreases the turbulence and hence vertical mixing. This leads to an 51 increase in the residence time of phytoplankton in the euphotic zone allowing some 52 phytoplanktonic groups (such as diatoms) to escape grazing control and form blooms. In 53 contrast, phytoplankton stocks are likely to be controlled by microzooplankton during winter when the NHF is negative (i.e., heat flux from ocean to atmosphere) and increase in vertical 54

mixing prevents an adequate light exposure for growth.

56	All the above mentioned physical factors not only affect directly the timing and amplitude of
57	the bloom but also have the potential to modulate biotic responses which facilitate
58	phytoplankton growth. In particular, the increased residence time in the well-lit layer of the
59	water column and the consequent increase in light exposure might have significant effects on
60	the interactions between phytoplankton and grazers, potentially favouring the increase of
61	phytoplankton biomass.
62	Previous laboratory and field studies have shown that under increasing light and temperature,
63	the ratio of carbon to nutrient in phytoplankton increases (Urabe and Sterner, 1996; Hessen et
64	al., 2002; Martiny et al., 2013) with significant consequences for the performance of grazers
65	feeding on them (Urabe and Sterner, 1996; Hessen et al., 2002). Urabe and Sterner (1996),
66	studying a predator-prey system comprising an alga prey consumed by a predatory
67	zooplankton, found that (under experimental conditions) the growth of the grazer was related
68	to the ratio between light and the limiting nutrient. Interestingly, the grazer growth rate was
69	linearly related to the algal biomass only at low light intensity while, at increasing light
70	levels, it started to decrease due to the decrease in the nutrient quality of the prey. This result
71	was interpreted by invoking decoupling between photosynthesis and nutrient uptake which
72	occurs under high light to nutrient ratio.
73	The cellular imbalance between carbon and nutrient made the algae less palatable for
74	zooplankton. Unlike phytoplankton, zooplankton physiology does not allow a substantial
75	variability of internal stoichiometry (Loladze et al., 2000, Siuda and Dam, 2010) and
76	therefore requires nutrient rich prey to grow efficiently. Various studies have demonstrated
77	that even small changes in phytoplankton stoichiometry can be associated with significant
78	changes in food palatability and therefore affect zooplankton prey selection, physiological
79	processes and thus efficiency (Flynn et al., 1996; Jones and Flynn, 2005). Loladze et al.
80	(2000) proposed a model in which an increase in the carbon to nutrient ratio in

81	phytoplankton, triggered by an increase in light, induces a decrease in zooplankton (carbon)
82	assimilation efficiency, concluding that an increase in energy (light) is not of advantage to the
83	whole system but only for the primary producers (i.e. the paradox of energy enrichment).
84	Although these mechanisms are experimentally well documented and various theoretical and
85	mechanistic models have been developed on them (Loladze et al., 2004; Hall et al., 2004;
86	Mitra, 2006; Diehl, 2007; Stief et al., 2010; Elser et al., 2012), they have never been tested in
87	relation to the phytoplankton bloom formation under realistic seasonally changing
88	environmental conditions (i.e., nutrient and light). Furthermore, the effect of phytoplankton
89	nutritional quality on grazers has never been implemented in a fully structured marine
90	ecosystem model. Typically, marine ecosystem models are poor at describing zooplankton
91	grazing as they often have very rigid food webs (Sailley et al., 2013; Mitra et al., 2014) and
92	this strongly limits their utilization for the investigation of predator-prey dynamics.
93	The effect of phytoplankton quality (described as nutrient stoichiometry) on the ingestion and
94	assimilation efficiencies of a consumer has been termed Stoichiometric Modulation of
95	Predation (SMP, Mitra 2006). The importance of inclusion of SMP when simulating
96	planktonic predator-prey interactions against experimental datasets has been demonstrated for
97	both micro- and meso-zooplankton (Mitra, 2006; Mitra and Flynn 2006; Mitra and Flynn
98	2007). Mitra (2006) in particular has shown that the inclusion of SMP in a zooplankton
99	model significantly improved the simulation of the interactions between the
100	microzooplankton Oxyrrhis marina and the phytoplankton Isochrysis galbana observed by
101	Flynn and Davidson (1993). However, these studies have mainly focussed on model
102	validation using laboratory data; i.e., SMP has not been tested in a realistic ecosystem
103	framework.

In this paper, we have integrated the SMP (Mitra, 2006) into the European Regional Seas
Ecosystem Model (ERSEM, Blackford et al., 2004) with the aim to explore how the
combination of abiotic factors (e.g., NHF) and biotic mechanisms (e.g., SMP) impact on
plankton bloom dynamics. To this end, the revised version of ERSEM (hereafter ERSEM-
SMP) has been coupled with the General Ocean Turbulence Model (GOTM, Burchard et al
1999), implemented at the station L4 (50° 15'N, 4° 13'W) and tested against the high
frequency observations at that site. Our working hypothesis is that the increase in light
exposure experienced by diatoms in the transition between winter and spring may result in
changes in the internal stoichiometry of the diatoms, reducing grazing pressure and thence
favouring increase in their biomass.
We focus on station L4 because it has an extensive time series data of phytoplankton and
zooplankton abundance, coupled with measurements of physical properties and nutrients. In
addition to diatoms, the dominant primary producers, Phaeocystis blooms are also regularly
observed at this site with intense but short-lived peaks during spring. Coccolithophorids may
also occasionally bloom but rarely attain the high cellular density of diatoms (Widdicombe et
al., 2010). Microzooplankton are observed to peak concomitantly (typically ciliates) or just
after (heterotrophic dinoflagellates) the diatom bloom, albeit with high variability in timings
from year to year (Atkinson et al. this issue). This group achieves a higher biomass at L4 than
mesozooplankton (Atkinson et al. this issue) and due to higher specific metabolic rates is
likely to dominate the grazing impact (Calbet and Landry, 2004; Irigoien et al., 2005;
Bautista and Harris, 1992; Atkinson et al., unpublished data). Simulation of phytoplankton
internal stoichiometry and biomass, along with microzooplankton biomass, grazing and
assimilation efficiency were critically analysed and used to test our hypothesis. Simulated
diatoms, microzooplankton and nutrients were compared with available in situ data.

 СТТ	M۱	\sim 1	\neg	71	

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

ERSEM is a bulk biomass functional group ecosystem model describing the nutrient and carbon cycle within the lower trophic levels of the marine ecosystem. Model state variables include living organisms, dissolved nutrients, organic detritus, oxygen and CO₂. A key feature of ERSEM is the decoupling between carbon and nutrient dynamics allowing the simulation of variable stoichiometry within the modelled organisms. Chlorophyll is also treated as an independent state variable following the formulation proposed by Geider et al. (1996). Consequently, each plankton group is modelled using up to five state variables describing each cellular component: carbon, nitrogen, phosphorus, silicon (only for diatoms) and chlorophyll-a. These features make ERSEM particularly suitable for this work. In order to test our hypothesis which specifically focuses on the diatoms-microzooplankton grazing interactions, we have simplified the standard ERSEM food web described in Blackford et al (2004) as shown in Fig. 1. The rationale behind this is to "isolate", as far as possible, the biotic processes to be investigated (e.g., diatom quality and allied impact on microzooplankton growth dynamics) and therefore making it easier to quantify their relevance. Thus, our model is based on a predator-prey system (accounting for SMP) comprising of diatoms (P1), considered as the dominant bloom-forming phytoplankton at L4 and microzooplankton (Z1) considered as the dominant grazers of diatoms; Z1 represents the fraction of microzooplankton (e.g., dinoflagellates such as Gyrodinium and Protoperidinium; ~ ESD > 20 μm) large enough to graze diatoms. To make the system more realistic and consistent with the L4 observations, we have also introduced a second phytoplankton functional group accounting for small (non-diatoms) phytoplankton (P2) and their grazers (Z2). P2 includes a variety of groups (e.g., nanoflagellates and *Phaeocystis*) expressing a wide range of traits and thus represents generic autotrophic activity at a lower size range; i.e.,

153	P2 has been included to ensure that diatoms have competitors for nutrients at the beginning of
154	the bloom. Z2 represents the smaller fraction of microzooplankton (i.e., ciliates such as
155	Strombidium) assumed to be specialised to feed on phytoplankton (mainly nanoflagellates)
156	smaller than blooming diatoms.
157	Finally, a top closure mimicking the mesozooplankton grazing on microzooplankton is
158	represented by Z3. The interactions between P2 and Z2, and Z3 and Z1 are modelled through
159	the standard ERSEM formulation (Blackford et al., 2004) without the inclusion of SMP. Z2
160	and Z3 do not have predators within the model but they are assumed to cannibalize (Fig 1)
161	and thus mimicking a density dependent top down closure. Bacteria are not explicitly
162	modelled but are implicitly represented through remineralisation of detritus (equal to $0.05\ d^{\text{-1}}$)
163	producing dissolved nutrients and CO ₂ .
164	As we focus on the formation and evolution of diatom blooms occurring between April and
165	July we did not consider the autotrophic dinoflagellates, which usually bloom in late summer
166	and/or early autumn (Widdicombe et al., 2010). It is worthwhile to recall that this simplified
167	food web is not meant to represent the entire plankton community with allied complexities in
168	their interactions as observed at L4, rather our aim is to focus on one specific process.
169	Silica regeneration in the water column is not considered in the standard ERSEM formulation
170	where biogenic silica is assumed to be regenerated only via the benthic compartment.
171	However, in order to prevent extreme silica limitation we have assumed a simple first order
172	silica remineralisation converting biogenic particulate silica to dissolved silica at a fixed rate
173	of 0.1 d ⁻¹ . This simple assumption is consistent with experimental evidences suggesting that
174	up to 50% of the biogenic silica (opal) is re-generated in the euphotic zone (Sarmiento and
175	Gruber, 2006).

