

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Proceedings of the 21st spring conference on Computer graphics - SCCG '05

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa24687

Conference contribution :

Markus, G. & Robert, S. (2005). Image Space Advection on graphics hardware. Proceedings of the 21st spring

conference on Computer graphics - SCCG '05, Association for Computing Machinery (ACM).

http://dx.doi.org/10.1145/1090122.1090136

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa24687
http://dx.doi.org/10.1145/1090122.1090136
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Image Space Advection on Graphics Hardware

Markus Grabner∗

Graz University of Technology
Graz, Austria

www.icg.tu-graz.ac.at

Robert S. Laramee†

VRVis Research Center
Vienna, Austria

www.VRVis.at

Abstract

The scientific visualization and computer graphics communities
have witnessed a tremendous rise in graphics processing unit (GPU)
related literature and methodology recently. This is due in part to
the rapidly increasing processing speed offered by graphics cards.
Parallel to this, we have seen several advances made in the area of
texture-based flow visualization. We present a texture-based flow
visualization technique, Image Space Advection (ISA), that takes
advantage of the computing power offered by recent, state-of-the-
art GPUs. We have implemented a completely GPU-based version
of the ISA algorithm. Here we describe our implementation in de-
tail, including both the advantages and disadvantages of implement-
ing ISA on the GPU. The result is state-of-the-art technique that
demonstrates the latest in terms of both flow visualization method-
ology and GPU programming.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism–Color, shading, shadowing, and texture; I.6.6 [Simu-
lation and Modeling]: Simulation Output Analysis

Keywords: flow visualization, vector field visualization, graphics
hardware, GPU programming, textures

1 Introduction

Recently, we have witnessed a rapid increase in the amount of re-
search literature related to GPU-based computer graphics and visu-
alization methodology. This is due, in part, to the rapidly increas-
ing processing power offered by commodity graphics hardware. In
general, the speed at which graphics hardware is developing cur-
rently exceeds that of the CPU. The fast increase in GPU processing
speed along with the introduction of several new programming fea-
tures has prompted many researchers to invest considerably more
resources in this area than previously. A recent example in the area
of flow visualization is the work of Stegmaier and Ertl [Stegmaier
and Ertl 2004], who present a vortex detection algorithm imple-
mented using GPU programming.

Parallel to the rise in GPU-based research literature, we have
witnessed several advances in texture-based flow visualization
methodology [Laramee et al. 2004a]. This holds true across each

∗e-mail: grabner@icg.tu-graz.ac.at
†e-mail: Laramee@VRVis.at

spatial dimension, 2D, 2.5D (surfaces), and 3D and for both steady-
state and unsteady flow. With texture-based flow visualization, a
texture is computed that is used to generate a dense representa-
tion of the flow. A notion of where the flow moves is incorpo-
rated through co-related texture values along the vector field. In
most cases this effect is achieved through filtering of texture values
according to the local flow vector. The property of texture-based
methods that makes them attractive is their complete depiction of
the vector field, as opposed to geometric methods like streamlines,
which suffer from the seeding problem [Post et al. 2002].

What we present is a GPU-based version of a recent texture-
based flow visualization algorithm for the visualization of unsteady
flow on surfaces. The algorithm, called Image Space Advection
(ISA [Laramee et al. 2004c]) synthesizes textures that depict un-
steady fluid flow on surfaces (sometimes referred to as 2.5D) such
as boundary surfaces and isosurfaces [Laramee et al. 2004b] at fast
frame rates. The novelty of ISA is its speed, the fact that it applies
to surfaces, and that it handles unsteady flow. There has been rela-
tively little work done in this area, especially compared to the case
of 2D flow [Laramee et al. 2004a].

