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Abstract 

 
In this paper, we propose a liquidity risk adjustment to the Epstein and Zin (1989, 1991) 

 
model and assess the adjusted model’s performance against the traditional consumption 

 
pricing models. We show that liquidity is a significant risk factor and it adds consid- 

 
erable explanatory power to the model. The liquidity-adjusted model produces both a 

 
higher cross-sectional R

2
 and a smaller Hansen and Jagannathan (1997) distance than 

 
the traditional CCAPM and the original Epstein-Zin model. Overall, we show that liq- 

 
uidity is both a priced factor and a key contributor to the adjusted Epstein-Zin model’s 

 
goodness-of-fit. 
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1. Introduction 

 
Recent studies in asset pricing suggest that liquidity plays a significant role in investors’ 

 
consumption and investment decision-making.1 In this paper, we extend the Epstein and Zin 

 
(1989, 1991) model by incorporating liquidity risk and show that consumption risk, market 

 
risk, and liquidity risk jointly determine expected returns. Specifically, using the liquidity 

 
risk factors of Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006), we show that 

 
liquidity risk is significantly priced, suggesting that investors do care about the sensitivity of 

 
stock returns to market liquidity variations and demand high compensation for holding stocks 

 
with large exposure to liquidity risk. This evidence is consistent with recent literature that 

 
highlights the importance of liquidity in asset pricing (e.g., Chordia, Roll, and Subrahmanyam 

 
(2000), Amihud (2002), Pastor and Stambaugh (2003), Acharya and Pedersen (2005), Liu 

 
(2006), Sadka (2006), and Bekaert, Harvey, and Lundblad (2007)). However, prior studies 

 
largely examining whether liquidity risk is priced or not based on non-consumption-based 

 
models such as the CAPM and the Fama–French three-factor model. The main objective of 

 
this study is to assess the incremental contribution of liquidity risk to the performance of 

 
consumption-based pricing models. 

 
Kan, Robotti, and Shanken (2013) argue that examining whether a factor makes an incre- 

 
mental contribution to a multi-factor model’s goodness-of-fit is different from testing whether 

 
For instance, Liu (2010) demonstrates that liquidity risk originates from consumption and solvency constraints 

(Chien and Lustig (2010) and Pastor and Stambaugh (2003) also illustrate that liquidity concerns stem from solvency 

constraints). Parker and Julliard (2005) argue that liquidity risk is an imperative component ignored by consumption 

risk. Næs, Skjeltorp, and Ødegaard (2011) find significant relation between market liquidity and consumption growth. 
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the factor is priced.2 They argue that, in a multi-factor model, it is important to test the sig- 

 
nificance of covariance risk (the covariance between return and a risk factor). If the coefficient 

 
of the covariance is significantly different from zero, then the factor makes an incremental con- 

 
tribution to the model’s overall explanatory power. Following Lewellen, Nagel, and Shanken 

 
(2010) and Kan, Robotti, and Shanken (2013),3 we perform both the ordinary least squares 

 
(OLS) and generalized least squares (GLS) regressions in our analysis. We find that the coef- 

 
ficient of the covariance between return and the liquidity risk factor is significant, indicating 

 
an improved model. Further, the liquidity-augmented Epstein-Zin model explains up to 70% 

 
of the cross-sectional expected returns on the 25 Fama and French (1993) value-weighted size 

 
and book-to-market portfolios, a substantial improvement comparing to previous studies.4 

 
Sadka (2006) show that incorporating liquidity risk into the traditional CAPM or the 

 
Fama–French three-factor model accounts for a large proportion of cross-sectional return vari- 

 
ations. It is, however, not clear whether the R2 difference between competing models is signifi- 

 
cant. Applying the equality test of cross-sectional R2 (Kan, Robotti, and Shanken (2013)), the 

 
null is rejected under both OLS and GLS estimates, indicating that the liquidity-augmented 

 
model is more successful in explaining the cross-sectional expected returns than the traditional 

 
consumption-based capital asset pricing model (CCAPM) of Rubinstein (1976), Lucas (1978), 

 
and Breeden (1979), and the Epstein-Zin (1989, 1991) model. 

 
 

Cochrane (2005, Chapter 13) discusses a related issue in the stochastic discount factor (SDF) framework. 

Lewellen, Nagel, and Shanken (2010) suggest that it is important to implement the GLS estimates besides OLS. 

Kan, Robotti, and Shanken (2013) argue that the OLS regression emphasizes more on the returns for a particular set 

of test portfolios, while the GLS may be potentially more interesting from an investment point of view. 

Lettau and Ludvigson (2001) show that the traditional CCAPM explains only 16% of the cross-sectional return 

variations based on quarterly data. Jagannathan and Wang (2007) find that the CCAPM has almost no explanatory 

power based on monthly data. 
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To further evaluate the model performance, we use Hansen and Jagannathan (1997) dis- 

 
tance (HJ distance hereafter) as an alternative measure of a model’s goodness-of-fit. We 

 
show that, compared to the traditional CCAPM and the Epstein-Zin model, our liquidity- 

 
augmented Epstein-Zin model generates a smaller HJ distance estimate. The null hypothesis 

 
that the squared HJ distances are equal is generally rejected based on the tests of Kan and 

 
Robotti (2009). 

 
Lewellen, Nagel, and Shanken (2010) argue that it is important for asset pricing tests to 

 
include other sets of portfolios (e.g., industry portfolios) to break down the structure of size and 

 
book-to-market portfolios.5 Recent studies also highlight the importance of the consumption- 

 
to-wealth ratio (Lettau and Ludvigson (2001)), long-run consumption risk (Parker and Julliard 

 
(2005) and Márquez, Nieto, and Rubio (2014)), and durable goods (Yogo (2006) and Gomes, 

 
Kogan, and Yogo (2009)) in consumption-based asset pricing. In our robustness tests, we take 

 
these issues into account and find that both the liquidity risk premium and the coefficient 

 
of the covariance risk between return and liquidity risk factor are significant. Again, our 

 
liquidity-augmented Epstein-Zin model is more successful in explaining expected returns than 

 
the CCAPM and the Epstein-Zin model based on the equality tests of cross-sectional R2 and 

 
the HJ distance. 

 
We also examine the role of liquidity risk with non-consumption based asset pricing models, 

 
namely, the CAPM of Sharpe (1964) and Lintner (1965), the Fama–French (1993) three-factor 

 
model (FF3), and the Jagannathan and Wang (1996) conditional CAPM (JW). Consistent 

 
 

Recent studies of Savov (2011) and Kan, Robotti, and Shanken (2013) also incorporate industry portfolios. They 

use the 25 Fama–French (1993) size and book-to-market portfolios plus industry portfolios as test portfolios. 
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with our previous results, we find that, in general, liquidity risk is significantly priced and the 

 
covariance risk of liquidity contributes significantly to the model’s explanatory power. 

 
One study relates to ours is Malloy, Moskowitz, and Vissing-Jørgensen (2009) where the 

 
authors propose a liquidity-adjusted stochastic discount factor. However, our model differs 

 
from theirs. Malloy, Moskowitz, and Vissing-Jørgensen (2009) assume a market illiquidity 

 
shock to consumption, while we focus on liquidity costs and use liquidity risk factors developed 

 
by Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006). Further, they show that 

 
liquidity risk is priced under ultimate consumption risk, while our tests also take into account 

 
consumption growth, consumption-to-wealth ratio, long-run consumption growth, and durable 

 
consumption growth. More importantly, our focus is on assessing the incremental contribution 

 
of liquidity risk to the model’s performance, which the test itself is new to the literature. 

 
Overall, our paper highlights the role of liquidity in explaining cross-sectional expected 

 
returns under both theoretical and empirical approaches. By showing that liquidity is not 

 
only a priced factor but also contributes significantly to the model’s explanatory power, we 

 
provide new evidence to the recent literature, which reveals the importance of liquidity risk in 

 
asset pricing (e.g., Chordia, Roll, and Subrahmanyam (2000), Pastor and Stambaugh(2003), 

 
Acharya and Pedersen (2005), Liu (2006), Sadka (2006), and Bekaert, Harvey, and Lundblad 

 
(2007)). While these studies appear to make liquidity adjustment to the CAPM or the Fama– 

 
French three-factor model, our paper focuses on the liquidity adjustment to the consumption- 

 
based pricing model and the role of liquidity in model performance, an area that has attracted 

 
little attention in the literature. 
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We also apply recently developed econometrical techniques to conduct a wider range of 

 
asset pricing tests (e.g., model misspecification, covariance risk, OLS and GLS regressions, and 

 
tests equality of R2 and HJ distance). Our study, thus, complements recent work on using 

 
new techniques in asset pricing tests (e.g., Kan and Robotti (2009), Lewellen, Nagel, and 

 
Shanken (2010), and Kan, Robotti, and Shanken (2013)). While these studies apply the new 

 
techniques to examine factors such as consumption growth, market, size, and book-to-market 

 
factors in pricing assets, we use these techniques to study the role of liquidity risk factor 

 
in explaining cross-sectional returns and in improving a model’s goodness-of-fit. Further, 

 
unlike other advances of consumption-based asset pricing studies (e.g., Lettau and Ludvigson 

 
(2001), Parker and Julliard (2005), and Yogo (2006)), we highlight the importance of liquidity 

 
in understanding the empirically less successful performance of the CCAPM and Esptein-Zin 

 
model in explaining cross-sectional expected returns. 

 
 

2. The model 

 
By introducing liquidity costs to a standard representative-agent asset pricing model with 

 
Epstein-Zin preferences, we derive a liquidity risk adjusted Epstein-Zin model: 

 
 
 

E[Ri - Rf ] = γcgβi,cg + γmktβi,R + γliqβi,liq, (1) 

 
 
where βi,cg denotes the consumption beta, βi,R denotes the return to wealth beta, and βi,liq 

 
denotes the liquidity beta; γcg , γmkt, and γliq are the prices of consumption risk, market 
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risk, and liquidity risk.6 The liquidity-augmented Epstein-Zin model is in line with recent 

 
studies supporting the important role of liquidity risk in asset pricing such as Pastor and 

 
Stambaugh (2003), Liu (2006), and Sadka (2006). These studies show that augmenting the 

 
traditional CAPM or the Fama–French three-factor model with a liquidity factor improves 

 
the performance of these models. 

 
The economic meaning of incorporating liquidity risk into the consumption-based asset 

 
pricing model is straight-forward. When the economy is haunted by uncertainty, impacting 

 
consumption and squeezing liquidity, individual investors may unwillingly switch from their 

 
stocks to cash to smooth out consumption, and institutional investors may reluctantly ex- 

 
change their holdings for cash to fulfill their obligations. Under these circumstances, stocks 

 
whose returns are less sensitive to market liquidity comfort investors from states of low con- 

 
sumption. On the contrary, stocks with high liquidity risk impair investors’ abilities to cushion 

 
the deterioration in consumption. As a result, investors require high compensation for holding 

 
high liquidity-risk stocks. 

 
 

3. Data 

 
There is a large literature proposing various liquidity measures together with several mea- 

 
sures of liquidity risk factors. To empirically test the liquidity-augmented Epstein-Zin model, 

 
we use three alternative proxies for the liquidity risk factor. The first is the aggregate liquidity 

 
innovation of Pastor and Stambaugh (2003), where liquidity is measured as the price reversal 

 
 

Based on the wealth dynamic of Lynch and Tan (2011), Appendix A shows the derivation of Eq. (1). Appendix 

B shows the alternative derivation of Eq. (1) with the theoretical framework of Yogo (2006). 
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caused by the temporary price impact of trading volume.7 The second is Liu’s (2006) mim- 

 
icking liquidity factor constructed based on the trading discontinuity measure of liquidity, the 

 
standardized turnover-adjusted number of zero daily trading volumes. The third is Sadka’s 

 
(2006) aggregate liquidity innovation constructed based on the variable component of price 

 
impact.8 

 
We measure the aggregate consumption growth as the percentage change from preced- 

 
ing period (one month) of per capita real personal consumption expenditures on nondurable 

 
goods and services. We obtain consumption expenditures, population numbers, and price 

 
deflator series from the National Income and Product Accounts (NIPA).9 We use the “end of 

 
period” time convention to match the aggregate consumption growth to stock returns.10 In 

 
addition, for robustness tests we also use the consumption-to-wealth ratio (cay) of Lettau and 

 
Ludvigson (2001), consumption growth of nondurable goods over a long horizon of 36 months 

 
(cg36) of Parker and Julliard (2005), and durable consumption growth (cgd) of Yogo (2006).11 

 
Savov (2011) provides detailed discussions about the conceptual and methodological issues of 

 
consumption data. 