A complete description of the equations, basic assumptions and underlying philosophy of ERSEM can be found in Blackford et al. (2004). Here we limit our description to the formulation describing Z1 which is the only part of the model altered with respect to the original model. The general equation for Z1 carbon biomass is given by the balance between grazing (gra), and loss terms due to respiration (res), excretion (exc), natural (non-predation) mortality (mort) and predation mortality (pred):

$$183 \quad \frac{dZ}{dt} = \frac{dZ}{dt} \Big|^{gra} - \frac{dZ}{dt} \Big|^{res} - \frac{dZ}{dt} \Big|^{exc} - \frac{dZ}{dt} \Big|^{mort} - \frac{dZ}{dt} \Big|^{pred}$$
 (1)

Grazing is described using a "potential" grazing term (*grazing*') multiplied by a factor taking into account the nutritional quality of the prey:

$$188 \quad \frac{dz}{dt}\Big|^{gra} = grazing' * FQ \tag{2}$$

190 FQ is the function linking the potential grazing to the stoichiometry of phytoplankton 191 described below (equation 6). grazing' is described using the classical Michaelis-Menten 192 formulation as reported in Blackford et al., (2004):

193
$$grazing' = Z * temp * r \frac{P'}{P' + K}$$
 (3)

Where Z is the zooplankton biomass, temp is a function accounting for the temperature dependency, r the potential grazing rate and P' the available food. K is the half saturation constant for food. P' is given by the biomass of the prey (P) multiplied by a parameter representing the "preference" for that particular prey (P_f) and scaled by a Michaelis Menten

- 198 function accounting for a food threshold parameter (minfood) which prevents excessive
- 199 grazing of scarce prey:

$$200 P' = P_f * P * \frac{P}{P + minfood} (4)$$

- The function temp describes an enhancement of physiological processes with the increase of
- 202 temperature following a Q_{10} function:

203
$$temp = Q_{10}^{\left(\frac{(T-10)}{10}\right)}$$
 (5)

- FQ is a function linking the grazing with the nutritional quality of the phytoplankton,
- 205 described here using nutrient stoichiometry and is given by:

$$FQ = 1 + \left[1 - min\left(\frac{qpP}{qpZ}, \frac{qnP}{qnZ}, 1\right)\right] * a$$
(6)

- where qpP and qpZ are the phosphorus to carbon (P:C) ratios of phytoplankton and
- zooplankton respectively, and qnP and qnZ are the nitrogen to carbon (N:C) ratios in
- 209 phytoplankton and zooplankton respectively. a is the parameter describing the response of
- 210 the grazers to the decrease in quality of the prey (Mitra, 2006). In this work we have assumed
- a decrease of ingestion associated with low nutrient content of the prey (i.e., decrease in
- palatability) and as such, we have considered a equal to -1.
- Respiration is composed of a basal component (depending on biomass) and a metabolic-
- 214 activity related component (depending on ingestion):

$$\frac{dZ}{dt}\Big|^{res} = R_r * temp * Z + \frac{dZ}{dt}\Big|^{gra} * A_r * AE$$
 (7)

- Assimilation efficiency (AE) is assumed to vary between a minimum and a maximum value
- 217 (assumed to be 0.25 and 0.75, respectively) and is given by:

$$218 AE = AE_{min} + (AE_{max} - AE_{min}) * FQ_{AE} (8)$$

- where FQ_{AE} is the function linking the phytoplankton quality (C:N:P) to the assimilation
- efficiency of zooplankton (Mitra, 2006) and is given by:

221
$$FQ_{AE} = \min(1, N_{lim}, P_{lim}) * (1 + K_{AE}) \min\left(1, \frac{qpP}{qpZ}, \frac{qnP}{qnZ}\right)$$
 (9)

- In Eq. 9, K_{AE} is the half saturation constant as described in Mitra (2006)
- 223 N_{lim} and P_{lim} are two Michaelis Menten-like functions given by:

$$224 N_{lim} = \frac{\frac{qnP}{qn_{max}}}{\frac{qnP}{qn_{max}} + K_{AE}} (9.1)$$

225 and

$$P_{lim} = \frac{\frac{qpP}{qp_{max}}}{\frac{qpP}{qp_{max}} + K_{AE}}$$

$$(9.2)$$

- 227 qp_{max} and qn_{max} are the maximum phytoplankton P and N quota (i.e., N:C and P:C ratios),
- 228 respectively, assumed to be equal to the double of the nutrient content implied by the
- 229 Redfield ratio (Blackford et al., 2004, Table 3)
- 230 Loss term due to excretion is governed by the following equation:

$$231 \quad \frac{dz}{dt}\Big|^{exc} = \frac{dz}{dt}\Big|^{gra} * (1 - AE) \tag{10}$$

- Non-predation mortality loss is assumed to be composed by a constant term plus an
- 233 additional fraction triggered by low oxygen concentration

$$234 \quad \frac{dZ}{dt}\Big|^{mort} = Z * \left((1 - eO_2) * r_{mortox} + r_{mort} \right)$$
 (11)

 r_{mort} and r_{mortox} are the background mortality rate and the mortality rate at low oxygen concentration, respectively. eO_2 is an oxygen limitation factor calculated from the relative oxygen saturation (O_{rel}) and the half saturation mortality rate constant (h_{oxmort}) :

$$238 eO_2 = (1 + h_{oxmort}) * \left(\frac{O_{rel}}{O_{rel} + h_{oxmort}}\right) (12)$$

The ingestion of nutrient via grazing is derived by equation 3 and reflects the nutrient content of the ingested prey. In the same way, the loss of nutrient via excretion, mortality and predation is depending on the carbon to nutrient ratio of zooplankton. Additionally, any nutrient in excess of a threshold value $(qZ_{max}^{N.P})$ is assumed to be directly excreted to the inorganic pool (phosphate and ammonium).

Model parameters describing the communities Z1, Z2 and Z3 are listed in Table 1. The parameters for the phytoplankton functional groups P1 and P2 are the same as in Blackford et al., (2004). However, a few changes were required to improve our simulation at L4: i) the potential photosynthetic rate of P2 was lowered from 2.7 to 2.0 d⁻¹; ii) different maximum chlorophyll to carbon ratios were employed for the two phytoplankton groups (0.04 for P1 and 0.03 for P2; consistent with literature values (Geider et al. 1997)), and iii) the reference silica to carbon ratio for diatoms has been lowered to 0.01 (mmol S (mg C)⁻¹) as reported in Vichi et al. (2006).

257	PHYSICAL SETUP AND OBSERVATIONAL DATA
258	The GOTM-ERSEM set up used in this work is identical to that described in Polimene et al.,
259	(2014). The model is forced with reanalysis meteorological data (ECMWF) and initialised
260	with temperature, salinity and nutrient concentrations observed in situ (Smyth et al., 2010).
261	At the lower boundary of the water column a simple remineralisation closure is applied
262	exporting sinking detritus that is re-injected into the water column as dissolved nutrients and
263	inorganic carbon at a fixed rate of 0.05 d ⁻¹ .
264	Surface radiation is calculated by an astronomical formula (Rosati and Miyacoda, 1988)
265	taking into account latitude, longitude, time, fractional cloud cover and albedo. Light
266	extinction through the water column is assumed to be dependent on water mass, i.e. organic
267	particulates in the water column (both living and detritus) and silt, as described in Blackford
268	et al (2004). The total surface heat flux Q_{tot} is calculated as the sum of the latent heat flux Q_{E} ,
269	the sensible heat flux Q_{H} , and the long wave back radiation Q_{b} . Each of these fluxes are
270	calculated by using the bulk formulae of Kondo (1975). The net heat flux (NHF) is then
271	calculated by summing the incident short wave radiation to the total heat fluxes. The model
272	was run for 10 years (2000-2009) after 4 years of spin up.
273	The observational data used in this work (Woodward et al., 2013; Widdicombe et al 2010)
274	were obtained under the weekly sampling strategy of the Western Channel Observatory
275	(WCO, http://www.westernchannelobservatory.org.uk/). The description of the methodology
276	used for samples collection and cell enumeration of phytoplankton and microzooplankton can
277	be found in Widdicombe et al., (2010). Cell volumes are calculated according to the
278	equations of Kovala and Larrance (1996) and converted to carbon using the equations of
279	Menden-Deuer and Lessard (2000).