The original ISA implementation is a mixture of both CPU and
GPU-based computing. What we present here is a completely
GPU-based implementation of ISA which takes advantage of the
features of modern programmable graphics hardware. One of the
goals of our work is to target Virtual Reality applications that im-
pose real-time frame rate constraints. The main features of our al-
gorithm implementation include:

• per-pixel calculation (in parallel) at interactive frame rates

• arbitrary view projection options, i.e, support for both ortho-
graphic and perspective projection

• no extra overhead due to changes to the view point or the case
of unsteady flow

In other words, we eliminate the need for a distinction between
the static case, which involves no changes to the view point and
a steady-state flow field and the dynamic case (see Section 3.1).
The dynamic case handles changes to the view point changed or
unsteady flow [Laramee et al. 2004c]. Of course the GPU-based
implementation presented here also inherits the original benefits of
ISA including:

• the generation of a dense representation of unsteady flow on
surfaces

• visualizes flow on complex surfaces composed of polygons
whose number is on the order of 250,000 or more

• does not require a parameterization of the surface mesh or the
surface mesh topology information

• supports user-interaction such as rotation, translation, and
zooming while maintaining a constant high spatial resolution

We present the details of our implementation as well as the advan-
tages and disadvantages of our GPU-based algorithm.

The rest of this paper is organized as follows: Section 2 presents re-
lated literature in the area of texture-based flow visualization with
an emphasis on GPU-based implementations. Section 3 presents
the details of our method starting with an overview in Section 3.1.
Results are presented in Section 4 followed by conclusions and fu-
ture work in Sections 5 and 6 respectively.

2 Related work

The large body of GPU-based literature in computer graphics and
visualization is beyond the scope of this paper, as well as the large
number of texture-based flow visualization methodology [Laramee
et al. 2004a]. Here we summarize the texture-based flow visualiza-
tion research that focuses on GPU programming.

Heidrich et al. [Heidrich et al. 1999] exploit pixel textures to ac-
celerate LIC (line integral convolution [Cabral and Leedom 1993])
computation. Pixel textures are an OpenGL extension by SGI that
provides the functionality of dependent textures in combination
with multi-pass rendering. At this time, dependent textures were
a brand new graphics card feature. Heidrich et al.’s implementa-
tion supports 2D, steady-state vector fields only and achieves sub-
second computation times for LIC image generation.

Jobard et al. [Jobard et al. 2000] introduce a GPU-assisted texture
advection technique for the dense visualization of 2D, unsteady
flow. While the method of Max and Becker [Max and Becker 1995;
Max and Becker 1999] advects textures based on coarse triangular
meshes, Jobard et al. advect textures on a per-pixel basis by means
of pixel textures, which are used in a similar way as by Heidrich et
al [Heidrich et al. 1999]. The gray-scale texture from the previous
time step is dragged along the flow field by modifying the texture
coordinates for the dependent texture lookup according to the flow
data. Nearest-neighbor sampling is combined with an update of
fractional texture coordinates to represent subtexel motion and, at
the same time, maintain a high contrast. An iterative injection of
additional noise is used to compensate for a possible loss of con-
trast over time. Because of the limited functionality of the graphics
hardware that supports pixel textures, the implementation requires
many rendering passes and advects a texture of size 2562 at approx-
imately two frames per second. Moreover, the maximum resolution
of textures is restricted to 2562.

Weiskopf et al. [Weiskopf et al. 2001] present a GPU-accelerated
version of the Lagrangian-Eulerian advection (LEA) algorithm us-
ing per-fragment operations. The GPU-based texture advection by
Weiskopf et al. [Weiskopf et al. 2002] supports bilinear dependent
texture lookups without taking into account the update of fractional
coordinates. Therefore, this approach is mainly suitable for dye ad-
vection at high frame rates. Weiskopf et al. also demonstrate how
GPU accelerated visualization of unsteady, 3D flows can be imple-
mented with pixel textures.

Weiskopf et al. [Weiskopf et al. 2003] introduce a generic texture-
based framework for visualizing 2D, time-dependent vector fields.
They propose Unsteady Flow Advection-Convolution (UFAC) as
an application of the framework for visualizing unsteady fluid
flow. Also, their approach can reproduce other techniques such as
LEA [Jobard et al. 2002], IBFV [van Wijk 2002], UFLIC [Shen and
Kao 1997], and DLIC [Sundquist 2003]. Weiskopf et al. describe a
GPU-accelerated implementation that, among other things, allows
the user to trade-off quality for speed.