 
 
 
 

We obtain the innovations in market liquidity of Pastor and Stambaugh (2003) from Lubos Pastor’s website: 

http://faculty.chicagobooth.edu/lubos.pastor/research/. 

We obtain the innovations in market liquidity of Sadka (2006) from Ronnie Sadka’s website: 

https://www2.bc.edu/ sadka/. 

http://www.bea.gov/iTable/. 

Under the “end of period” timing convention, we assume that the consumption data measure consumption at the 

end of the month. An alternative convention is the “beginning of period” as in Campbell (2003). 

We obtain the consumption-to-wealth ratio from Sydney Ludvigson’s website: 

http://www.econ.nyu.edu/user/ludvigsons/. Since cay data are quarterly, we linearly interpolate the quarterly 

values to the monthly values following Vissing-Jørgensen and Attanasio (2003). We calculate the consumption growth 

over 36 months by cg36 = - 1, where cg denotes the consumption growth of nondurable goods. The consumption 

data of nondurable and durable goods are from NIPA. 
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Our main test portfolios are the 25 Fama–French value-weighted size and book-to-market 

 
portfolios. We also add the 5 value-weighted industry portfolios onto the 25 main test portfo- 

 
lios in the robustness tests, following Lewellen, Nagel, and Shanken (2010). To empirically test 

 
the liquidity-augmented Epstein-Zin model, we use the excess return of the value-weighted 

 
NYSE/AMEX/NASDAQ/ARCA index to proxy for the return to wealth factor (RW ), follow- 

 
ing Epstein and Zin (1991) and Yogo (2006). We use the one-month treasury bill rate as the 

 
risk-free rate.12 Our sample period varies depending on the availability of the liquidity risk 

 
factor of interest. For the Pastor and Stambaugh (2003) liquidity factor, it is available from 

 
1962 to 2010. For the Liu (2006) liquidity risk factor, our test period is 1959–2010.13 For the 

 
Sadka (2006) liquidity factor, it is available from 1983 to 2010. 

 
Table 1 provides descriptive statistics for the main variables. Consumption growth (cg) is 

 
positively correlated with the market factor (mkt). However, cg is virtually uncorrelated with 

 
all three liquidity risk factors. In addition, the correlation between the liquidity risk factors 

 
are low, indicating that they capture different information and thus are useful for testing the 

 
robustness of the liquidity-augmented Epstein-Zin model. 

 
Figure 1 shows the time-series pattern of the aggregate liquidity innovation of Pastor and 

 
Stambaugh (2003) from 1962 to 2010 (Panel A), Liu’s (2006) mimicking liquidity risk factor 

 
from 1959 to 2010 (Panel B), and Sadka’s (2006) aggregate liquidity innovation based on the 

 
variable component of price impact from 1983 to 2010 (Panel C). These risk factor series 

 
 

We obtain the 25 Fama–French value-weighted size and book-to-market classified portfolio re-

turns, excess market returns, and one-month treasure bill rate from Kenneth French’s website: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 

The monthly consumption data begin in 1959. 
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identify several shocks in market liquidity. For example, they all coincide with the 1998 

 
Russian debt crisis and the collapse of the US hedge fund Long Term Capital Management. 

 
 

4. Cross-sectional regressions 

4.1. Patterns of factor loadings of the liquidity-augment Esptein-Zin model 

 
We first study the patterns of the consumption, market, and liquidity betas estimated 

 
from a single multiple time-series regression for each of the 25 Fama–French size and book-to- 

 
market portfolios. The estimation of factor loadings corresponds to the first-step of the Fama- 

 
MacBech (1973) procedure. In particular, the risk factor loadings are estimated according to 

 
the following equation: 

 
Ri = αi + βcg,ifcg + βmkt,ifmkt + βliq,ifliq + ei , (2) 

 
where cg denotes the consumption growth on nondurable goods and services, mkt denotes the 

 
excess returns of the market portfolio proxied by the CRSP value-weighted NYSE/AMEX/ 

 
NASDAQ/ARCA index, and liq denotes the liquidity factor. 

 
Table 2 shows that liquidity betas (βliq,i) are related to size and book-to-market ratios. 

 
Within each book-to-market quintile, liquidity betas are lower for large stocks and higher for 

 
small stocks. Similarly, liquidity betas increase with book-to-market ratio for a given size 

 
quintile. In untabulated results,14 we find that consumption betas are related to firm size: 

 
small (large) stocks have high (low) consumption betas. Consumption betas exhibit, however, 

 
a counter intuitive pattern in book-to-market ratio for a given size quintile, which is consistent 

 
 

While results are untabulated to preserve space, they are available upon request. 
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with Yogo (2006). Similarly, loadings on the market factor decrease with market caps, but 

 
increase with book-to-market ratios, in line with Petkova (2006). 

 
 

4.2. Risk premium 

 
In this sub-section we test whether liquidity risk is priced in the cross-sectional regressions. 

 
We run the Fama-MacBeth (1973) cross-sectional regressions on the following equation: 

 
 
 

Ri,t = γ0 + γcgβi,cg + γmktβi,mkt + γliqβi,liq + ei,t, (3) 

 
 
where Ri,t is the month-t rate of return of portfolio i. The consumption beta (βi,cg ), market 

 
beta (βi,mkt), and liquidity beta (βi,liq) are estimated from the multiple time-series regression 

 
(2) for each testing portfolio over the entire sample period.15 We use the 25 Fama–French 

 
value-weighted size and book-to-market portfolios as test portfolios. 

 
Table 3 reports the estimated risk premium (γ) under both the ordinary least squares 

 
(OLS) and generalized least squares (GLS) regressions, recommended by Lewellen, Nagel, 

 
and Shanken (2010) and Kan, Robotti, and Shanken (2013). We use the alternative t -ratios 

 
to test the significance of γ: the FM t -ratio of Fama and MacBeth (1973), the SH t -ratio 

 
of Shanken (1992) with errors-in-variables adjustment, the JW t -ratio of Jagannathan and 

 
Wang (1996), and the KRS t -ratio of Kan, Robotti, and Shanken (2013) under potentially 

 
misspecified models.16 

 
 

We estimate the consumption, market, and liquidity betas over the entire sample period as in Lettau and Ludvigson 

(2001), Acharya and Pedersen (2005), and Sadka (2006), throughout the paper. 

Kan and Robotti (2008, 2009) and Balduzzi and Robotti (2010) also highlight the potential model misspecification 

problem in the statistical inference of the estimated risk premium. 
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For the OLS estimates, we find that the liquidity risk (βliq ) is positively priced in the cross- 

 
sectional analysis, consistent with the model’s prediction. The γ estimate is significantly 

 
different from zero with all t -ratios at the 5% level, except for the Sadka (2006) liquidity 

 
factor.17 For the GLS estimates, the coefficient on βliq,i is significantly positive, regardless of 

 
the liquidity factors and t -ratios used. It suggests that investors do care about the liquidity risk 

 
and require a high compensation for bearing it. In contrast, for both OLS and GLS estimates, 

 
the coefficient on consumption risk (βcg) is generally insignificant at the conventional level, 

 
though consumption risk is positively priced. This is consistent with previous studies (e.g., 

 
Lettau and Ludvigson (2001) and Lustig and Nieuwerburgh (2005)) that the CCAPM does a 

 
poor job in explaining cross-sectional stock returns. Also, consistent with early studies such as 

 
Fama and French (1992), market beta lacks power in predicting returns. It is even negatively 

 
related to returns when the Pastor-Stambaugh factor loading or the Sadka factor loading is 

 
involved in the cross-section regressions.18 We also conduct the Wald test of joint significance 

 
of the parameters for the liquidity-augmented Epstein-Zin model. The null hypothesis that 

 
the parameters are jointly zero is rejected at the conventional level. 

 
 

4.3. Price of covariance risk 

 
Kan, Robotti, and Shanken (2013) argue that the price of covariance risk is related to the 

 
rise of explanatory power to the cross-sectional return variations in a multi-factor model. It is, 

 
therefore, important to test whether the coefficient of covariance risk relating to a particular 

 
The coefficient on the liquidity beta estimated with the Sadka (2006) liquidity factor is significant at the 5% level 

according to the FM t -ratio. 

Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Petkova (2006) report the negative estimates 

for the market risk premium. 
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factor is significantly different from zero. Kan, Robotti, and Shanken (2013) provide detailed 

 
mathematical derivation for the role of covariance risk in their Internet Appendix A. We 

 
provide a simple illustration using the original two-factor Epstein-Zin model based on the 

 
Internet Appendix C of Kan, Robotti, and Shanken (2013). Let γ = [γ0, γcg, γmkt]

 , where γ0 

 
is the zero-beta rate, γcg is the risk premium for consumption growth (cg), and γmkt is the 

 
risk premium for excess market return (mkt). Similarly, let λ = [λ0, λcg, λmkt]

 , where λ0 is 

 
the zero-beta rate, λcg is the price of covariance risk for consumption growth (cg), and λmkt 

 
is the price of covariance risk for excess market return (mkt). Suppose cg and mkt have the 

 
following values: 

  

0.03 -0.02 
Vf = (4) 

-0.02 0.03 

 
Suppose there are four assets whose expected returns are R = [0.02, 0.03, 0.04, 0.05] . Their 

 
covariance with cg and mkt are 

  

0.01 0.02 0.03 0.04 
VfR = (5) 

0.03 0.05 0.02 0.01 

 
In this setting, the covariances between the four assets and the first factor alone can fully 

 
account for the returns of the four assets, since the relation between R and the first row of 

 
Vf R is linear. On the contrary, when we compute the betas with respect to the consumption 

 
and market factors, we can have 
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1.80 2.20 

 
3.20 3.80 

  

2.60 2.40 

 
2.80 2.20 

 
Further, we can obtain γ0 = 0.01, γcg = 0.03, and γmkt = -0.02. γmkt is nonzero even 

 
though the market factor is irrelevant. This suggests that when the CCAPM is correctly 

 
specified, it does not necessarily mean that the market beta in the Epstein-Zin model should 

 
not be priced. 

 
When we assume that the expected returns are R = [0.1, 0.17, 0.14, 0.15] , the covariances 

 
with respect to the first factor alone cannot fully explain the expected returns. However, 

 
the relation between R and the first column of β is linear. Further, we can obtain γ0 = 0.01, 

 
γcg = 0.05, and γmkt = 0. γmkt is zero even though the market factor is necessary in explaining 

 
the expected returns. The above numerical example highlights the importance of covariance 

 
risk and explains why it adds more explanatory power to the asset pricing models. 

 
Following Kan, Robotti, and Shanken (2013), we run the following cross-sectional regres- 

 
sion: 

 
 
 

Ri,t = λ0 + λcgC ov(Ri , cg) + λmktC ov(Ri , mkt) + λliq C ov(Ri , liq) + ei,t, (7) 

 
 
where C ov(Ri , cg) denotes the covariance of returns and consumption growth, C ov(Ri, mkt) 

 
denotes the covariance of returns and excess market returns, and C ov(Ri , liq) denotes the 
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(6)  

 

 

 

 

 

 
 

 

 

β =  

 



covariance of returns and the liquidity factor. These covariances are estimated for each testing 

 
portfolio over the entire sample period. 