SENSITIVITY ANALYSIS

282	A quantitative sensitivity analysis (SA) was carried out to investigate the changes introduced
283	by the SMP formulation to the ERSEM simulations. We applied a Monte-Carlo based
284	approach (see, e.g., Saltelli et al, 2005, Pastres and Ciavatta, 2005) to rank the sensitivities of
285	a target model output y (the annual average of the grazing efficiency) with respect to the
286	model parameters that were handled in this work (i.e., the parameters in Table 1 and the
287	phytoplankton parameters altered with respect to Blackford et al., (2004)). The SA included
288	also the initial conditions of nitrate and phosphate. The m model parameters and nutrient
289	initial conditions defined the "input factor" vector (Table 2) of the SA, $\mathbf{X_i} = (X_1,,\ X_j,$
290	\dots, X_m). A number (i=1,2,,) of n random realizations of the vector were obtained by
291	sampling uniform probability distributions defined for the input factors (Table 2). Each
292	realization is used to run a model simulation that provides a scalar output y _i .
293	The input-output relationship was represented by means of a multiple linear regression model
294	$\mathbf{y} = \mathbf{X} \mathbf{b} + \mathbf{\varepsilon}$, and the <i>m</i> absolute values of the standardized regression coefficients β_j are the
295	sensitivity indices that provides the rank of the input factors (e.g. Saltelli et al., 2000; Pastres
296	and Ciavatta, 2005). The SA was carried out, for both ERSEM and ERSEM SMP, by running
297	n=1000 model simulations of the year 2000, after a four year spin-up. The same probability
298	density functions of the input factors were applied in the two model configurations to make
299	the rankings inter-comparable. The rankings of the parameters for the two models (ERSEM
300	and ERSEM-SMP) were compared to discuss the importance of the SMP "mechanism" with
301	respect to the tuning of the model parameters in simulating the target variable.
302	We note that the regression coefficients provide meaningful rankings only when the linear
303	model explains relatively large fractions of the model output variability (Saltelli et al., 2000).
304	In our application we verified that the determination coefficients (R ²) of the linear models

were higher than 70% and statistically significant (F-statistic for linear versus constant model; p<0.001).

RESULTS

Simulated and observed, monthly averaged, diatoms and microzooplankton biomass, nitrate phosphate and silicate are displayed in Fig 2. The qualitative agreement between model and observations is evaluated through the Spearman's correlation index between simulated and observed variables shown in Table 3. The correlation coefficient is higher than 0.6 for microzooplankton and nutrients and equal to 0.35 for diatoms. The correlation indices concerning the simulations carried out with the standard ERSEM model are also reported for comparison.

The seasonal evolution of simulated air-sea net heat flux (NHF), surface turbulent kinetic energy (TKE) and mixed layer depth (MLD) is depicted in Fig 3. NHF is negative from January to March, switching to positive in April. After the summer, NHF reverts back to negative in September. The transition between winter and spring (March-April) is also characterized by a reduction in TKE (from 0.0007 to < 0.0004 m⁻² s⁻²).TKE increases after the summer, returning to values comparable with those simulated in winter. The simulated seasonal cycle of the MLD implies that in April and May phytoplankton are exposed more to light due to being "confined" in the first 10-15 metres of the water column. Simulated average irradiance within the mixed layer depth is 24 W m⁻² in March and 115 W m⁻² in April. These results are consistent with the description of the physical conditions underpinning the onset of phytoplankton bloom reported in Smyth et al. (2014).

Figure 4 shows that the diatom carbon to phosphorus and carbon to nitrogen ratios are low in
winter, they start to increase in spring (corresponding with the bloom) reaching the maximum
level in summer. It is worth noting that the carbon to nutrient ratios simulated in all our
experiments are comparable with the values reported in literature for marine particulate
organic matter (Geider and La Roche, 2002). Microzooplankton assimilation efficiency
follows the opposite trend being high in winter, decreasing in spring (in correspondence of
the sharp increase of diatoms biomass) and reaching the lowest level in summer. The grazing
flux, in contrast, reaches the maximum level in May, corresponding to the highest diatom
biomass.
Higher phytoplankton biomass (Fig. 5) does not correspond to higher nutrient content which,
in contrast, coincides with the higher zooplankton assimilation efficiency. Notably, the
grazing flux, when taken on a daily basis, is less tightly related to the prey biomass. Higher
grazing rates, correspond to intermediate levels of biomass (between 50 and 150 mg C m ⁻³)
and an intermediate level of the prey nutrient quota (C:P ~80-95 and C:N ~4-5.5). Diatoms,
at the peak of the bloom (Fig. 6), are characterized by a decrease in the nutrient to carbon
ratios with respect to pre bloom conditions. The declining part of the bloom is characterized
by a slow increase in cellular nutrient content due to the release of carbon via exudation (Fig.
6) which enhances grazing activity. As a result, the grazing flux and the microzooplankton
biomass reach the highest value at the end of the bloom.
The sensitivity of the ERSEM-SMP model to decrease in the concentrations of phosphate and
nitrate, given as model initial conditions (50% reduction was investigated) is shown in Fig. 7
and Fig. 8. Lowering nutrient concentrations causes diatoms to become more nutritionally
imbalanced and therefore, less palatable to zooplankton. This leads to a counterintuitive
response that fewer nutrients produce a higher peak (in term of carbon) during the bloom
(Fig. 7). A simulation carried out by decreasing nitrate and phosphate initial conditions by

25% (data not shown) showed the same qualitative (but less intense) response, with a slight
increase in diatom carbon biomass and a concomitant decrease in zooplankton biomass. Only
when the initial nitrate and phosphate conditions are decreased by 75% (data not shown) do
we see a clear decrease in diatom biomass. Model simulations performed with the standard
ERSEM formulation (i.e. without SMP, and a fixed assimilation efficiency of 50%) applied
to the same model foodweb (Fig 1) are shown in Fig 9. In this case diatoms never manage to
bloom and the system is dominated by microzooplankton. By decreasing the initial
concentration of nitrate and phosphate by 50%, the system does not show substantial changes
in behaviour (Fig. 10).
A Monte Carlo based sensitivity analysis on both ERSEM-SMP and ERSEM has been
performed in order to assess to what extent the above described results are affected by the
choice of selected parameters and nutrient initial conditions (Table 2). As the essence of the
SMP is the effect of the phytoplankton nutritional status on the grazing activity, we have
selected as target variable of our analysis the grazing efficiency of the model
microzooplankton Z1. The results of this analysis are presented in Table 4 where each input
factor (Table 2) is ranked on the base of its capacity to affect the simulation of the target
variable. In both the models, the parameters defining the half saturation constant for food and
prey "preference" (K(Z1) and Pf(P1-Z1), respectively) are the most important. However,
Table 4 highlights that with the addition of the SMP, the initial condition of the limiting
nutrient is considerably more important for the simulation of the grazing activity of Z1 over
P1. PO ₄ in table 4 ranked 6 th and 18 th for ERSEM-SMP and ERSEM, respectively.
Furthermore, the ERSEM-SMP simulations of grazing efficiency have relatively low
sensitivity with respect to the values of the SMP-parameters. Indeed, the new parameters
introduced for the implementation of the SMP (AE $_{max},AE_{min},andK_{AE})$ ranked relatively low
(9, 17 and 24, respectively). This suggests that the ERSEM-SMP simulations depend more on

377	the process/mechanism described in the model than on the numerical values of the
378	parameters.
379	An additional sensitivity analysis has been performed by manually altering some key
380	zooplankton parameters and nutrient initial condition (Table 5) in the ERSEM model (Fig.
381	11). The rationale behind this experiment was to further investigate whether, by tuning
382	specific parameters, the standard ERSEM can produce simulations comparable to the ones of
383	ERSEM-SMP.
384	Figure 11 shows that by changing the half saturation constant for food (K) and the food
385	threshold (minfood), the simulation does not display significant changes: the system is, in
386	all the three experiments, dominated by microzooplankton. Only by assuming a greater
387	predatory pressure on microzooplankton (by increasing the value of the parameter P_f
388	experiment S5) do diatoms manage to bloom exceeding zooplankton biomass. The sensitivity
389	experiment S5 is the model setup under which ERSEM produces the closest simulation to
390	ERSEM-SMP. However, even under these conditions, by reducing the initial nutrient
391	conditions by 50% the standard ERSEM does not display the behaviour simulated by the
392	SMP-ERSEM model, further confirming the results displayed in Table 4.
393	
394	DISCUSSION
395	Our simulations suggest that the increase in light exposure experienced by diatoms between
396	March and April decouples photosynthesis from nutrient uptake, thereby altering cellular

397

398

399

March and April decouples photosynthesis from nutrient uptake, thereby altering cellular stoichiometry. The increase in the cellular carbon to nutrient ratio of the diatoms decreases their palatability thence reducing both grazing and assimilation efficiency of the microzooplankton. We suggest that these changes contribute to the formation of the diatom