Until now, we have only mentioned previous work in 2D. The
amount of related literature in 2.5D is small, especially in the area
of texture-based flow visualization. In fact, the only other related
literature we are aware of that addresses the combination of GPU
programming and texture-based flow visualization in 2.5D is the

Case
Dynamic

Case
Static

i

i

i

i

i

i

io

CPU

Orginal ISA Pipeline

CPU + GPU

GPU

GPU

GPU

GPU

CPU + GPUVector Field
Projection

Application
Image Overlay

Edge Blending

and Blending
Noise Injection

Texture Mapping

Image Advection
Mesh Computation

Edge Detection

k+
+

k+
+

Figure 1: The major components of the original ISA implementa-
tion. Each component is indicated with CPU if it was originally
implemented on the CPU and likewise with the GPU. Repeating
the steps for the next frame is indicated by k++ (in the notation of
the programming language C).

work of Weiskopf and Ertl [Weiskopf and Ertl 2004]. Their method
is a hybrid approach which combines properties from both object
space and image space computation. The aim of their work differs
from ours in that they focus more conceptually on the goal of as-
signing different aspects of the algorithm to object space and image
space, attempting to maximize the advantages offered by both ap-
proaches, and focus less on the GPU-implementation. They also
propose a color scheme targeted at effectively combining surface
shape perception and flow visualization. Here we stay more inline
with the original image space approach and focus on presenting the
details of the GPU implementation such that other developers and
researchers may reproduce the work, thus taking full advantage of
our implementation.

3 ISA on the GPU

We start with an overview of our implementation beginning with an
examination of the original implementation before going into the
details of the GPU-based three pass algorithm.

3.1 Method Overview

We compare our GPU-based implementation with the original ISA
pipeline shown in Figure 1. Each stage of the pipeline is labeled
with a CPU if it was originally implemented on the CPU, likewise
with the GPU. If a stage of the original implementation used a com-
bination of both the CPU and GPU this is also indicated (CPU +
GPU). Each stage is also indicated with an i or o if it was origi-
nally implemented in image space or object space respectively. If
there’s a transition between the two spaces within a stage, this is
also indicated. k represents time as a frame number during anima-
tion. We note that the original implementation exploited no explicit
GPU-programming although some stages are labeled with GPU.
The original implementation utilized OpenGL 1.1 only, not all of
which is necessarily implemented in hardware.

Static and
Dynamic

Case

GPU−based ISA Pipeline

Pass 1

Pass 2

Pass 3

i

GPU

i

GPU

i

GPU

Edge Detection
Image Advection

Noise Injection
and Blending

Image Overlay
Application

i

GPU

io

GPU
Projection

Vector Field

Noise Image
Resampling

k+
+

Figure 2: The major components of the GPU-based ISA implemen-
tation. While the output of the noise injection and blending stage is
used as input for the next frame (dashed arrow), the output of the
final stage is only displayed to the user (see Section 3.5).

The first difference to note is that the GPU implementation makes
no distinction between the dynamic case and static cases. We em-
ploy a three-pass rendering algorithm, where intermediate results
are stored in texture memory on the graphics board. The input is an
arbitrary triangle (or quad) mesh with flow vectors defined at each
vertex. Flow vectors are treated by the GPU in the same way as
texture coordinates or colors, i.e., interpolated values are calculated
at each pixel by the (parallel) rasterizer stage(s). The convolution
is computed for a fixed number of steps (five turned out to be a rea-
sonable number) since the loop (Figure 8, lines 12 to 21) has to be
unrolled by the compiler on the platform we were using.

More details on the individual stages are given in the remainder
of this section. At each stage, both a vertex program and a frag-
ment program are executed. The corresponding Cg code is shown
throughout the discussion of the method.

3.2 Data flow

Table 1 illustrates the inputs and outputs of the vertex and frag-
ment programs at the three stages. For brevity, only varying inputs
and uniform sampler inputs (i.e., textures) are shown (see [NVidia
2004] for an explanation of Cg program input and output types).
Other uniform inputs, which are used to pass transformation ma-
trices and configuration parameters to the Cg programs, are not
shown. Moreover, vertex positions and normal vectors have also
been omitted from Table 1 since they are treated in exactly the same
way as in the standard graphics pipeline.

Hardware registers are identified by their associated binding se-
mantics [NVidia 2004] TEXCOORD0 (texture coordinates of first tex-
ture unit), COLOR0 (diffuse color), and COLOR (color to be writ-
ten to frame buffer). Textures are implicitly accessed in order
(starting at the first texture unit), therefore the OpenGL constants
GL TEXTURE0 and GL TEXTURE1 are used to specify the first and
second texture unit, respectively.