 
Table 4 reports the parameter (λ) estimates of the OLS and GLS regressions of portfolio 

 
returns on the three covariances. The results are similar to the ones presented in Table 3. 

 
For the OLS estimates, the coefficient of the covariance between return and market liquidity 

 
is significantly positive at the 5% level for all t -ratios except for the Sadka (2006) liquidity 

 
factor.19 Under the GLS estimates, λliq is significantly positive, regardless of the liquidity 

 
factors and t -ratios used. Overall, Table 4 shows that, according to Kan, Robotti, and Shanken 

 
(2013), the liquidity adjustment adds significant explanatory power to the model. 

 
 

4.4. Model performance 

 
In this sub-section, we compare the performance of the liquidity-augmented Epstein-Zin 

 
model with other consumption pricing models. Following Kandel and Stambaugh (1995), our 

 
comparison first utilizes the sample cross-sectional R2, which is given by: 

 
R2 = 1 - , (8) 

 
where  0 is the deviations of mean sample returns from their cross-sectional average and 

 
 ¯ W  ¯ is the aggregate pricing-error measure. Table 5 reports the sample cross-sectional 

 
R2. Specifically, for the 25 Fama–French value-weighted size and book-to-market portfolios, 

 
the fraction of cross-sectional return variations explained by our liquidity-augmented Epstein- 

 
Zin model is 59.1%, 67.2%, and 69.0% (27.3%, 23.9%, and 47.5%) under the OLS (GLS) 

 
The coefficient on the covariance of portfolio returns with the Sadka (2006) liquidity factor is significant at the 

5% level according to the FM t -ratio and at the 10% level according to the SH t -ratio. 
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regressions, using the Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006) liquidity 

 
factors, respectively. In contrast, the traditional CCAPM and the Epstein-Zin model explain a 

 
much smaller proportion of return variations. For example, the corresponding figures relative 

 
to the original Epstein-Zin model are 29.8%, 37.5%, and 51.7% (10.9%, 14.0%, and 23.8%) 

 
under the OLS (GLS) regressions. 

 
Kan, Robotti, and Shanken (2013) argue that it is important to test whether the seemingly 

 
better performance of one model over another is statistically significant. We, thus, test whether 

 
the differences of the cross-sectional R2 between our model and the traditional CCAPM or 

 
the Epstein-Zin model are statistically significant. Following Kan, Robotti, and Shanken 

 
(2013), we estimate the p value under the null hypothesis that the cross-sectional R2s of two 

 
competing models are equal. 

 
Table 5 shows that, under the OLS (GLS) estimates, our model offers 59.0% (23.7%) to 

 
67.2% (47.2%) additional explanatory power compared to the traditional CCAPM. Further, 

 
the null hypothesis of the equality of cross-sectional R2s is rejected at the 5% level, regardless of 

 
the estimation methods and liquidity factors used. Similarly, the liquidity-augmented Epstein- 

 
Zin model also significantly explains a larger fraction of return variations than the Epstein-Zin 

 
model, expect for the Sadka (2006) liquidity factor under the OLS estimates. 

 
While the cross-sectional R2 is aimed at explaining expected returns, the HJ distance of 

 
Hansen and Jagannathan (1997) is oriented towards measuring a model’s power in explaining 

 
asset prices (Kan, Robotti, and Shanken (2013)). Accordingly, our second comparison relies 

 
on the HJ distance. Smaller HJ distances indicate smaller pricing errors. Similar to the 
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argument about tests of equality of cross-sectional R2, Kan and Robotti (2009) develop tests 

 
of equality of squared HJ distances to examine whether a smaller (bigger) HJ distance of 

 
one model over another is statistically significant. Following their work, we conduct tests of 

 
equality of squared HJ distances, which are based on their Proposition 2 for nested models 

 
and Proposition 6 for nonnested models. 

 
For tests of equality of squared HJ distances of two nested models, Kan and Robotti (2009) 

 
show that the asymptotic distribution of the sample squared HJ distances is related to the 

 
asymptotic variance of estimated coefficients on factor risk loadings. The variance of the 

 
estimated coefficients on factor risk loadings is adjusted by potential model misspecification. 

 
For example, the liquidity-augmented model nests the original Epstein-Zin model. The extra 

 
factor is the liquidity risk factor. Therefore, the asymptotic distribution for the test of equality 

 
of squared HJ distances is associated with the asymptotic variance of estimated coefficients 

 
on liquidity risk. The variance of the estimated coefficients on liquidity risk is adjusted by 

 
potential model misspecification. 

 
For tests of equality of squared HJ distances of two nonnested models, we follow Kan 

 
and Robotti (2009) by assuming that the two models have equal stochastic discount factor 

 
(SDF) and are both misspecified. Under these assumptions, the asymptotic distribution of 

 
the sample squared HJ distances is asymptotically normally distributed. The p value of the 

 
test statistic associated with the hypothesis that the squared HJ distances of two competing 

 
models are equal can be computed accordingly. 
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Table 5 presents the results of the tests of equality of squared HJ distances between 

 
alternative models. Similar to the cross-sectional R2 tests, the liquidity-augmented Epstein- 

 
Zin model produces smaller HJ distance than the CCAPM and the Epstein-Zin model. The 

 
null hypothesis that the squared HJ distances of two competing models are equal is rejected 

 
at the 5% level under both Liu (2006) and Sadka (2006) liquidity factors. 

 
 

4.5. Fitted versus realized returns 

 
Figure 2 plots the realized average portfolio returns and the fitted portfolio returns. With 

 
the traditional CCAPM, the fitted expected returns are calculated as E[R] = γ0 + γcgβcg . The 

 
Epstein-Zin model based expected returns are calculated as E[R] = γ0 + γcgβcg + γmktβmkt. 

 
The fitted expected returns under the liquidity-augmented Epstein-Zin model are calculated 

 
as E[R] = γ0 + γcgβcg + γmktβmkt + γliqβliq . 

 
Each two-digit number in Figure 2 indicates one portfolio. The first digit denotes the size 

 
quintile (1 representing the smallest and 5 the largest), and the second denotes the book- 

 
to-market quintile (1 representing the lowest and 5 the highest). The vertical distance of 

 
these points to the 45 degree line represents the pricing errors. Figure 2 shows that, over- 

 
all, the pricing errors associated with the liquidity-augmented Epstein-Zin model are smaller 

 
than those associated with either the traditional CCAPM or the original Epstein-Zin model. 

 
Specifically, the CCAPM or the Epstein-Zin model has difficulties in explaining the expected 

 
returns of book-to-market portfolios for a given size quintile. For instance, performances of 

 
the small growth portfolio (portfolio 11) and the small value portfolio (portfolio 15) are poorly 

 
described by the CCAPM and the Epstein-Zin model. In contrast, there is substantial im- 
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provement in nearly all the size and book-to-market portfolios for the liquidity-augmented 

 
Epstein-Zin model. It especially shortens the vertical distance, the pricing error, of small 

 
value portfolios to the 45-degree line. 

 
 

5. Robustness tests 

 
In this section, we first test the robustness of our results by examining the estimated risk 

 
premium and the price of covariance risk under various adjustments and by adding industry 

 
portfolios to the main test portfolios. We then test the robustness of the model performance 

 
under these new settings. 

 

5.1. Robustness on risk premium and price of covariance risk 

 
Lettau and Ludvigson (2001) show that the traditional CCAPM conditional on the consumption- 

 
to-wealth ratio (cay) explains the expected return variations as well as the Fama–French 

 
(1993) three-factor model does. We embed cay and the product of cg and cay (cg · cay) into 

 
the liquidity-augmented Epstein-Zin model to test the robustness of our results. Specifically, 

 
we run the Fama-MacBeth cross-sectional regressions on the following two equations: 

 
 
 

Ri,t = γ0 + γcgβi,cg + γcayβi,cay + γcg·cayβi,cg·cay + γmktβi,mkt + γliqβi,liq + ei,t, (9) 

 
 
 
 
 

Ri,t =λ0 + λcgC ov(Ri , cg) + λcay C ov(Ri , cay) + λcg·cayC ov(Ri , cg · cay) 
(10) 

+ λmktC ov(Ri , mkt) + λliq C ov(Ri , liq) + ei,t. 
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Panel A of Table 6 shows that, after controlling for cay, the estimated risk premium and 

 
the price of covariance risk for the liquidity factors remain significantly positive at the 5% 

 
level, except for the Sadka (2006) liquidity factor under the OLS estimates.20 

 
Bansal and Yaron (2004), Parker and Julliard (2005), Da (2009), Márquez, Nieto, and 

 
Rubio (2014), and Favilukis and Lin (2013) highlight the importance of long-run consumption 

 
risk in explaining the cross-sectional variations of expected returns. Following Parker and 

 
Julliard (2005), we measure consumption risk by using the consumption growth of nondurable 

 
goods over 36 months (cg36) to test the liquidity-augmented Epstein-Zin model. Specifically, 

 
we run the following two cross-sectional regressions: 

 
 
 

Ri,t = γ0 + γcg36βi,cg36 + γmktβi,mkt + γliqβi,liq + ei,t, (11) 

 
 
 
 

Ri,t = λ0 + λcg36C ov(Ri , cg36) + λmktC ov(Ri , mkt) + λliq C ov(Ri , liq) + ei,t. (12) 

 
 

Table 6, Panel B shows that, in general, liquidity risk is significantly priced and the 

 
covariance risk of liquidity contributes significantly to the model’s explanatory power. 

 
Recent studies point out that when utility is nonseparable in nondurable and durable 

 
consumption, the durable goods plays an important role in determining expected returns 

 
(Yogo (2006) and Gomes, Kogan, and Yogo (2009)). Following Yogo (2006), we incorporate 

 
 
 

The coefficient on the liquidity beta based on the Sadka (2006) liquidity factor is significant at the 5% level 

according to the FM t -ratio under the OLS estimates. The coefficient on the covariance between portfolio return and 

the Sadka (2006) liquidity factor is significant at the 5% (10%) level according to the FM (SH) t -ratio under the OLS 

estimates. 
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the durable consumption growth (cgd) into our model and run the following two cross-sectional 

 
regressions: 

 
 
 

Ri,t = γ0 + γcgβi,cg + γcgdβi,cgd + γmktβi,mkt + γliqβi,liq + ei,t, (13) 

 
 
 
 
 
 
Ri,t = λ0 +λcgC ov(Ri , cg)+λcgdC ov(Ri , cgd)+λmktC ov(Ri, mkt)+λliq C ov(Ri , liq)+ei,t. (14) 

 
 
 

Table 6, Panel C shows that, for the Pastor and Stambaugh (2003) liquidity factor, the 

 
coefficients of the liquidity risk (γliq ) and the covariance risk related to liquidity (λliq ) are 

 
statistically significant with the FM t -ratio (FM, SH, and JW t -ratios) under the OLS (GLS) 

 
estimates. For the Liu (2006) factor, γliq significantly differs from zero at the 1% level. For the 

 
Sadka (2006) factor, γliq and λliq are significantly different from zero at the 5% level, except 

 
for the KRS t -ratio under the OLS estimates. 

 
Lewellen, Nagel, and Shanken (2010) argue that the tight factor structure of size and book- 

 
to-market portfolios tends to be less powerful in rejecting misspecified asset pricing models 

 
and results in high R2 in cross-sectional tests. They advocate that asset pricing tests should 

 
incorporate other sets of portfolios (e.g., industry portfolios) to disintegrate the structure of 

 
size and book-to-market portfolios. To address this concern, we expand the 25 Fama–French 

 
value-weighted size and book-to-market portfolios with five value-weighted industry portfolios 

 
of Gomes, Kogan, and Yogo (2009). Table 6, Panel D reports the results for the 30 test 
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portfolios. Results are similar to previous ones, i.e., the estimated liquidity risk premium and 

 
the price of covariance risk relating to liquidity are, in general, significant under the 30 test 

 
portfolios. 