400	bloom regularly observed at the station L4. A conceptual model describing the formation and
401	evolution of a diatom bloom is depicted in Fig. 12.
402	During winter, diatoms are limited by the amount of light but are also controlled through
403	grazing pressure exerted by large microzooplankton (modelled through the variable Z1)
404	During this time of the year, high environmental nutrient concentrations allow diatoms to be
405	rich in nutrients (such as N and P) and, consequently, zooplankton assimilation efficiency is
406	also high. Changes in physical conditions, such as reduced turbulence and increased surface
407	water temperature (Smyth et al., 2014 and Fig 3), increases the phytoplankton residence time
408	in the well-lit zone of the water column (Fig 3) and desynchronize photosynthesis from
409	nutrient uptake. This increases the amount of cellular carbon with respect to nutrients. Less
410	nutrient content, decreasing diatom palatability, reduces the activity of microzooplankton
411	allowing diatoms to "escape" from being top down controlled and thus to bloom.
412	Bloom conditions for diatoms are therefore a compromise between attaining high nutrient
413	cellular content (i.e., high food quality), where the diatom population are controlled by
414	zooplankton grazing, and poor nutrient cellular content under which diatoms (although
415	"escaping" zooplankton grazing) are too nutrient stressed for growth. The former condition
416	takes place in winter, the latter in summer. The conditions leading to the bloom occur in the
417	spring period when the nutrient condition of diatoms are at an intermediate level which still
418	allows a positive growth but, at the same time, a reduced palatability.
419	The idea that reduced cell nutrient content be advantageous for primary producers has been
420	previously used in evolutionary modelling work (Branco et al., 2010). The generic mode
421	proposed by these authors implied that phytoplankton with intermediate nutrient uptake rates
422	are less palatable for herbivores. In this way, some phytoplankton species gain a competitive
423	advantage over competitors that have higher affinity for nutrients and are therefore more

424	susceptible to grazers. Here, we have shown that the same concept can be important within a
425	single phytoplankton group on a seasonal scale.
426	Including SMP makes the modelled predator-prey interactions sensitive to the availability of
427	nitrate and phosphate. As expected, the simulations with low nutrient concentrations show
428	that diatoms are more stoichiometrically imbalanced and therefore less palatable for
429	zooplankton when the availability of nitrate and phosphate is low. Consequently, diatoms
430	produce a higher peak (in terms of carbon) during the bloom (Fig. 5). This suggests that
431	decreasing the food quality (more than the quantity) of primary producers, reduces the
432	transfer of carbon from the algal producers to the higher trophic levels of the food chain. This
433	may have profound effects on the ecosystem responses to climate change, particularly in
434	regions where the surface waters are expected to become more oligotrophic (Polovina et al.,
435	2008). Sensitivity experiments showed in Table 4 and Fig. 11 show that the standard ERSEM
436	grazing parameterisation does not reproduce this kind of dynamics. More in general, the
437	sensitivity analysis highlights that the SMP as "mechanism" is more relevant in impacting the
438	model simulation of the grazing efficiency then the numerical values of the parameters used.
439	This strengthens the case for exploring the inclusion of SMP in marine ecosystem models
440	used for climate change simulations.
441	Particular attention should be paid to the role of silica in the aforementioned mechanism.
442	Silica is not required for zooplankton growth and therefore is not included in the SMP
443	formulation implemented here. Furthermore, silica is assumed to limit directly primary
444	production in ERSEM (Ebenhoh et al., 1997; Blackford et al., 2004) with the consequence
445	that silica is coupled more with carbon than nitrogen or phosphorous. Reduced availability of
446	silica also implies a reduced fixation of carbon and therefore a more balanced carbon to
447	nitrogen and phosphorus cellular ratio. Consequently, the above described dynamics is not
11Ω	simulated when silica is the limiting nutrient

The importance of food quality as a consequence of skewed nutrient stoichiometry which in
turn is induced by an "imbalance" in the supply of nutrients and light has previously been
stressed in laboratory experiments (Urabe and Sterner, 1996; Hessen et al., 2002) and
theoretical modelling studies (Loladze et al., 2000; Loladze et al., 2004; Hall et al., 2004;
Mitra, 2006; Diehl, 2007; Elser et al., 2012). We have related phytoplankton palatability to
the physical environment (Fig. 3) and have proposed a conceptual model (Fig. 12), describing
bloom formation and evolution, which connects physical constrains (heat flux, turbulence,
mixed layer depth) physiological status of phytoplankton (i.e., cellular stoichiometry) and
grazing. These connections are summarised in Fig. 13 which shows the correlation between
heat fluxes and cellular stoichiometry(r=0.88, p<0.001), an emergent property of our model.
While confirming that the switch of NHF from negative to positive described by Smyth et al.
(2014) is a prerequisite for the bloom formation, our model also suggests that, after the onset
of the proper physical conditions, phytoplankton decrease in palatability and reduced
zooplankton grazing pressure play a significant role in the formation of a bloom.
We have shown that a combination of abiotic and biotic factors work synergistically to
impact on the plankton bloom dynamics. The behaviour shown by the present model is
consistent with the "paradox of energy enrichment" hypothesised by Loladze et al. (2000):
when more energy is supplied to the system (steep increase in light) a decoupling between
carbon and nutrient is induced. The latter decreases the "quality" of the prey which, being
less suitable for the predator, reaches its highest concentration. Our model also supports the
general concept of the "loophole" hypothesis (Irigoien et al., 2005; Kiørboe, 2008). These
authors, investigating the biological dynamics underpinning a phytoplankton bloom invoked
a set of mechanisms including physical (e.g., size, colony-formation, spines, frustules and
coccoliths) and chemical (e.g., DMSP production) defence leading to a decrease of
palatability of phytoplankton and to a decrease (loophole) of the grazing pressure. Our

474	simulations and the consequent conceptual model depicted in Fig.12 suggest that the decrease
475	of the phytoplankton nutrient to carbon ratio (and the subsequent decrease in phytoplankton
476	palatability) could play a pivotal role in creating the "loophole" through which diatoms
477	manage to bloom.
478	Although these results support our hypothesis, we recognise that only with specific,
479	purposely performed, field measurements will we be able to properly assess the mechanism
480	described in Fig. 12. In particular, we require data on the temporal evolution of the
481	phytoplankton cellular nitrogen and phosphorus with respect to carbon content; these are
482	currently lacking. Also, time series measurements of micro- and meso-zooplankton grazing,
483	looking both at mass specific ingestion rates and total grazing pressure, would shed light on
484	the complex dynamics surrounding the start of a bloom. One of the advantages of modelling
485	work like this is to highlight gaps and inconsistencies in current knowledge and datasets, and
486	thence to inform and drive future experimental research.
487	
488	ACKNOWLEDGMENTS
489	The authors would like to thank the PML crew of RV Quest and the PML staff involved in
490	the sampling of the Plymouth L4 site. Nutrient data used in Fig 2 were analysed by Carolyn
491	Harris and Malcolm Woodward.
492	LP was part funded by the EC FP7 My Ocean project. AA and LP were part funded through
493	the UK NERC-Defra Shelf Seas Biogeochemistry program. JIA and AM were part funded
494	thought the EC FP7 Euro Basin project. AM was part funded by the NERC UK project
495	iMarNet NE/K001345/1. SC was part funded by the NERC National Centre of Earth
496	Observation (NCEO). AA, CW, JIA, LP, SS and SC were part funded through NERC
497	National Capability, in sustained observations and marine modelling.

Table 1. Zooplankton parameters

Prameter	Notation	Unit	Z 1	Z 2	Z 3	Reference
Q ₁₀ value	Q_{10}	adim	2	2	2	Blackford et al (2004)
Grazing rate at 10 C	r	d ⁻¹	1.2	2.0	0.5	Blackford et al (2004)
Half saturation constant for food	K	mg C m ⁻³	10	10	40	This study/ Blackford et al (2004)
Food threshold	minfood	mg C m ⁻³	2.5	10	1.0	This study/ Blackford et al (2004)
Fraction of food respired	A_r	d ⁻¹	0.5	0.4	0.6	This study/ Blackford et al (2004)
Constant Assimilation efficiency (Z2 and Z3)	AE	adim	N/A	0.5	0.5	Blackford et al (2004)
Min Assimilation efficiency	AE_{min}	adim	0.25	N/A	N/A	This study
Max Assimilation efficiency	AE_{max}	adim	0.75	N/A	N/A	This study
Half saturation constant for AE	K_{AE}	adim	1			Mitra (2006)
Rest respiration rate	R_r	d ⁻¹	0.02	0.02	0.02	Blackford et al (2004)
Mortality rate	r_{mort}	d ⁻¹	0.05	0.05	0.05	Blackford et al (2004)
Mortality rate due to low oxygen	r_{mortox}	d ⁻¹	0.25	0.25	0.25	Blackford et al (2004)
Michaelis Menten constant for oxygen limitation	h_{oxmort}	mmol m ⁻³	7.8125	7.8125	7.8125	Blackford et al (2004)
Max N:C	qZ_{max}^N	mmol N (mg C)	0.0167	0.0167	N/A*	Blackford et al (2004)
Max P:C	qZ_{max}^{P}	mmol P (mg C) ⁻¹	0.001	0.001	N/A*	Blackford et al (2004)
Available fraction of prey (P1 for Z1, P2 for Z2 and Z1 for Z3)	P_f	adim	1	1	0.5	This study

*Mesozooplankton are assumed to have a fixed internal stoichiometry (Blackford et al., 501 2004)

Table 2 Input factors of the Monte Carlo based sensitivity analysis, their nominal values and the range minimum-maximum of their uniform probability distributions. The notations of the parameters are specified in Table 1 (but see notes c and d)

Notation	Nominal	minimum	Maximum	Notes
K(Z1)	10	1	60	
Pf(P1-Z1)	1	0.1	1	
Chl:Cmax(P1)	0.04	0.01	0.07	С
K(Z3)	40	1	60	
Pf(P2-Z2)	1	0.1	1	
PO ₄	0.4	0.2	0.6	d
r(Z1)	0.02	0.014	0.026	*
K(Z2)	10	1	60	
AEmax(Z1)	0.25	0.1	0.499	а
qZPmax(Z1)	0.0167	0.01169	0.02171	*
Ar(Z1)	0.5	0.35	0.65	*
rmort(Z1)	0.25	0.175	0.325	*
minfood(Z1)	2.5	1	20	
Pf(Z1-Z3)	0.5	0.1	1	
qsP1c	0.01	0.01	0.03	С
NO₃	8	4	12	d
AEmin(Z1)	2	1.4	2.6	*a
r(Z2)	1.2	0.84	1.56	*
Q10(Z1)	0.4	0.28	0.52	*
Rr(Z1)	0.05	0.035	0.065	*
Ar(Z2)	0.5	0.35	0.65	*
Q10(Z2)	2	1.4	2.6	*
r(Z3)	0.5	0.35	0.65	*
KAE(Z1)	0.75	0.5	0.9	а
minfood(Z3)	1	0.1	10	
qZPmax(Z2)	0.0012	0.00084	0.00156	*
qZNmax(Z1)	2	1.4	2.6	*
Chl:Cmax(P2)	0.03	0.01	0.07	С
r(P2)	2	1.5	3	С
rmortox(Z3)	0.25	0.175	0.325	*
rmort(Z3)	0.05	0.035	0.065	*
AE(Z3)	0.5	0.1	0.9	
hoxmort(Z3)	7.8125	5.46875	10.15625	*
hoxmort(Z1)	7.8125	5.46875	10.15625	*
Rr(Z2)	0.02	0.014	0.026	*
Rr(Z3)	0.02	0.014	0.026	*
minfood(Z2)	10	1	20	
rmort(Z2)	0.25	0.175	0.325	*
AE(Z2)	0.5	0.1	0.9	
rmortox(Z1)	0.001	0.0007	0.0013	*
qZNmax(Z2)	0.0167	0.01169	0.02171	*
Q ₁₀ (Z3)	2	1.4	2.6	*
hoxmort(Z2)	7.8125	5.46875	10.15625	*
rmortox(Z2)	0.05	0.035	0.065	*
111101107(22)				

Notes. *: the range minimum-maximum is defined as the nominal value ±30% of the value itself; a) parameters included in ERSEM SMP only; b) parameters included in ERSEM only; c) phytoplankton parameters for P1 and P2 not defined in Table 1 (Chl:Cmax = maximum chlorophyll-to-carbon ratio [mgChl (mgC)⁻¹]; r = potential photosynthetic rate [d⁻¹]; qsP1c = maximum silica to carbon ratio in diatoms [mmolSi (mgC)⁻¹]); d) initial conditions of nutrients (PO4 = phosphate [mmol m⁻³-]; NO3 = nitrate [mmol m⁻³]).

Table 3. Spearman rank correlation between modelled and observed variables (p<0.001)

	diatoms	microzoo	PO ₄	NO_3	Si
ERSEM-SMP	0.35	0.80	0.61	0.80	0.67
ERSEM	-0.16*	0.82	0.65	0.81	0.65

*p=0.07

Table 4. Results of the Monte Carlo sensitivity analysis of ERSEM SMP (left) and ERSEM (right). Ranking of the input factors (i.e. model parameters and initial conditions of nitrate and phosphate) based on computed standardized linear regression coefficients β . N.S. indicates parameters having β values that were not significantly different from zero (t-statistic; p < 0.05).

ERSEM SMP	Rank	ERSEM	Rank
K(Z1)	1	K(Z1)	1
Pf(P1-Z1)	2	Pf(P1-Z1)	2
Chl:Cmax(P1)	3	K(Z3)	3
K(Z3)	4	Pf(P2-Z2)	4
Pf(P2-Z2)	5	K(Z2)	5
PO_4	6	Chl:Cmax(P1)	6
r(Z1)	7	minfood(Z1)	7
K(Z2)	8	Pf(Z1-Z3)	8
AEmax(Z1)	9	r(Z1)	9
qZPmax(Z1)	10	qsP1c	10
Ar(Z1)	11	Ar(Z1)	11
rmort(Z1)	12	r(Z3)	12
minfood(Z1)	13	minfood(Z2)	13
Pf(Z1-Z3)	14	r(Z2)	14
qsP1c	15	r(P2)	15
NO_3	16	Ar(Z2)	16
AEmin(Z1)	17	minfood(Z3)	17
r(Z2)	18	PO_4	18
Q10(Z1)	19	NO_3	19
Rr(Z1)	20	AE(Z3)	20
Ar(Z2)	21	rmort(Z1)	21
Q10(Z2)	22	Chl:Cmax(P2)	22
r(Z3)	23	Q10(Z1)	23
KAE(Z1)	24	rmort(Z3)	24
minfood(Z3)	25	Rr(Z1)	25
qZPmax(Z2)	26	Q10(Z2)	26
qZNmax(Z1)	27	rmortox(Z3)	N.S
Chl:Cmax(P2)	28	Rr(Z2)	N.S
r(P2)	29	$Q_{10}(Z3)$	N.S
rmortox(Z3)	N.S	qZPmax(Z1)	N.S
rmort(Z3)	N.S	hoxmort(Z3)	N.S
AE(Z3)	N.S	rmort(Z2)	N.S
hoxmort(Z3)	N.S	hoxmort(Z1)	N.S
hoxmort(Z1)	N.S	AE(Z2)	N.S
Rr(Z2)	N.S	Rr(Z3)	N.S
Rr(Z3)	N.S	qZPmax(Z2)	N.S
minfood(Z2)	N.S	qZNmax(Z2)	N.S
rmort(Z2)	N.S	rmortox(Z2)	N.S
AE(Z2)	N.S	qZNmax(Z1)	N.S
rmortox(Z1)	N.S	hoxmort(Z2)	N.S
qZNmax(Z2)	N.S	AE(Z1)	N.S
$Q_{10}(Z3)$	N.S	rmortox(Z1)	N.S
hoxmort(Z2)	N.S		
rmortox(Z2)	N.S		

Table 5. Sensitivity experiments on key zooplankton parameters for the standard ERSEM model

experiment	Parameters			
	K	minfood	P_f (Z1 for Z3)	
S1	45	2.5	0.5	
S2	60	2.5	0.5	
S3	60	10	0.5	
S4	60	10	0.8	
S5	60	10	1.0	
S 6	As S5 but with redu	ced (50%) initial nutrien	t (N and P) conditions	

FIGURE CAPTIONS

- 570 Fig 1. Schematic of the modelled food interactions. Dotted arrows indicate density-dependent
- 571 mortality closure, for example cannibalism
- 572 Fig 2. Modelled and observed time series of (A) diatom biomass; (B) microzooplankton
- 573 biomass; (C) phosphate; (D) nitrate; (E) silicate. Both observations and simulations are
- monthly averages for the period 2000-2009. Units are mg C m⁻³ for biomasses and mmol m⁻³
- 575 for nutrients. Modelled microzooplankton is the sum of Z1 and Z2.
- Fig 3. Climatological, monthly averaged, simulated (A) Net Heat Flux (NHF, W m⁻²); (B)
- 577 surface Turbulent Kinetic Energy (TKE, m⁻² s⁻²) and (C) Mixed Layer Depth (MLD, metres)
- Fig 4. Climatological, monthly averaged, simulated diatom (P1) and microzooplankton (Z1)
- 579 (mg C m⁻³) seasonal cycles. Colours refer to (A) diatom molar C:P; (B) diatom molar C:N
- ratios; (C) microzooplankton (Z1) assimilation efficiency (Zeff) and (D) grazing (Z1 over P1,
- 581 $mg C m^{-3} d^{-1}$).
- Fig 5. Scatter plots of modelled diatom (P1) biomass (mg C m⁻³) and carbon to nutrient molar
- ratios. Colour scales indicate: (A) and (B) microzooplankton (Z1) assimilation efficiency
- 584 (Zeff); (C) and (D) grazing (Z1 over P1, mg C m⁻³ d⁻¹). Simulations refer to daily averaged
- surface values for the period 2000-2009
- Fig. 6. (A) simulated Z1-P1 predator-prey system (biomasses and grazing) and (B) specific
- 587 carbon exudation rate subsampled from the modelled time series. Biomass is given in mg C
- 588 m⁻³, grazing in mg C m⁻³ d⁻¹ and the carbon specific exudation rate in d⁻¹. Colours refer to
- 589 diatom molar C:P.
- Fig. 7. Simulated diatom (P1) and microzooplankton (Z1) seasonal cycle as in Fig. 4, but
- with reduced (by 50%) nitrate and phosphate as initial conditions.
- Fig. 8. Scatter plots as in Fig. 5 but with reduced nitrate and phosphate concentration as
- initial condition. Nutrient concentrations were reduced by 50%.
- Fig. 9. Climatological (2000-2009) diatom (P1) and microzooplankton (Z1) monthly
- averaged seasonal cycles simulated with the standard ERSEM formulation. Colours refer to:
- 596 (A) C:P diatom molar ratio; (B) C:N diatom molar ratios and (C) grazing (Z1 over P1, mg C
- 597 $\text{m}^{-3} \text{d}^{-1}$).
- Fig. 10. Simulated diatom (P1) and micrzooplankton (Z1) seasonal cycle as in Fig 8 but with
- reduced (by 50%) nitrate and phosphate initial conditions.
- 600 Fig. 11. Monthly averaged, diatoms (P1) and microzooplankton (Z1) biomass (mg C m⁻³)
- simulated in the sensitivity experiments described in Table 3.
- Fig. 12. Conceptual model describing the formation and evolution of a diatom bloom. Biotic
- processes are highlighted in blue. Red arrows imply the action of physical forcing such as
- 604 NHF, TKE and MLD.
- Fig. 13. Scatter plot (r=0.8, p<0.001) between simulated diatom (P1) carbon to phosphorus
- ratio (mol mol⁻¹) and NHF (W m⁻²). Colorbar refers to microzooplankton (Z1) assimilation
- 607 efficiency (Zeff).