 

5.2. Robustness on cross-sectional R
2
 and HJ distance 

 
Based on the above adjustments, we conduct further robustness tests on the model’s 

 
goodness-of-fit. Specifically, following Lettau and Ludvigson (2001) and Yogo (2006), we 

 
incorporate cay (and cg · cay) and cgd into the CCAPM, the Epstein-Zin model, and the 

 
liquidity-augmented Epstein-Zin model to take into account consumption-to-wealth ratio and 

 
durable goods.21 We follow Parker and Julliard (2005) and measure consumption growth over 

 
a horizon of 36 months (cg36) to test the above models. We use the 25 Fama–French size and 

 
book-to-market portfolios plus five industry portfolios of Gomes, Kogan, and Yogo (2009) as 

 
the alternative test portfolios to examine the performance of these models. 

 
Panels A and B of Table 7 report the results on the differences of cross-sectional R2 and 

 
HJ distance between the liquidity-augmented Epstein-Zin model and the traditional CCAPM 

 
and the Epstein-Zin model. It shows that the liquidity-augmented model, in general, signifi- 

 
cantly outperforms the CCAPM and the Epstein-Zin model after adjusting for consumption- 

 
to-wealth ratio, long-run consumption risk, durable consumption growth, and industry port- 

 
folios. 

 
 
 
 
 
 

Incorporating cay (and cg · cay) and cgd into the CCAPM and the Epstein-Zin model yields a three-factor (two-

factor) model and a four-factor (three-factor) model. 
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5.3. Robustness with other asset pricing models 

 
To further test the role of liquidity factor, we also examine the marginal explanation power 

 
of liquidity risk relative to other pricing models: 

 
 
 

E[Ri - Rf ] = γmktβi,mkt, (15) 

 
 
 
 

E[Ri - Rf ] = γmktβi,mkt + γsmbβi,smb + γhmlβi,hml, (16) 

 
 
 
 

E[Ri - Rf ] = γmktβi,mkt + γlabβi,lab + γpremβi,prem, (17) 

 
 
Eq. (15) is the CAPM (Sharpe (1964) and Lintner (1965)), Eq. (16) is the Fama–French 

 
(1993) three-factor model (FF3), and Eq. (17) is the Jagannathan and Wang (1996) model 

 
(JW). The notation smb is the size factor, hml is the book-to-market factor,22 lab is the 

 
growth rate in per capita labor income (L) defined as the difference between total personal 

 
income and dividend payments, divided by the total population from the National Income and 

 
Product Accounts (NIPA), and prem is the lagged yield spread between Baa- and Aaa-rated 

 
corporate bonds from the Board of Governors of the Federal Reserve System.23 Following 

 
Jagannathan and Wang (1996), we use a two-month moving average to construct the growth 

 
rate labt = - 1 to mitigate the influence of measurement errors. 

 
 
 

We obtain the factor values from Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 

http://research.stlouisfed.org/fred2/ 
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We incorporate the liquidity factor into the above three models and then evaluate whether 

 
liquidity risk is priced and whether the liquidity factor contributes to the increase of cross- 

 
sectional R2. Table 8 shows that, in general, liquidity risk is significantly priced and the 

 
covariance risk of liquidity contributes significantly to the model’s explanatory power. We 

 
also examine whether these liquidity-augmented Epstein-Zin models outperform the original 

 
models. Table 9 shows that the augmented-CAPM, FF3 model, and JW model perform better 

 
than the original models. 

 
 

6. Conclusion 

 
Liquidity costs, which are generally related to transaction costs, thin or infrequent trading, 

 
and the impact of trading on price, affect investors’ investment return and consumption. 

 
Recently, a series of papers (Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006)) 

 
highlight the importance of liquidity in asset pricing. While existing studies appear to make 

 
adjustment to the CAPM or the Fama–French three-factor model with liquidity risk and show 

 
that models with liquidity adjustment reveal significantly increased explanatory power, there 

 
are few studies incorporating liquidity risk into consumption based pricing models. In this 

 
paper, we develop a liquidity-augmented Epstein-Zin model under the setting that after taking 

 
into account liquidity costs, individuals maximize their life-time utility of consumption. Our 

 
model reveals that in addition to the consumption and market risks, expected stock return is 

 
also determined by liquidity risk. 

 
Applying a number of newly developed procedures in testing asset pricing models, we 

 
empirically evaluate our three-beta pricing model against the traditional CCAPM and the 
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Epstein-Zin two-beta model. We find that the liquidity risk is fairly priced and the liquidity 

 
factor makes a significant contribution to explain cross-sectional expected returns. In contrast 

 
with the significant pricing power of liquidity risk, consumption risk and market risk generally 

 
display insignificant return predictability. 

 
In terms of both the cross-sectional R2 and the Hansen and Jagannathan (1997) distance, 

 
the results show that our model performs better than the traditional CCAPM and the Epstein- 

 
Zin model based on the equality tests of the cross-sectional R2 (Kan, Robotti, and Shanken 

 
(2013)) and the HJ distance (Kan and Robotti (2009)). Thus, our results not only support 

 
the extension of liquidity risk to asset pricing, but the extension also helps to explain why the 

 
empirical performance of the CCAPM and the Epstein-Zin model is less successful. 
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Table 1 
Descriptive statistics 

 
This table reports the descriptive statistics for the main variables of the excess market returns (mkt), consumption 

growth of nondurables and services (cg), consumption to aggregate wealth ratio (cay), consumption growth of non-

durable goods over 36 months (cg36), durable consumption growth (cgd), and three liquidity risk factors. The notation 

liq
P S

 stands for the aggregate liquidity innovation of Pastor and Stambaugh (2003) from 1962 to 2010, liq
LM

 for Liu’s 

(2006) mimicking liquidity risk factor from 1959 to 2010, and liq
Sadka

 for Sadka’s (2006) aggregate liquidity innovation 

based on the variable component of price impact from 1983 to 2010. 

 
 
 

mkt cg cay cg36 cgd liq
P S

 liq
LM

 liq
Sadka 

Descriptive statistics 

Mean 0.568 0.138 0.471 4.170 0.423 0.002 0.594 -0.000 

Stdev 4.581 0.291 2.128 3.692 2.775 0.062 4.031 0.006 

Correlation 

cg 0.129 1 

cay -0.040 0.064 1 

cg36 0.086 0.187 0.233 1 

cgd -0.029 0.218 -0.007 0.118 1 

liq
P S

 0.301 0.053 0.036 0.047 0.042 1 

liq
LM

 -0.739 -0.106 0.109 0.060 0.030 -0.167 1 

liq
Sadka

 0.166 0.099 -0.113 0.024 0.078 0.231 0.017 1 
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Table 2 
Liquidity betas estimated from time-series regressions 

 
This table reports liquidity betas for each of the 25 Fama–French value-weighted size and book-to-market portfolios. 

Risk loadings are estimated from a multiple time-series regression over the entire sample period. Specifically, we 

estimate the liquidity beta according to the following equation: 

+ βcg,ifcg + βmkt,ifmkt + βliq,ifliq + ei, 

where cg , mkt, and liq denote the the aggregate consumption growth of nondurable goods and services, market factor, 

and liquidity factor, respectively. Our test uses three alternative liquidity risk factors: the aggregate liquidity innovation 

of Pastor and Stambaugh (2003) from 1962 to 2010 in Panel A, Liu’s (2006) mimicking liquidity risk factor from 1959 

to 2010 in Panel B, and Sadka’s (2006) aggregate liquidity innovation based on the variable component of price impact 

from 1983 to 2010 in Panel C. 

 

Low 2 3 4 

Panel A: Pastor and Stambaugh (2003) liquidity measure 

0.021 0.038 

(0.64) (1.39) 

0.047 0.046 

(2.05) (2.15) 

0.050 0.048 

(2.86) (2.74) 

0.039 0.038 

(2.68) (2.28) 

0.028 0.015 

(2.19) (0.95) 

Panel B: Liu (2006) liquidity measure 

0.045 0.226 0.329 

(0.71) (4.40) (6.76) 

-0.025 0.118 0.190 

(-0.58) (2.92) (4.68) 

-0.016 0.130 0.192 

(-0.47) (3.87) (5.39) 

0.036 0.106 0.133 

(1.30) (3.33) (3.96) 

0.076 0.103 0.192 

(1.30) (3.33) (3.96) 

Panel C: Sadka (2006) liquidity measure 

0.331 0.582 0.569 0.965 

(0.87) (2.01) (2.01) (3.11) 

0.407 0.401 0.367 0.615 

(1.58) (1.75) (1.49) (2.03) 

0.093 0.231 0.216 0.584 

(0.47) (1.15) (0.96) (2.27) 

0.429 0.401 0.149 0.512 

(2.51) (1.97) (0.75) (1.97) 

0.155 -0.039 0.064 0.134 

(0.95) (-0.22) (0.28) (0.47) 

 
 

 
 

30

Ri = αi 

0.054 

(2.04) 

0.042 

(1.94) 

0.031 

(1.64) 

0.018 

(1.03) 

-0.023 

(-1.26) 

Small 0.021 

(0.56) 

2 0.018 

(0.64) 

3 0.013 

(0.55) 

4 0.013 

(0.73) 

Big -0.030 

(-2.29) 

 
Small -0.147 

(-2.00) 

2 -0.353 

(-6.66) 

3 -0.353 

(-8.21) 

4 -0.319 

(-9.97) 

Big -0.077 

(-9.97) 

 

Small 0.025 

(0.06) 

2 0.011 

(0.03) 

3 -0.047 

(-0.16) 

4 -0.011 

(-0.05) 

Big -0.298 

(-2.07) 

High 

 

0.060 

(2.05) 

0.034 

(1.28) 

0.051 

(2.17) 

0.031 

(1.33) 

-0.019 

(-0.81) 

 

0.447 

(8.43) 

0.218 

(4.36) 

0.228 

(5.05) 

0.209 

(4.73) 

0.205 

(4.73) 



 
 
Table 3 
Risk premium 

 
This table reports the cross-sectional regression results using the monthly portfolio returns of the 25 Fama–French 

value-weighted size and book-to-market portfolios. To estimate the risk premium, we run the following regression: 

Ri,t = γ0 + γcgβi,cg + γmktβi,mkt + γliqβi,liq + ei,t, 

where βi,cg denotes the consumption beta, βi,mkt denotes the market beta, and βi,liq denotes the liquidity beta. These 

betas are estimated from a multiple time-series regression for each testing portfolio over the entire sample period. We 

report the model parameters (γs) estimated using both the ordinary least squares (OLS) and the generalized least 

squares (GLS) regressions. The estimated coefficients are in percentage. For robustness, we report different t -statistics: 

the FM t -ratio of Fama and MacBeth (1973), the SH t -ratio of Shanken (1992) with errors-in-variables adjustment, 

the JW t -ratio of Jagannathan and Wang (1996), and the KRS t -ratio of Kan, Robotti, and Shanken (2013) under 

potentially misspecified models. The test uses three alternative liquidity risk factors: the aggregate liquidity innovation 

of Pastor and Stambaugh (2003) from 1962 to 2010 in Panel A, Liu’s (2006) mimicking liquidity risk factor from 1959 

to 2010 in Panel B, and Sadka’s (2006) aggregate liquidity innovation based on the variable component of price impact 

from 1983 to 2010 in Panel C. 