608	REFERENCES
609	
610	Atkinson, A., Harmer, R.A., Widdicombe, C.E. McEvoy, A.J., Smyth, T.J., Cummings, D.G.,
611	Somerfield, P.J., Maud, J.L. McConville, K. (in review) Questioning the role of phenology
612	shifts and trophic mismatching in a planktonic food web.
613	
614	Baretta, J.W., Ebenhoh, W. and Ruardij, P., 1995. The European regional Seas Ecosystem
615	Model, a complex marine ecosystem model. Neth. J. Sea Res., 33, 233–246
616	
617	Bautista, B., Harris, R.P., 1992. Copepod gut contents, ingestion rates and grazing impact on
618	phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring
619	bloom. Mar. Ecol. Prog. Ser. 82, 41-50.
620	
621	Blackford, J. C., Allen, J. I., Gilbert, F. J., 2004. Ecosystem dynamics at six contrasting sites:
622	a generic modelling study. J. Mar. Syst., 52,191-215.
623	
624	Branco, P., Stomp, M., Egas, M., Huisman J., 2010. Evolution of nutrient uptake reveals a
625	trade-off in the ecological stoichiometry of plant herbivore interactions. Am. Nat., 176, 162-
626	176
627	
628	Burchard, H., Bolding, K., Villareal, M. 1999 GOTM: a general ocean turbulence model.
629	Theory, applications and test cases. Technical Report EUR 18745 EN, European Commission
630	
631	Calbet, A., Landry, M. R., 2004. Phytoplankton growth, microzooplankton grazing, and
632	carbon cycling in marine systems. Limnology and Oceanography; 49:51-57.
633	
634	Diehl, S., 2007. Paradoxes of enrichment: Effects of increased light versus nutrient supply on
635 636	pelagic producer–grazer systems. American Naturalist 169, E173–E191.
637	Ebenhoh, W., Baretta, J.W., Baretta-Bekker, J.G., 1997. The primary production model in a
638	marine ecosystem model ERSEM II. Journal of Sea Research 38, 169–172.
639	
640	Elser, J.J., Loladze, I., Peace, A.L., Kuang, Y., 2012. Lotka re-loaded: modelling trophic
641	interactions under stoichiometric constrains. Ecological Modelling 245, 3-11

642	
643	Flynn, K.J., Davidson, K., Cunningham, A., 1996. Prey selection and rejection by
644	amicroflagellate; implications for the study and operation of microbial food webs. J. Exp.
645	Mar. Biol. Ecol. 196, 357-372
646	
647	Flynn, K. J., Davidson, K., 1993. Predator-prey interactions between Isochrysis galbana and
648	Oxyrrhis marina. II. Release of non-protein amines and faeces during predation of Isochrysis.
649	J. Plankton Res., 15, 893–905.
650	
651	Geider, R. J., MacIntyre, H. L., Kana, T. M., 1997. Dynamic model of phytoplankton growth
652	and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to
653	light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187-200
654	
655	Geider, R., La Roche, J., 2002. Redfield revisited: variability of C:N:P in marine microalgae
656	and its biochemical basis. European Journal of Phycology 37, 1-17
657	
658	Hall, S.R., 2004. Stoichiometrically-explicit competition between grazers: species
659	replacement, coexistence, and priority effects along resource supply gradients. American
660	Naturalist 164, 157–172.
661	
662	Huisman, J., van Oostveen, P., Weissing, F.J., 1999. Critical depth and critical turbulence:
663	Two different mechanisms for the development of phytoplankton blooms. Limnology and
664	Oceanography 44: 1781-1787
665	
666	Hessen, O.D., Faerovig, J.P., Andersen, T., 2002. Light, nutrients, and P:C ratios in algae:
667	grazer performance related to food quality and quantity. Ecology 83, 1886-1898
668	
669	Irigoien, X., Flynn K.J., Harris, R.P., 2005. Phytoplankton blooms: a 'loophole' in
670	microzooplankton grazing impact? J. Plankton Res. 27, 313-321
671	
672	Jones, R.H, Flynn, K.J., 2005. Nutritional status and diet composition affect the value of
673	diatoms as copepod prey. Science 307, 1457-14-59
674	

Kiørboe, T., 2008. A mechanistic approach to plankton ecology. Princeton University Press,

676	209 pp
677	
678	Kondo, J., 1975. Air-sea bulk transfer coefficients in adiabatic conditions. Boundary-Layer
679	Meteorol., 9, 91–112.
680	
681	Kovala, P. E., Larrance, J. D., 1966. Computation of phytoplankton cell numbers, cell
682	volume, cell surface and plasma volume per liter, from microscopical counts. DTIC
683	Document.
684	
685	Legendre, L., 1990. The significance of microalgal blooms for fisheries and for the export of
686	particulate organic carbon in oceans. J. Plankton Res. 12, 681-699
687	
688	Loladze, I., Kuang, Y., Elser, J.J., 2000. Stoichiometry in producer-Grazer System: linking
689	Energy Flow with Elemental Cycling. Bulletin of Mathematical Biology, 62: 1137-1162.
690	
691	Loladze, I., Kuang, Y., Elser, J.J., Fagan, W.F., 2004. Competition and stoichiometry:
692 693	coexistence of two predators on one prey. Journal of Theoretical Biology 65, 1–15
694	
695	Martiny, A. C., Vrugt, J.A., Primeau, F.W., Lomas M.W., 2013. Regional variation in the
696	particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochem. Cycles,
697	27, 723–731, doi:10.1002/gbc.20061.
698	
699	Menden-Deuer, S., Lessard, E. J., 2000. Carbon to volume relationships for dinoflagellates,
700	diatoms, and other protist plankton. Limnology and oceanography, 45, 569-579.
701	
702	Mitra, A., 2006. A multi-nutrient model for the description of the stoichiometric modulation
703	of predation in micro- and mesozooplankton. J. Plankton. Res. 28, 597-611
704	
705	Mitra, A., Flynn, K.J., 2006. Promotion of harmful algal blooms by zooplankton predatory
706	activity. Biology Letters 2, 294-197
707	

- Mitra, A, Flynn, K.J., 2007. Effects of food quality and quantity on consumer gut passage
- 709 time; impacts on predation kinetics and trophic dynamics. Am. Nat. 169:632-646.

710

- 711 Mitra, A., Castellani, C., Gentleman, W., Jónasdóttir, S.H., Flynn, K.J., Bode, A., Halsband,
- 712 C., Kuhn, P., Licandro, P., Agersted, M.D., Calbet, A., Lindeque, P., Koppelmann, R.,
- Møller, E.F., Gislason, A., Nielsen, T.G., St. John, M., 2014. Bridging the gap between
- 714 marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog.
- 715 Oceanogr., in press. http://dx.doi.org/10.1016/j.pocean.2014.04.025.

716

- Pastres, R., Ciavatta, S., 2005. A comparison between the uncertainties in model parameters
- and in forcing functions: its application to a 3D water-quality model. Environmental
- 719 *Modelling & Software*, 20(8), 981-989.

720

- Polimene, L., Brunet, C., Butenschon, Martinez-Vicente, V., M., Widdicombe, C., Torres, R.,
- Allen, J.I., 2014. Modelling a light-driven phytoplankton succession. J. Plankton Res. 36,
- 723 214-229

724

- 725 Polovina, J. J., Howell, E. A., Abecassis, M., 2008. Ocean's least productive waters are
- 726 expanding, Geophys. Res. Lett., 35, L03618, doi:10.1029/2007GL031745.

727

- 728 Rosati, A., Miyakoda, K., 1988. A general circulation model for upper ocean simulation. J.
- 729 Phys. Oceanogr., 18, 1601–1626.

730

- 731 Sailley, S.F., Vogt, M., Doney, S.C., Aita, M.N., Bopp, L., Buitenhuis, E.T., Hashioka, T.,
- 732 Lima, I., Le Quere, C., Yamanaka, Y., 2013. Comparing food web structures and dynamics
- across a suite of marine ecosystem models. Ecological Modelling. 261-262, 43-57

734

- 735 Saltelli, A., K. Chan, and M. Scott (Eds.) (2000). Sensitivity Analysis. Wiley Series in
- 736 Probability and Statistics. New York: John Wiley and Sons.

737

- 738 Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton University
- 739 Press

- 741 Siuda, N.S.A., Dam, G.H., 2010. Effects of omnivory and predator-prey elemental
- stoichiometry on planktonic trophic interactions. Limnol. Oceanogr. 55, 2107-2116

743

- Smyth, T. J., Fishwick, J. R., Al-Moosawi, L., Cummings, D.G., Harris, C., Kitidis, V., Rees,
- A., Martinez-Vicente, V., Woodwaed, E.M.S., 2010. L4 in context: a broad spatio-temporal
- view in the Western English Channel Observatory. J. Plankton Res., 32, 585–601

747

- Smyth, T.J., Allen, I., Atkinson, A., Bruun, J.T., Harmer, R.A., Pingree, R.D., Widdicombe
- 749 C.E., Somerfield, P.J., 2014. Ocean Net Heat Flux Influences Seasonal to Interannual
- 750 Patterns of Plankton Abundance. PLoS ONE 9(6): e98709.
- 751 doi:10.1371/journal.pone.0098709

752

- 753 Stiefs, D., van Voorn, G.A.K., Kooi, B.W., Feudel, U., Gross, T., 2010. Food quality in
- producer–grazer models: a generalized analysis. American Naturalist, 176367–176380.

755

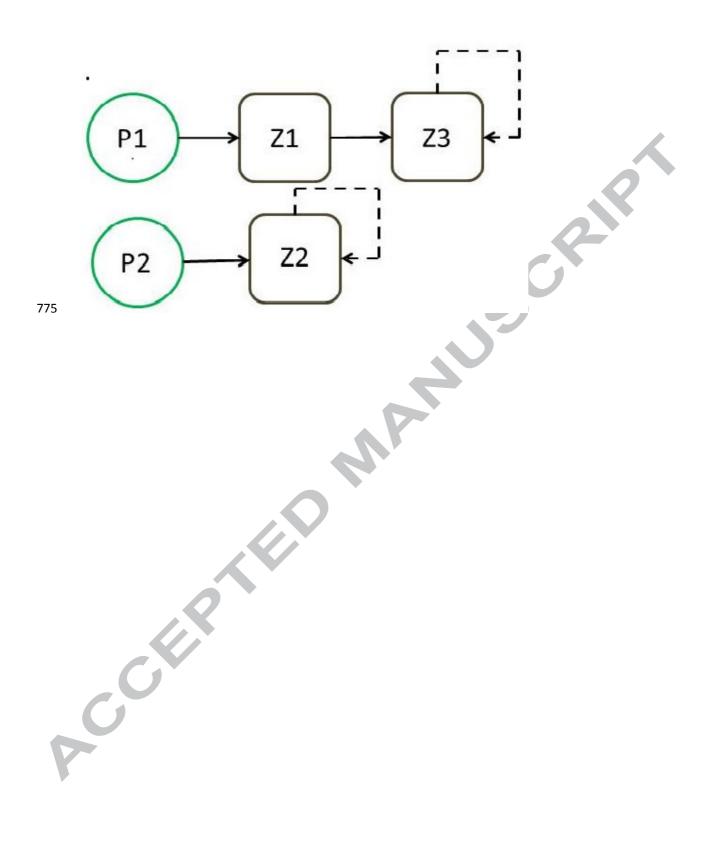
- Taylor, J.R., Ferrari, R., 2011. Shutdown of turbulent convection as a new criterion for the
- onset of springphytoplankton blooms. Limnology and Oceanography 56: 2293-2307.

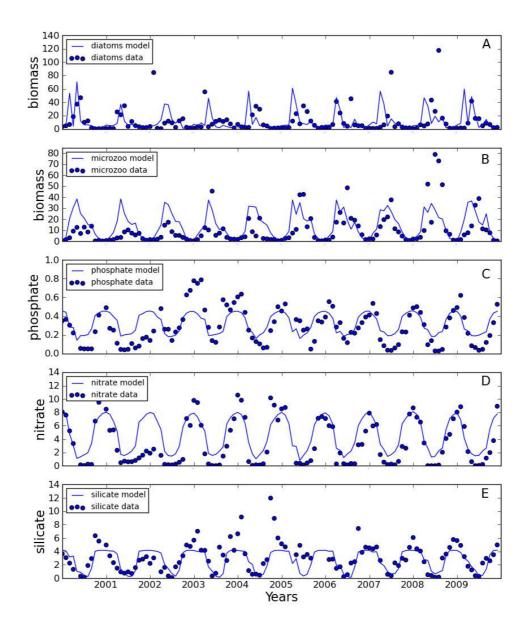
758

- Urabe, J., Sterner, W.R., 1996. Regulation of herbivore growth by the balance of light and
- 760 nutrients. Proc. Natl. Acad. Sci. 93, 8465-8469

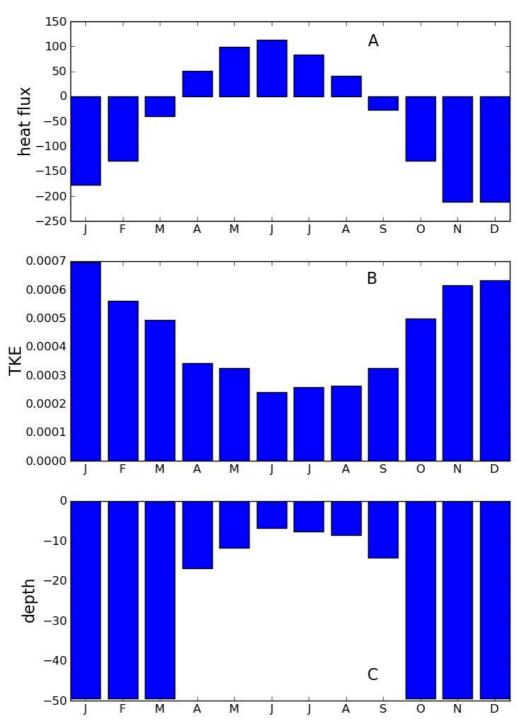
761

- Vichi, M., Masina, M., Pinardi, N., 2007. A generalized model of pelagic biogeochemistry for
- the global ocean ecosystem. Part I: Theory. J. Mar. Sys. 64, 89–109.

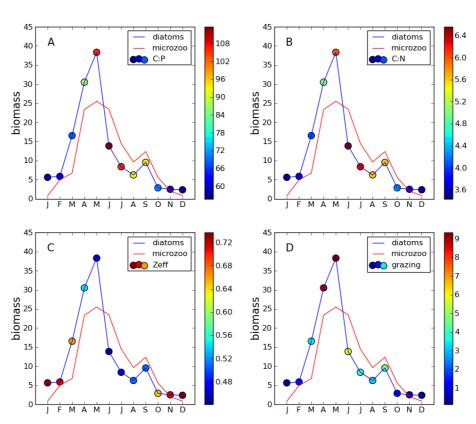

764

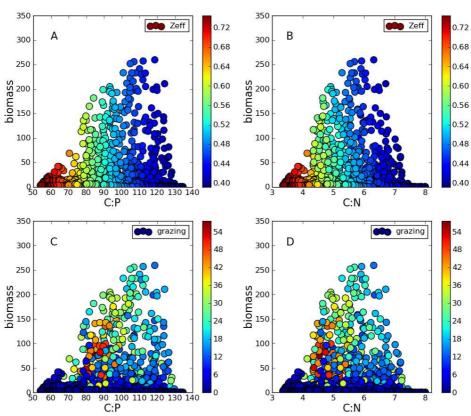

- 765 Widdicombe, C.E., Eloire, D., Harbour, D. Harris, R.P., Somerfield, P.J., 2010. Long-term
- 766 phytoplankton community dynamics in the Western English Channel. J.Plankton Res. 32,
- 767 643-655.