 
 
 

OLS GLS 

γ0 γcg γmkt γliq γ0 γcg γmkt γliq 

Panel A: Pastor and Stambaugh (2003) liquidity factor 

Estimates 1.47 0.13 -0.81 5.67 1.46 0.04 -0.85 2.65 

FM t -ratio 4.04 1.88 -2.02 4.62 6.82 0.78 -2.99 3.10 

SH t -ratio 2.57 1.20 -1.37 2.97 5.82 0.67 -2.72 2.67 

JW t -ratio 1.97 0.90 -1.10 2.32 4.99 0.59 -2.42 2.57 

KRS t -ratio 1.85 0.58 -1.04 2.16 4.61 0.45 -2.24 1.88 

Panel B: Liu (2006) liquidity factor 

Estimates 0.48 0.18 0.17 0.90 0.89 0.09 -0.30 0.73 

FM t -ratio 1.03 2.43 0.34 4.04 3.25 1.62 -0.92 4.00 

SH t -ratio 0.87 2.06 0.29 3.61 3.06 1.53 -0.88 3.89 

JW t -ratio 0.84 2.04 0.28 3.63 2.92 1.45 -0.85 3.92 

KRS t -ratio 0.74 1.15 0.25 3.67 2.43 0.90 -0.74 3.71 

Panel C: Sadka (2006) liquidity factor 

Estimates 1.73 0.08 -1.01 0.38 2.25 0.06 -1.52 0.45 

FM t -ratio 3.04 1.16 -1.65 1.99 9.11 1.31 -4.32 4.22 

SH t -ratio 2.45 0.95 -1.37 1.62 6.91 1.02 -3.70 3.28 

JW t -ratio 2.51 1.02 -1.41 1.40 6.45 1.08 -3.43 3.49 

KRS t -ratio 2.42 0.66 -1.37 1.24 5.88 0.75 -3.15 2.69 
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Table 4 
Price of covariance risk 

 
This table reports the cross-sectional regression estimates using monthly returns of the 25 Fama–French value-weighted 

size and book-to-market portfolios. The regression is: 

Ri,t = λ0 + λcgCov(Ri, cg) + λmktCov(Ri, mkt) + λliqCov(Ri, liq) + ei,t, 

where Cov(Ri, cg) stands for the covariance between portfolio i’s return and consumption growth, Cov(Ri, mkt) for the 

covariance between portfolio i’s return and excess value-weighted market return, and Cov(Ri, liq) for the covariance 

between portfolio i’s return and the liquidity factor. These covariances are estimated for each testing portfolio over 

the entire sample period. We report model parameters (λs, in percentage) estimated using both the ordinary least 

squares (OLS) and generalized least squares (GLS) regressions. For robustness, we apply different t -statistics: the FM 

t -ratio of Fama and MacBeth (1973), the SH t -ratio of Shanken (1992) with errors-in-variables adjustment, the JW 

t -ratio of Jagannathan and Wang (1996), and the KRS t -ratio of Kan, Robotti, and Shanken (2013) under potentially 

misspecified models. Our test uses three alternative liquidity risk factors: the aggregate liquidity innovation of Pastor 

and Stambaugh (2003) from 1962 to 2010 in Panel A, Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010 

in Panel B, and Sadka’s (2006) aggregate liquidity innovation based on the variable component of price impact from 

1983 to 2010 in Panel C. 

 
 
 

OLS GLS 

λ0 λcg λmkt λliq λ0 λcg λmkt λliq 

Panel A: Pastor and Stambaugh (2003) liquidity factor 

Estimates 1.47 13346.65 -1465.09 2090.93 1.46 4523.35 -924.19 1049.16 

FM t -ratio 4.04 2.06 -4.86 4.86 6.82 0.99 -4.47 3.54 

SH t -ratio 2.57 1.30 -3.06 3.06 5.82 0.85 -3.77 2.99 

JW t -ratio 1.97 0.97 -2.38 2.31 4.99 0.73 -3.19 2.69 

KRS t -ratio 1.85 0.62 -2.63 2.22 4.61 0.56 -2.63 2.00 

Panel B: Liu (2006) liquidity factor 

Estimates 0.48 15456.17 544.77 1337.89 0.89 8181.65 137.79 796.36 

FM t -ratio 1.03 2.41 1.39 3.39 3.25 1.65 0.50 2.72 

SH t -ratio 0.87 2.02 1.17 2.83 3.06 1.55 0.47 2.55 

JW t -ratio 0.84 1.97 1.09 2.73 2.92 1.46 0.46 2.63 

KRS t -ratio 0.74 1.09 0.85 2.50 2.43 0.91 0.37 2.24 

Panel C: Sadka (2006) liquidity factor 

Estimates 1.73 8981.44 -791.33 9931.56 2.25 6859.74 -1062.87 11892.11 

FM t -ratio 3.04 1.11 -2.84 2.10 9.11 1.21 -5.60 4.49 

SH t -ratio 2.45 0.90 -2.28 1.69 6.91 0.92 -4.14 3.35 

JW t -ratio 2.51 0.88 -2.41 1.49 6.45 0.89 -3.91 3.61 

KRS t -ratio 2.42 0.58 -2.23 1.31 5.88 0.65 -3.66 2.73 
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Table 5 
Cross-sectional R

2
 and HJ distance 

 
This table reports the sample cross-sectional R

2
, the test of equality of cross-sectional R

2
 as in Kan, Robotti, and Shanken (2013), and the test of 

equality of HJ distance (Hansen and Jagannathan (1997)) as in Kan and Robotti (2009). We examine three consumption-based asset pricing models: 

the traditional CCAPM, the Epstein-Zin model and the liquidity-augmented Epstein-Zin model. The notation dR
2
 is the R

2
 of the liquidity-augmented 

Epstein-Zin model minus that of the CCAPM or Epstein-Zin model. Under the potentially misspecified model, we calculate the p-value, which is presented 

in parentheses next to dR
2
, to test the null that the cross-sectional R

2
 of two competing models are equal. The symbol dH J is the squared HJ distance 

of CCAPM or Epstein-Zin model minus that of liquidity-augmented Epstein-Zin model. The numbers in parentheses (next to dHJ ) calculated under 

potentially misspecified models are the p -values associated with the hypothesis that the squared HJ distances of two competing models are equal. Test 

assets are the 25 Fama–French value-weighted size and book-to-market portfolios. We report the results using both the ordinary least squares (OLS) and 

generalized least squares (GLS) estimates. We apply three alternative liquidity risk factors to the tests: the aggregate liquidity innovation of Pastor and 

Stambaugh (2003) from 1962 to 2010 in Panel A, Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010 in Panel B, and Sadka’s (2006) aggregate 

liquidity innovation based on the variable component of price impact from 1983 to 2010 in Panel C. 

 
 
 

Epstein-Zin model Liquidity-augmented model Tests of equality 

 
Traditional CCAPM Epstein-Zin model 

 
Panel A: Pastor and Stambaugh (2003) liquidity factor 

 
dR

2
 = 59.0% (0.016) dR

2
 = 29.3% (0.027) 

 
dR

2
 = 26.9% (0.028) dR

2
 = 16.4% (0.045) 

 
dHJ = 0.024 (0.130) dHJ = 0.016 (0.131) 

 
 
 

dR
2
 = 67.2% (0.000) dR

2
 = 29.8% (0.012) 

 
dR

2
 = 23.7% (0.001) dR

2
 = 9.9% (0.025) 

 
dHJ = 0.061 (0.000) dHJ = 0.057 (0.000) 

 
Panel C: Sadka (2006) liquidity factor 

 
R

2
 = 51.7% R

2
 = 69.0% dR

2
 = 59.6% (0.029) dR

2
 = 17.2% (0.190) 

 
R

2
 = 23.8% R

2
 = 47.5% dR

2
 = 47.2% (0.000) dR

2
 = 23.6% (0.005) 

 
H J = 0.654 H J = 0.594 dHJ = 0.093 (0.042) dHJ = 0.075 (0.038)

R
2
 = 29.8% R

2
 = 59.1% 

 
R

2
 = 10.9% R

2
 = 27.3% 

 
H J = 0.427 H J = 0.408 

 
Panel B: Liu (2006) liquidity factor 

 
R

2
 = 37.5% R

2
 = 67.2% 

 
R

2
 = 14.0% R

2
 = 23.9% 

 
H J = 0.403 H J = 0.324 

Traditional CCAPM 

 
 
 
 
 
R

2
 (OLS) R

2
 = 0.0% 

 
R

2
 (GLS) R

2
 = 0.3% 

 
HJ distance H J = 0.436 

 
 
 
R

2
 (OLS) R

2
 = 0.0% 

 
R

2
 (GLS) R

2
 = 0.2% 

 
HJ distance H J = 0.408 

 
 
 
R

2
 (OLS) R

2
 = 9.3% 

 
R

2
 (GLS) R

2
 = 0.3% 

 
HJ distance H J = 0.667 



Table 6 
Robustness on risk premium and the price of covariance risk 

 
With different settings for robustness tests, this table reports the estimated risk premium (γliq) and the price of covariance risk (λliq) with respect to 

the three alternative liquidity risk factors. Test assets are the 25 Fama–French value-weighted size and book-to-market portfolios, expect in Panel D. In 

Panels A and C, we incorporate the consumption-to-wealth ratio (cay and cg · cay) of Lettau and Ludvigson (2001) and durable consumption growth (cgd) 

of Yogo (2006) into the liquidity-augmented consumption model. In Panel B, we follow Parker and Julliard (2005) and measure consumption growth 

based on nondurable goods over 36 months (cg36). In Panel D, we expand the 25 Fama–French value-weighted size and book-to-market portfolios with 

five value-weighted industry portfolios. The classification of the five industries is based on Gomes, Kogan, and Yogo (2009). We report the estimated 

risk premium and price of covariance risk using both the ordinary least squares (OLS) and generalized least squares (GLS) regressions. The estimated 

coefficients are in percentage. For robustness, we report different t -statistics: the FM t -ratio of Fama and MacBeth (1973), the SH t -ratio of Shanken 

(1992) with errors-in-variables adjustment, the JW t -ratio of Jagannathan and Wang (1996), and the KRS t -ratio of Kan, Robotti, and Shanken (2013) 

under potentially misspecified models. The three alternative liquidity risk factors are the aggregate liquidity innovation of Pastor and Stambaugh (2003) 

from 1962 to 2010, Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010, and Sadka’s (2006) aggregate liquidity innovation based on the variable 

component of price impact from 1983 to 2010. 

 

OLS GLS OLS GLS OLS 

γliq λliq γliq λliq γliq λliq γliq λliq γliq λliq γliq λliq 

Sadka (2006) 

(2003) liquidity factor liquidity factor liquidity factor 

Panel A: cay (Lettau and Ludvigson (2001)) 

Estimates 5.25 2080.00 2.87 1084.52 0.85 1349.87 0.73 809.46 0.39 10142.47 0.46 12490.40 

FM t -ratio 4.35 4.80 3.24 3.63 4.17 3.46 4.02 2.75 2.07 2.26 4.03 4.31 

SH t -ratio 2.67 2.89 2.68 2.95 3.16 2.24 3.89 2.54 1.62 1.75 3.08 3.18 

JW t -ratio 2.18 2.26 2.50 2.57 3.45 2.03 3.92 2.61 1.37 1.50 3.40 3.59 

KRS t -ratio 1.86 2.04 1.87 1.99 3.22 1.97 3.68 2.20 1.25 1.34 2.41 2.48 

Panel B: cg36 (Parker and Julliard (2005)) 

Estimates 4.64 1619.96 2.76 1059.05 0.83 1521.23 0.70 824.15 0.49 13023.23 0.44 11929.91 

FM t -ratio 4.24 4.32 3.21 3.57 3.63 3.44 3.88 2.56 2.83 2.99 4.14 4.48 

SH t -ratio 2.74 2.73 2.72 2.96 3.43 3.13 3.83 2.48 2.15 2.23 3.28 3.41 

JW t -ratio 2.47 2.36 2.60 2.63 3.23 3.16 3.82 2.52 1.89 2.01 3.54 3.72 

KRS t -ratio 2.12 1.94 1.89 1.95 3.03 2.06 3.57 1.94 1.53 1.61 2.67 2.81 

Panel C: cgd (Yogo (2006)) 