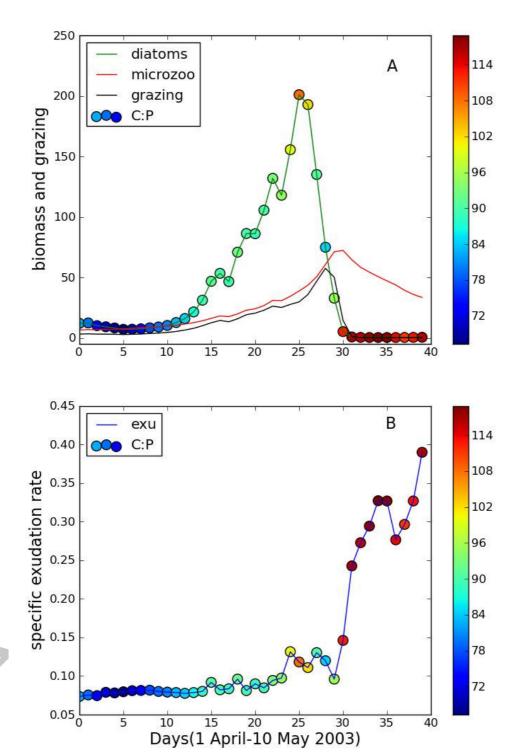
768


- Woodward, E.M.S., Harris, C., Al-Moosawi, L., 2013. Nutrient concentration profiles from
- long term time series at Station L4 in the Western English Channel from 2000 to 2012.
- 771 British Oceanographic Data Centre Natural Environment Research Council UK.
- 772 doi:10.5285/075f8000-7114-11e2-907f-1803734a77fb

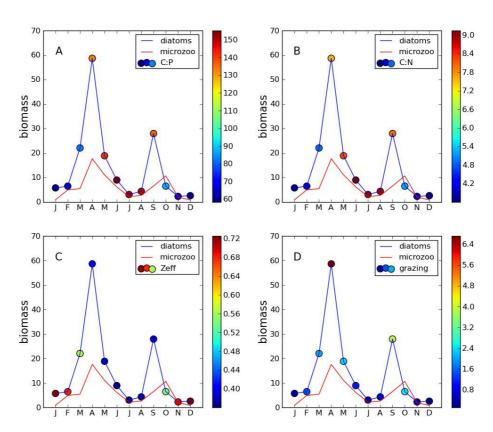
773

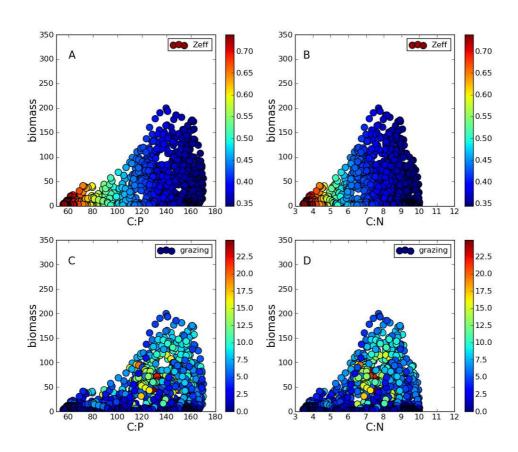


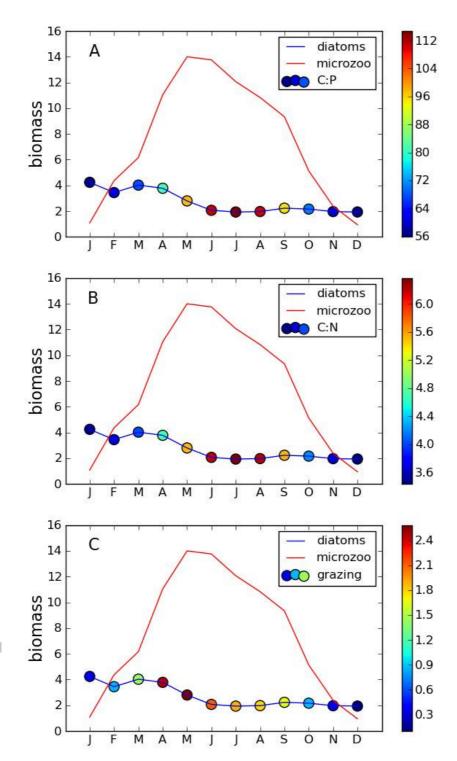




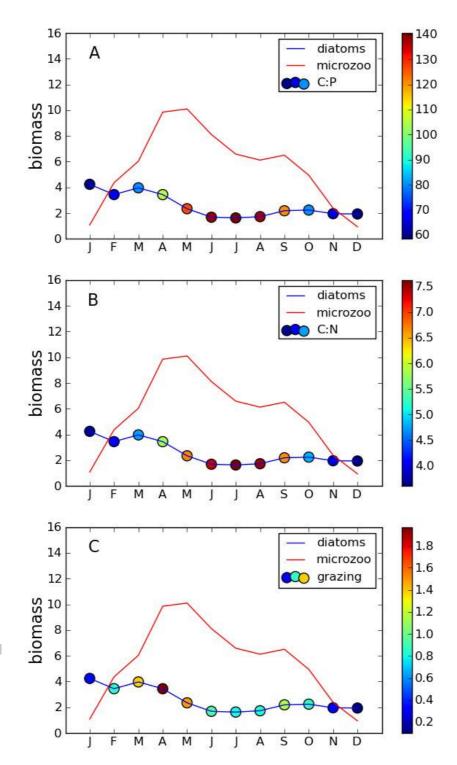
P

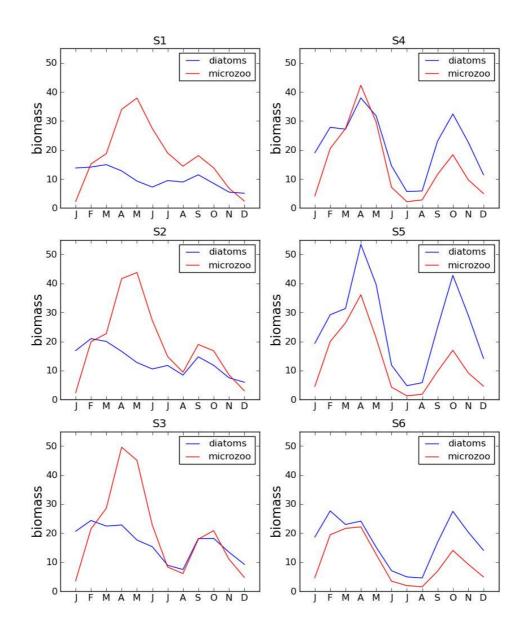


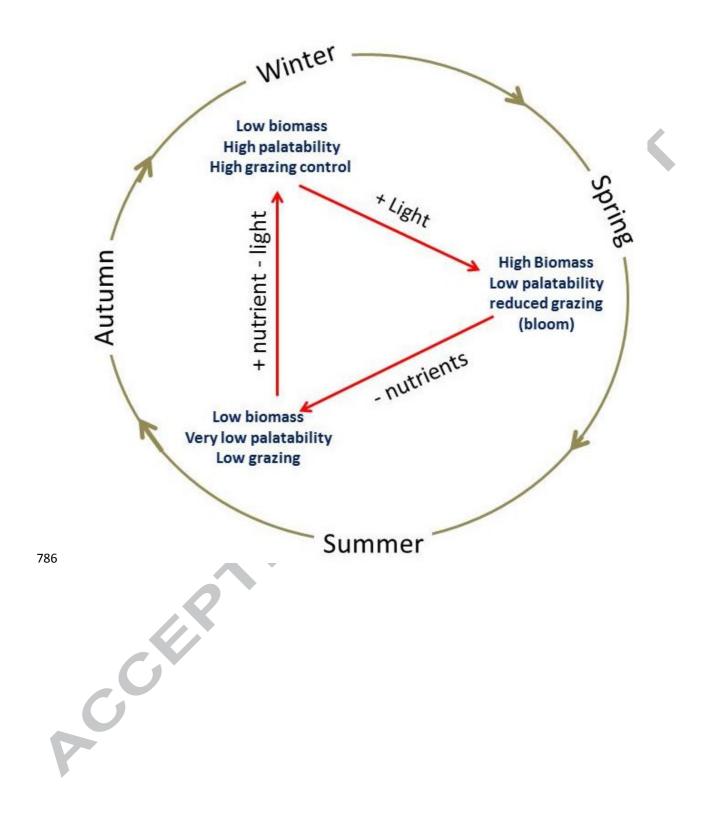


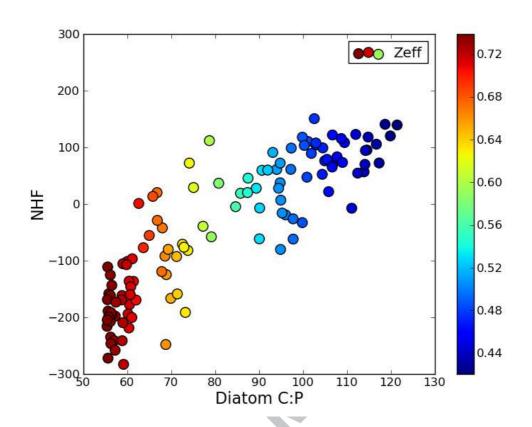


P









P

789	
790	
791	Highlights
792 793 794	 Abiotic and biotic mechanisms underpin bloom dynamics Phytoplankton nutritional status contributes to bloom formation and evolution High C:P in diatoms reduces the transfer of carbon to the higher trophic levels.
795	
796	