Estimates 2.38 897.92 2.27 888.78 0.85 381.60 0.69 455.94 0.41 10554.70 0.46 12320.29 

FM t -ratio 2.04 2.08 2.56 2.85 3.80 0.86 3.76 1.27 2.82 2.75 4.25 4.48 

SH t -ratio 1.47 1.48 2.20 2.41 3.25 0.68 3.61 1.15 2.26 2.16 3.26 3.31 

JW t -ratio 1.45 1.42 2.13 2.19 3.48 0.73 3.72 1.19 2.05 2.02 3.25 3.25 

KRS t -ratio 1.02 1.05 1.48 1.55 3.29 0.38 3.45 0.82 1.36 1.35 2.57 2.55 

Panel D: FF25+5 industry (Lewellen, Nagel, and Shanken (2010)) 

Estimates 5.12 1848.55 2.14 838.95 0.76 1333.18 0.67 684.81 0.25 6373.98 0.25 6624.67 

FM t -ratio 4.12 4.24 2.76 3.23 3.58 3.53 3.93 2.47 1.37 1.44 2.56 2.77 

SH t -ratio 2.93 2.97 2.48 2.86 3.38 3.19 3.87 2.35 1.25 1.31 2.26 2.38 

JW t -ratio 2.18 2.10 2.32 2.52 3.40 3.11 3.92 2.35 1.15 1.22 2.41 2.68 

KRS t -ratio 2.16 2.10 1.80 1.94 3.42 2.99 3.70 1.99 0.92 0.94 1.61 1.78

ˆ ˆ ˆ ˆ ˆ ˆ 

GLS 
ˆ ˆ ˆ 

Pastor and Stambaugh 

ˆ ˆ 

Liu (2006) 

ˆ 



Table 7 
Robustness on cross-sectional R

2
 and HJ distance 

 
This table reports the test of equality of cross-sectional R

2
 and HJ distance obtained under different settings. Our tests 

are based on the 25 Fama–French value-weighted size and book-to-market portfolios, unless otherwise stated. In Panels 

A and B, we respectively evaluate our model relative to the CCAPM and the Epstein-Zin model. We incorporate the 

consumption-to-wealth ratio (cay and cg · cay) of Lettau and Ludvigson (2001) and durable consumption growth (cgd) 

of Yogo (2006) into the CCAPM, the Epstein-Zin model, and the liquidity-augmented Epstein-Zin model. We also 

follow Parker and Julliard (2005) and measure consumption growth based on nondurable goods over 36 months (cg36). 

In addition, we expand the 25 Fama–French value-weighted size and book-to-market portfolios with five value-weighted 

industry portfolios. The classification of the five industries is based on Gomes, Kogan, and Yogo (2009). We use these 

30 testing portfolios to compare our model with the CCAPM and the Epstein-Zin model. The symbol dR
2
 is the R

2
 

of the liquidity-augmented Epstein-Zin model (with different specifications) minus that of the CCAPM (with different 

specifications) in Panel A and Epstein-Zin model (with different specifications) in Panel B, p(dR
2
) (in parentheses) 

calculated under potentially misspecified models is the p -value associated with the hypothesis that the cross-sectional 

R
2
 of two competing models are equal, dH J is the squared HJ distance of CCAPM (with different specifications) in 

Panel A and Epstein-Zin model (with different specifications) in Panel B minus that of the liquidity-augmented Epstein-

Zin model (with different specifications), and p(dHJ ) (in parentheses) calculated under potentially misspecified models 

is the p -value associated with the hypothesis that the squared HJ distances of two competing models are equal. We 

report the results using both the ordinary least squares (OLS) and generalized least squares (GLS) estimates. Our tests 

are based on three alternative liquidity risk factors: the aggregate liquidity innovation of Pastor and Stambaugh (2003) 

from 1962 to 2010 in columns 1, 2, and 3; Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010 in columns 

4, 5, and 6; and Sadka’s (2006) aggregate liquidity innovation based on the variable component of price impact from 

1983 to 2010 in columns 7, 8, and 9. 

 
 
 

Panel A: the traditional CCAPM and the liquidity-augmented Epstein-Zin model 

Pastor and Stambaugh Liu (2006) Sadka (2006) 

(2003) liquidity factor liquidity factor liquidity factor 

1 2 3 4 5 6 7 8 9 

dR
2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ 

p(dR
2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) 

cay: Lettau and Ludvigson (2001) 

0.592 0.252 0.026 0.687 0.217 0.048 0.438 0.419 0.109 

(0.029) (0.046) (0.188) (0.012) (0.004) (0.001) (0.048) (0.000) (0.054) 

cg36: Parker and Julliard (2005) 

0.314 0.275 0.022 0.295 0.191 0.052 0.642 0.458 0.081 

(0.104) (0.018) (0.161) (0.049) (0.004) (0.000) (0.152) (0.000) (0.064) 

cgd: Yogo (2006) 

0.241 0.234 0.022 0.200 0.178 0.059 0.447 0.465 0.100 

(0.093) (0.034) (0.168) (0.101) (0.016) (0.000) (0.059) (0.000) (0.030) 

FF25+5 industry: Lewellen, Nagel, and Shanken (2010) 

0.496 0.212 0.020 0.633 0.188 0.066 0.424 0.253 0.058 

(0.042) (0.023) (0.130) (0.000) (0.001) (0.000) (0.104) (0.004) (0.066) 

 
[Cont.] 
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Table 7 
Continued 

 

 

Panel B: the Epstein-Zin model and the liquidity-augmented Epstein-Zin model 

Pastor and Stambaugh Liu (2006) Sadka (2006) 

(2003) liquidity factor liquidity factor liquidity factor 

1 2 3 4 5 6 7 8 9 

dR
2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ 

p(dR
2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) 

cay: Lettau and Ludvigson (2001) 

0.260 0.172 0.021 0.256 0.101 0.045 0.163 0.218 0.084 

(0.039) (0.045) (0.108) (0.050) (0.027) (0.000) (0.181) (0.012) (0.051) 

cg36: Parker and Julliard (2005) 

0.153 0.167 0.018 0.153 0.087 0.047 0.210 0.235 0.070 

(0.051) (0.050) (0.114) (0.039) (0.052) (0.000) (0.108) (0.004) (0.047) 

cgd: Yogo (2006) 

0.035 0.106 0.013 0.006 0.021 0.054 0.097 0.235 0.086 

(0.294) (0.120) (0.182) (0.706) (0.409) (0.000) (0.175) (0.009) (0.023) 

FF25+5 industry: Lewellen, Nagel, and Shanken (2010) 

0.260 0.117 0.013 0.362 0.067 0.061 0.086 0.078 0.042 

(0.034) (0.051) (0.135) (0.003) (0.045) (0.000) (0.345) (0.072) (0.073) 
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Table 8 
Robustness on risk premium and the price of covariance risk with other pricing models 

 
With different settings for robustness tests, this table reports the estimated risk premium (γliq) and the price of covariance risk (λliq) with respect 

to the three alternative liquidity risk factors. Test assets are the 25 Fama–French value-weighted size and book-to-market portfolios. In Panel A, we 

incorporate the liquidity factor into the traditional CAPM (Sharpe (1964) and Lintner (1965)). In Panel B, we incorporate the liquidity factor into the 

Fama–French (1993) three-factor model (FF3). In Panel C, we we incorporate the liquidity factor into the Jagannathan and Wang (1996) model (JW). 

We report the estimated risk premium and price of covariance risk using both the ordinary least squares (OLS) and the generalized least squares (GLS) 

regressions. The estimated coefficients are in percentage. For robustness, we report different t -statistics: the FM t -ratio of Fama and MacBeth (1973), 

the SH t -ratio of Shanken (1992) with errors-in-variables adjustment, the JW t -ratio of Jagannathan and Wang (1996), and the KRS t -ratio of Kan, 

Robotti, and Shanken (2013) under potentially misspecified models. The three alternative liquidity risk factors are the aggregate liquidity innovation of 

Pastor and Stambaugh (2003) from 1962 to 2010, Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010, and Sadka’s (2006) aggregate liquidity 

innovation based on the variable component of price impact from 1983 to 2010. 

 

GLS OLS GLS 

λliq γliq λliq γliq λliq γliq λliq 

Liu (2006) Sadka (2006) 

(2003) liquidity factor liquidity factor liquidity factor 

Panel A: CAPM 

2403.37 2.62 1035.46 0.85 1574.33 0.70 789.45 0.42 

4.84 3.06 3.49 3.77 3.82 3.87 2.70 2.11 

2.93 2.67 2.99 3.57 3.46 3.83 2.62 1.71 

2.13 2.52 2.62 3.36 3.47 3.83 2.75 1.50 

2.69 1.82 1.94 3.34 3.58 3.60 2.30 1.37 

Panel B: FF3 (Fama and French (1993)) 

919.66 1.76 715.48 0.43 -169.20 0.60 205.90 0.53 

2.31 1.96 2.30 2.07 -0.40 3.07 0.58 4.07 

2.02 1.79 2.08 2.03 -0.39 3.03 0.56 3.06 

1.94 1.75 1.95 2.03 -0.39 3.03 0.55 3.16 

1.47 1.22 1.37 1.82 -0.26 2.85 0.47 1.65 

Panel C: JW (Jagannathan and Wang (1996)) 

Estimates 7.06 2550.56 2.49 974.78 0.98 1976.78 0.69 832.05 0.43 

FM t -ratio 4.54 4.67 2.72 3.07 4.43 4.97 3.81 2.84 2.29 

SH t -ratio 2.62 2.66 2.34 2.60 3.45 3.42 3.65 2.56 1.70 

JW t -ratio 1.93 1.86 2.22 2.28 2.92 3.22 3.62 2.83 1.57 

KRS t -ratio 2.33 2.26 1.49 1.59 2.86 3.69 3.36 2.41 1.53

ˆ 

10142.47 

2.28 

1.83 

1.62 

1.47 

 

14011.45 

4.18 

3.05 

2.92 

1.63 

 

11553.23 

2.50 

1.83 

1.73 

1.69 

0.44 11932.06 

4.16 4.51 

3.30 3.43 

3.52 3.68 

2.67 2.81 

 
0.46 12597.88 

4.04 4.32 

3.12 3.21 

3.32 3.33 

2.53 2.55 

 
0.44 12236.09 

4.07 4.48 

3.00 3.17 

3.09 3.31 

2.54 2.66 

OLS GLS 

λliq γliq λliq γliq 

Pastor and Stambaugh 

OLS 

ˆ γliq 

 
 
 

Estimates 6.65 

FM t -ratio 4.57 

SH t -ratio 2.82 

JW t -ratio 2.16 

KRS t -ratio 2.90 

 

Estimates 2.45 

FM t -ratio 2.13 

SH t -ratio 1.89 

JW t -ratio 1.87 

KRS t -ratio 1.45 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 



 
 
 
 
 
Table 9 
Robustness on cross-sectional R

2
 and HJ distance with other pricing models 

 
This table reports the results of the equality test of cross-sectional R

2
s and the equality test of HJ distances under 

different settings. Our tests are based on the 25 Fama–French value-weighted size and book-to-market portfolios. We 

incorporate the liquidity factor into the traditional CAPM (Sharpe (1964) and Lintner (1965)), the Fama–French (1993) 

three-factor model (FF3), and the Jagannathan and Wang (1996) model (JW), respectively. We then evaluate these 

augmented models relative to the original models. The symbol dR
2
 is the R

2
 of the augmented model (with different 

specifications) minus that of the original model (with different specifications), p(dR
2
) (in parentheses) calculated 

under potentially misspecified models is the p -value associated with the hypothesis that the cross-sectional R
2
 of two 

competing models are equal, dHJ is the squared HJ distance of the original model (with different specifications) minus 

that of the augmented model (with different specifications), and p(dHJ ) (in parentheses) calculated under potentially 

misspecified models is the p -value associated with the hypothesis that the squared HJ distances of two competing 

models are equal. We report the results using both the ordinary least squares (OLS) and generalized least squares 

(GLS) estimates. Our tests are based on three alternative liquidity risk factors: the aggregate liquidity innovation of 

Pastor and Stambaugh (2003) from 1962 to 2010 in columns 1, 2, and 3; Liu’s (2006) mimicking liquidity risk factor 

from 1959 to 2010 in columns 4, 5, and 6; and Sadka’s (2006) aggregate liquidity innovation based on the variable 

component of price impact from 1983 to 2010 in columns 7, 8, and 9. 

 
 
 

Pastor and Stambaugh Liu (2006) Sadka (2006) 

(2003) liquidity factor liquidity factor liquidity factor 

1 2 3 4 5 6 7 8 9 

dR
2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ dR

2
 (OLS) dR

2
 (GLS) dHJ 

p(dR
2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) p(dR

2
) p(dR

2
) p(dHJ) 

Panel A: CAPM 

0.473 0.160 0.016 0.545 0.100 0.056 0.238 0.267 0.075 

(0.006) (0.052) (0.135) (0.000) (0.021) (0.000) (0.004) (0.141) (0.040) 

Panel B: FF3 (Fama and French (1993)) 

0.041 0.069 0.008 0.001 0.005 0.023 0.115 0.219 0.054 

(0.141) (0.169) (0.262) (0.792) (0.641) (0.001) (0.100) (0.010) (0.095) 

Panel C: JW (Jagannathan and Wang (1996)) 

0.304 0.125 0.008 0.402 0.109 0.052 0.232 0.193 0.079 

(0.029) (0.096) (0.357) (0.001) (0.019) (0.000) (0.010) (0.102) (0.039) 
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Figure 1 

 
Time series plots of market liquidity 

 
This figure plots the aggregate liquidity innovation of Pastor and Stambaugh (2003) from 1962 to 2010 in Panel A, Liu’s (2006) 

mimicking liquidity risk factor from 1959 to 2010 in Panel B, and Sadka’s (2006) aggregate liquidity innovation based on the 

variable component of price impact from 1983 to 2010 in Panel C. 

Panel A: Pastor and Stambaugh (2003) liquidity factor 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

Panel B: Liu (2006) liquidity factor 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

Panel C: Sadka (2006) liquidity factor 
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Figure 2 

 

Fitted versus realized returns 

 
These figures plot the fitted returns versus realized returns using the OLS estimates. The horizonal axis shows the realized average 

portfolio return and the vertical axis shows the portfolio return fitted by different models. The straight line is the 45-degree line 

from the origin. Test portfolios are the 25 Fama–French value-weighted size and book-to-market portfolios. The realized average 

returns are the time-series average returns. The fitted expected returns for the traditional CCAPM are calculated with E[R] = γ0 + 

γcgβi,cg . The fitted expected returns for the Epstein-Zin model are calculated with E[R] = γ0 + γcgβi,cg + γmktβi,mkt. The fitted 

expected returns for the liquidity-augmented Epstein-Zin model are calculated with E[R] = γ0 +γcgβi,cg +γmktβi,mkt +γliqβi,liq. 

The consumption betas, market betas, and liquidity betas are estimated from a multiple time-series regression for each portfolio 

over the entire sample period. Each two-digit number in the figure indicates one portfolio. The first digit denotes the size quintile 

(1 representing the smallest and 5 the largest), and the second digit denotes the book-to-market quintile (1 representing the lowest 

and 5 the highest). We use three alternative liquidity risk factors: the aggregate liquidity innovation of Pastor and Stambaugh 

(2003) from 1962 to 2010 in Panel A, Liu’s (2006) mimicking liquidity risk factor from 1959 to 2010 in Panel B, and Sadka’s 

(2006) aggregate liquidity innovation based on the variable component of price impact from 1983 to 2010 in Panel C. 
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Panel C: Sadka (2006) liquidity factor 
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APPENDIX A 

 
In this appendix, we embed stock liquidity, our key element, into the Epstein and Zin 

 
(1989, 1991) model to develop the liquidity-adjusted model. The wealth dynamic is based on 

 
Lynch and Tan (2011). 

 
 

The utility function 

 
We assume that there exists a representative consumer, i.e., all individuals are identical 

 
with respect to utility and initial wealth. We develop a model based on the representative 

 
consumer’s multiperiod consumption and investment decision model of Samuelson (1969) and 

 
Merton (1969). The decision interval is a discrete time period and each period is of unit length. 

 
We assume that the representative consumer’s utility follows the Epstein and Zin (1989, 1991) 

 
recursive function, which allows the disentanglement of risk aversion and the intertemporal 

 
elasticity of substitution. The recursive utility function is a recursive aggregation over current 

 
consumption and a certainty equivalent of future utility. It has the form: 

 
 

1 

Ut = (1 - β )Ct + β (E[Ut+1 ]) , (A-1) 

 
 
where Ct denotes the consumption at time t, Ut+1 denotes the continuation value of the future 

 
consumption plan, β denotes the subjective discount factor, θ denotes the coefficient of relative 

 
risk aversion, and denotes the elasticity of intertemporal substitution (EIS) in consumption. 

 
When θ = ρ, the recursive utility function collapses to the traditional constant relative risk 

 
aversion (CRRA) utility function. We later show that the recursive utility allows us to take 
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1-ρ 1-ρ 1-θ 
1-ρ 

1-θ 

1 

ρ 



into account the excess market returns in our liquidity-augmented Epstein-Zin model, which 

 
is in line with Pastor and Stambaugh (2003), Liu (2006), and Sadka (2006). 

 
 

The liquidity effect 

 
The return (i.e., one plus the rate of return) of risky asset i after netting out liquidity costs 

 
 
 
 
 
 

Di,t+1 + Pi,t+1 - LCi,t+1 

Pi,t 

 
= Ri,t+1 - lci,t+1, 

 
 
where Pi,t+1 is the ex-dividend stock i’s price at t + 1, Di,t+1 is the dividend per share, LCi,t+1 

 
is the per-share cost of selling stock i,24 Ri,t+1 is the return before liquidity costs, Ri,t+1 is the 

 
net return, and lci,t+1 is the relative time-varying liquidity costs. In the spirit of Acharya and 

 
Pedersen (2005), investors can buy stock i at Pi,t+1, but have to sell it at Pi,t+1 - LCi,t+1. 

 
Broadly, liquidity costs stem from transaction costs,25 thin and infrequent trading, and 

 
price impact. For thinly and infrequently traded securities, liquidity traders may have to sell 

 
at low prices and to buy at high prices. For stocks with trading having high impact on price, 

 
selling (buying) can result in large price decrease (increase). 

 
 
 
 

Similar to Acharya and Pedersen (2005), Di,t+1 and LCi,t+1 follow the first-order autoregressive processes. While 

transaction costs are not taken into account by the traditional CCAPM, they are the subject currently 

generating much research interests, see, for example, Amihud and Mendelson (1986), Jacoby, Fowler, and Gottesman 

(2000), Lo, MacKinlay, and Wang (2004), Acharya and Pedersen (2005), Jang, Koo, Liu, and Loewenstein (2007), and 

Lynch and Tan (2011). 
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n 

is, 

 
 
 
 

Ri,t+1 = 

(A-2) 

n 

24 

25 



Let the representative consumer’s portfolio weight of the risky asset i be ωi,t (i = 1, 2, ..., n), 

 
the weight of the risk-free asset is then 1 - ωi,t. Suppose the representative consumer 

 
closes her position at t + 1. To take into account the liquidity effects on dynamic wealth, 

 
we follow Lynch and Tan (2011) by assuming that wealth evolves according to the following 

 
equation: 

 
 

n 

Wt+1 = (1 - Lt+1)(Wt - Ct ) Rf, t+1 + ωit(Ri, t+1 - Rf, t+1) . (A-3) 

i=1 

 

where Ct denotes consumption at t, Wt denotes wealth at t, Lt+1 denotes the liquidity costs 

 
per dollar of the portfolio value, and Rf, t+1 denotes the return (i.e., one plus the rate of 

 
return) of the risk-free asset for the period from t to t + 1. We assume that trading on the 

 
liquid risk-free asset incurs no liquidity costs. 

 
The effects of liquidity on optimal consumption and investment decisions are consistent 

 
with Lynch and Tan (2011) and Márquez, Nieto, and Rubio (2013). For example, Eq. (A-3) 

 
is similar to Eq. (3) in Lynch and Tan (2011), which takes into account the transaction costs 

 
in dynamic wealth.26 The economic meaning behind Eq. (A-3) is that wealth is partially 

 
distorted due to liquidity issues, since the representative consumer is exposed to the market 

 
in which net returns are obtained after adjusting for liquidity costs. The distortion generated 

 
by liquidity costs is fairly intuitive. According to Eq. (A-2), as long as the costs are bigger 

 
than zero, the net return (Ri, n) will be less than the unadjusted return (Ri). 

 
 
 

The term (1 - Lt+1) in Eq. (A-3) is also similar to the Lagrange multiplier associated with financial constraints 

in firms’ optimal investment decisions as in Gomes, Yaron, and Zhang (2006) and Whited and Wu (2006). 
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i=1 

 n 

26 



In Eq. (A-3), 1 - Lt+1 reflects the effect of liquidity costs. Chordia, Roll, and Subrah- 

 
manyam (2000), Hasbrouck and Seppi (2001), and Acharya and Pedersen (2005) show that 

 
individual stock liquidity tends to co-move with market liquidity. As the representative con- 

 
sumer holds a portfolio of risky assets, 1 - Lt+1 captures the aggregate liquidity shocks on 

 
the budget constraints over time, i.e., the aggregate distortion due to liquidity costs on dy- 

 
namic wealth. The wealth dynamic in investors’ trading activities is related to the amount of 

 
consumption and returns from investment in risky and risk-free assets. When Lt+1 = 0, the 

 
wealth dynamic is also related to liquidity costs. For example, holding other factors constant, 

 
investors’ wealth is affected more negatively when their tradings incur higher liquidity costs. 

 
The loss in wealth associated with the trading activity is attributed to liquidity risk, which is 

 
shown later in our liquidity-augmented Epstein-Zin model. This is in line with the argument 

 
that liquidity risk arises from consumption and solvency constraints (Liu, 2010 and Chien and 

 
Lustig, 2010). 

 
 

The liquidity-augmented Epstein-Zin model 

 
The representative consumer maximizes her life-time utility function as follow: 

 T -1   

Cs, ωi,s, ∀ s,i 

 

 

 

 

that is monotonically increasing and strictly concave, and Et [ ] is the expectation function 

 
conditional on information at time t. 
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max Et U(Cs ) + B(WT ) , (A-4) 

s=t 

 

where U(Cs ) is the utility from consumption at time s, B(WT ) is the ending bequest function 



Eq. (A-4) indicates that the representative consumer makes decisions with variables Cs 

 
and ωi,s (i = 1, 2, ..., n) so as to maximize the expected value of the lifetime utility. Based 

 
on Eq. (A-3), we can use stochastic dynamic programming to obtain the following first-order 

 
condition (FOC) of the optimal choice problem in Eq. (A-4): 

 
 
 

(A-5) 

 
 
where UC denotes the partial differentiation with respect to the consumption, C . According 

 
to Epstein and Zin (1989, 1991), we can have: 

 
 

UC (Ct+1, t + 1) 1-θ 1-θ 

UC (Ct , t) Ct 

 
where RW, t+1 is the return to wealth from t to t + 1. Without the liquidity effect, the asset 

 
pricing implication of Epstein-Zin model is a two-factor model that mixes the traditional 

 
CAPM (Sharpe (1964) and Lintner (1965)) with the traditional CCAPM (Rubinstein (1976), 

 
Lucas (1978), and Breeden (1979)). 

 
According to Eqs. (A-5) and (A-6), the Euler equation of our liquidity-adjusted consump- 

 
tion model is 

 
 
 

Et β ( )-ρ RW, t+1(1 - Lt+1)(Ri, t+1 - Rf, t+1) = 0. (A-7) 

 
 

From Eq. (A-7), we have 
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∗  

Et (1 - Lt+1)(Ri, t+1 - Rf, t+1) = 0, 
∗  

UC (Ct+1, t + 1) 

UC (Ct , t) 

∗  Ct+1 1-ρ 
1-ρ 1-ρ 

∗  

ρ-θ 

= β ( )-ρ RW, t+1, (A-6) 

Ct+1 

Ct 

ρ-θ 

1-ρ 
1-θ 1-θ 
1-ρ 1-ρ 



 

 
ρ-θ 

Mt+1 = β ( )-ρ RW, t+1(1 - Lt+1). (A-8) 

 
 

This can be rewritten as: 

 
 
 

E[Mt+1(Ri, t+1 - Rf, t+1)] = 0. (A-9) 

 
 

Following Cochrane (2005) and Yogo (2006), we can linearize Mt+1 in a vector ft of F 

 
underlying factors as follows: 

 
 
 

- = a + b ft+1. (A-10) 

 
 

The beta representation of Eq. (A-9) is 

 
 
 

E[Ri, t+1 - Rf, t+1] = γ  βi , (A-11) 

 
 
where γ = E[(ft+1 - E[ft+1])(ft+1 - E[ft+1]) ]b and 

 
βi = E[(ft+1 - E[ft+1])(ft+1 - E[ft+1]) ]-1E[(ft+1 - E[ft+1])(Ri, t+1 - Rf, t+1)]. 

 
Taking the log of both sides of Eq. (A-8), we have 

 
 
 
 

1 - θ 1 - θ 

1 - ρ 1 - ρ 

 
+ rW, t+1 + log(1 - Lt+1), 
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1-θ 1-θ 

1-ρ 1-ρ 
Ct+1 

Ct 

1-ρ 

Mt+1 

E[Mt+1] 

mt+1 = log(β ) - ρ∆ct+1 

(A-12) 
ρ - θ 

1 - ρ 



where lowercase letters denote the log of uppercase letters. 

 
Using Eq. (A-12), we can write the covariance between mt+1 and the stock/portfolio return 

 
as: 

 
 

C ov(mt+1, Ri, t+1) = - ρC ov(∆ct+1, Ri, t+1) 

(A-13) 

+ C ov(rW, t+1, Ri, t+1) + C ov[log(1 - Lt+1), Ri, t+1]. 

 
According to Yogo (2006), we can approximate Mt+1 as: 

 
 
 
 

- = -1 - mt+1 + E[mt+1] 

(A-14) 

= a + b1∆ct+1 + b2rW, t+1 + b3log(1 - Lt+1), 

 
 
where a = -1 - b1E[∆ct+1] - b2E[rW, t+1] - b3E[log(1 - Lt+1)], b1 = 

 
b3 = -1. 

 
Using Eqs. (A-11), (A-12), (A-13), and (A-14), we can write the beta representation as: 

 
 
 

E[Ri - Rf ] = γcgβi,cg + γmktβi,R + γliqβi,liq, (A-15) 

 
 
where βi,cg denotes the consumption beta, βi,R denotes the return to wealth beta, and βi,liq 

 
denotes the liquidity beta; γcg , γmkt, and γliq are the prices of consumption risk, market risk, 

 
and liquidity risk. 

 
Q.E.D. 
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1 - θ 

1 - ρ 

ρ - θ 

1 - ρ 

Mt+1 

E[Mt+1] 

ρ-θ ρ, b2 = , and 
1-ρ ρ-1 

1-θ 

W 

W 



APPENDIX B 

 
In this appendix, we embed stock liquidity into the Epstein and Zin (1989, 1991) model 

 
to develop the liquidity-augmented Epstein-Zin model based on the theoretical framework of 

 
Yogo (2006). Yogo (2006) embeds durable goods consumption into the Epstein-Zin (1989,1991) 

 
utility function, which provides framework to study the effect of liquidity on the cross-sectional 

 
asset prices. 

 
We begin with a representative consumer’s multiperiod consumption and investment deci- 

 
sion model of Samuelson (1969) and Merton (1969). The consumer chooses to buy Ct units of 

 
nondurable consumption goods at each time t. We assume that liquidity, Lt , evolves over time 

 
according to the following AR(1) process (e.g., Pastor and Stambaugh (2003) and Acharya 

 
and Pedersen (2005)): 

 
 
 

Lt+1 = a0 + a1Lt + ut . (B-1) 

 
 

The intraperiod utility of the representative consumer has the following form:27 

 
 
 

u(C, L) = (1 - α)C 1-δ + αL1-δ , (B-2) 

 
 
where α is between 0 and 1 and denotes the elasticity of substitution between consumption 

 
and liquidity. The preference as in Eq. (B-2) is the same as those used in Yogo (2006), Gu and 

 
Marshall (1992) measures the level of liquidity using the real money holdings and highlights the role of money in 

lowering the transaction costs based on the CCAPM framework. Other studies such as Pastor and Stambaugh (2003), 

Liu (2006), and Sadka (2006) study the effects of stock liquidity and liquidity risk on asset prices. Since holding money 

benefits investors from lower transaction costs (Marshall (1992)), stock liquidity related to the difficulties of liquidating 

a security at a fair price is also likely to provide the function to facilitate investors’ transaction. 
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1 
1-δ 

 

 
1 
δ 

27 



Huang (2013), and Lioui and Malo (2014) except that the intraperiod utility here is defined 

 
over combinations of consumption and liquidity.28 

 
We further assume that the representative consumer’s utility follows the Epstein and Zin 

 
(1989, 1991) recursive function, which allows the disentanglement of risk aversion and the in- 

 
tertemporal elasticity of substitution. The recursive utility function is a recursive aggregation 

 
over two components: (1) current nondurable and services consumption and liquidity and (2) 

 
a certainty equivalent of future utility. It has the form: 

 
 
 

1-ρ 

 

 

 

 

 

subjective discount factor, θ denotes the coefficient of relative risk aversion, and 

 
the elasticity of intertemporal substitution (EIS) in consumption. When θ = ρ, the recursive 

 
utility function collapses to the traditional constant relative risk aversion (CRRA) utility 

 
function. 

 
Let the representative consumer’s portfolio weight of the risky asset i be ωi,t (i = 1, 2, ..., n), 

 
the weight of the risk-free asset is then 1 - ωi,t. Suppose the representative consumer 

 
closes her position at t + 1. We can have the following wealth dynamic: 

 
 

n 

Wt+1 = (Wt - Ct - Ptut )(Rf, t+1 + ωi,t(Ri, t+1 - Rf, t+1)), (B-4) 

i=1 

 
The intraperiod utility in Yogo (2006) is defined over nondurable and services consumption and durable con-

sumption. The intraperiod utility in Gu and Huang (2013) and Lioui and Malo (2014) is defined over nondurable and 

services consumption and money. 
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1-ρ 

1-θ 
1-θ 

1 

Ut = (1 - β )u(Ct , Lt)
1-ρ + β (E[Ut+1 ]) , (B-3) 

 
 
where Ut+1 denotes the continuation value of the future consumption plan, β denotes the 

1 

ρ 
denotes 

i=1 

 n 

28 



where Wt denotes wealth at t, Pt denotes the price of additional liquidity in terms of non- 

 
durable consumption goods at t, and Rf, t+1 denotes the return (i.e., one plus the rate of 

 
return) of the risk-free asset for the period from t to t + 1. We assume that trading on the 

 
liquid risk-free asset incurs no liquidity costs. 

 
Following Yogo (2006), we can write the intertemporal marginal rate of substitution as 

 
 

(δ-ρ)(1-θ) 
ρ-θ 

Mt+1 = β ( )-ρ RW, t+1, (B-5) 

 
 
where v( C ) = 1 - α + α( C )

1-δ and RW, t+1 is the return to wealth from t to t + 1. 

 
We can apply the dynamic programming to obtain the Euler equation of the liquidity- 

 
adjusted consumption model as follows: 

 
 
 
 

(δ-ρ)(1-θ) 
ρ-θ 

E[β ( )-ρ RW, t+1(Ri, t+1 - Rf, t+1)] = 0. (B-6) 

 
 
 

Following Cochrane (2005) and Yogo (2006), we can linearize Mt+1 in a vector ft of F 

 
underlying factors as follows: 

 
 

1-θ 1-θ 

1-ρ 1-ρ 

- 
1-θ 1-θ 

1-ρ 1-ρ

1-θ 1-θ 
1-ρ 1-ρ 

Ct+1 v(Lt+1/Ct+1) 

Ct v(Lt/Ct) 

 
1 

1-δ 

1-ρ 
1-ρ 

L L 

1-θ 1-θ 
1-ρ 1-ρ 

Ct+1 v(Lt+1/Ct+1) 

Ct v(Lt /Ct) 

1-ρ 
1-ρ 

(δ-ρ)(1-θ) 

v(Lt+1/Ct+1) 1-ρ 

v(Lt+1/Ct+1) 1-ρ t+1 

(δ-ρ)(1-θ) 

1-ρ 

t+1 

Ct v(Lt/Ct) 

1-ρ 
ρ-θ 

β ( C )-ρ RW, t+1 

ρ-θ 

E[β ( C )-ρ RW, t+1] 
Ct v(Lt/Ct) 

 

The beta representation of Eq. (B-7) is 
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= a + b ft+1. (B-7) 



 
 
 

E[Ri, t+1 - Rf, t+1] = γ  βi , (B-8) 

 
 
where γ = E[(ft+1 - E[ft+1])(ft+1 - E[ft+1]) ]b and 

 
βi = E[(ft+1 - E[ft+1])(ft+1 - E[ft+1]) ]-1E[(ft+1 - E[ft+1])(Ri, t+1 - Rf, t+1)]. 

 
Following Yogo (2006), we can approximate Eq. (B-5) to the following log form: 

 
 
 
 

mt+1 = log(β ) - (ρ + α(δ - ρ))∆ct+1 

 

1 - θ ρ - θ 

1 - ρ 1 - ρ 

 
where lowercase letters denote the log of uppercase letters. 

 
Using Eq. (B-9), we can write the covariance between mt+1 and the stock/portfolio return 

 
as: 

 
 
 
 

C ov(mt+1, Ri, t+1) = - (ρ + α(δ - ρ))C ov(∆ct+1, Ri, t+1) 

(B-10) 

- (ρ - δ)C ov[∆lt+1, Ri, t+1] + C ov(rW, t+1, Ri, t+1). 

 
 

According to Yogo (2006), we can approximate Mt+1 as: 
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1 - θ 1 - θ 

1 - ρ 1 - ρ 

 
- (ρ - δ)∆lt+1 + rW, t+1, 

1 - θ 

1 - ρ 

1 - θ ρ - θ 

1 - ρ 1 - ρ 

(B-9) 



 
 
 
 

- = -1 - mt+1 + E[mt+1] 

(B-11) 

= a + b1∆ct+1 + b2∆lt+1 + b3rW, t+1, 

 
 
where a = -1 - b1E[∆ct+1] - b2E[rW, t+1] - b3E[∆lt+1], b1 = (ρ + α(δ - ρ)), b2 = (ρ - δ), 

 
and b3 = . 

 
Using Eqs. (B-8), (B-9), (B-10), and (B-11), we can write the beta representation as: 

 
 
 

E[Ri - Rf ] = γcgβi,cg + γmktβi,R + γliqβi,liq, (B-12) 

 
 
where βi,cg denotes the consumption beta, βi,R denotes the return to wealth beta, and βi,liq 

 
denotes the liquidity beta; γcg , γmkt, and γliq are the prices of consumption risk, market risk, 

 
and liquidity risk. 
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Mt+1 

E[Mt+1] 

1-θ 1-θ 

1-ρ 1-ρ 

ρ-θ 

ρ-1 

W 

W 