Note that Cg (and the underlying graphics hardware) is flexible
enough to assign quantities different from the original meaning to
hardware registers (e.g., the flow direction is given as texture co-
ordinates and then stored in the red/green components of a texture
image). The remaining entries in Table 1 are discussed in sections
3.4 to 3.6.

1 struct ApplicationVertex
2 {
3 float4 position: POSITION;
4 float4 normal: NORMAL;
5 float4 texCoord0: TEXCOORD0;
6 };
7
8 struct VertexFragment
9 {

10 float4 position: POSITION;
11 float4 wpos: WPOS;
12 float4 color0: COLOR0;
13 float4 texCoord0: TEXCOORD0;
14 };

Figure 3: Common data structures for our Cg programs.

3.3 Noise texture initialization

Similar to the approach by [Jobard et al. 2001], additive noise is
defined by a function n(x,y,k), where x and y are screen space coor-
dinates, and k is the frame number since the start of the application.
The noise range are the two integers {1,255}, which easily map to
texture hardware (note that 0 is reserved as a background identifier,
see Section 3.5). This function has the following properties:

• For a given pixel (x,y), the noise function should be piecewise
constant over several frames to achieve higher spatial coher-
ence.

• Noise covers the entire vector field over all frames k.

• Since noise can efficiently be injected by texture mapping, it is
useful to precompute a set of noise textures and cycle through
them periodically, i.e., n(x,y,k + K) = n(x,y,k) for a given
period size K.

The first criterion is easily achieved by keeping a large percentage
of two consecutive noise images constant. To address the other two
criteria, we select for each pixel an even number of random frames
at which the pixel is inverted (i.e., n(x,y,k + 1) = 255−n(x,y,k)).
This guarantees that the number of pixels that change between two
consecutive noise images is roughly constant, which also holds for
the transition from the last to the first image at the end of the period.
Since each pixel is changed a constant number of times, noise is
also well distributed in image space.

3.4 Pass 1: Projection and Resampling

We begin by defining two common data structures (Figure 3) that
are shared by all Cg programs discussed throughout this section.
In particular, the VertexFragment structure is used to connect the
output of a vertex program to the input of the corresponding frag-
ment program. See [NVidia 2004] for details on input and output
parameters in Cg programs.

The vertex program at stage one is responsible for transforming the
flow vectors into the screen coordinate system, creating what we
call a velocity image. The velocity image encodes the flow vectors
in the frame buffer. We choose to apply the formula

f′ = VkMkf, (1)

where f is the flow vector in object coordinates, and Mk and Vk
represent the modeling and viewing transformations, respectively,
at the current frame k. Flow visualization is performed according to
the projected vector f′. Since the flow vector (fx, fy, fz)

T needs to
be interpreted as a direction vector, the application has to explicitly
pass a 4-dimensional vector (fx, fy, fz,0)T (i.e., with the homoge-
neous coordinate w set to zero).

pass VP input VP output = FP input textures FP output
TEXCOORD0 TEXCOORD0 COLOR0 GL TEXTURE0 GL TEXTURE1 COLOR

r g b a r g b a r g b a

1 flow flow – – – flow conv. depth
2 – – – flow conv. depth noise – luminance –
3 flow flow shading color lookup – – color –

Table 1: Inputs and outputs of the vertex program (VP) and fragment program (FP) at the three stages, “conv.” refers to the gray image used
as input for the convolution computation (see section 3.2).

1 VertexFragment
2 main(ApplicationVertex av,
3 uniform float4x4 modelViewMatrix,
4 uniform float4x4 modelViewProjMatrix)
5 {
6 VertexFragment vf;
7 vf.position =
8 mul(modelViewProjMatrix, av.position);
9 vf.texCoord0 =

10 mul(modelViewMatrix, av.texCoord0);
11 return vf;
12 }

Figure 4: Cg code for pass 1 (vertex program): projecting geometry
and flow vectors into screen space.

(a) flow field at frame k−1 (b) flow field at frame k

Figure 5: Velocity images: flow vectors are encoded in the red and
green color channels for two successive frames.

Note that we intentionally omit the projection matrix Pk, which is
used to calculate screen coordinates

x′k = PkVkMkx (2)

from coordinates x in object space. Since we only consider static
objects, the vertex location x in object coordinates does not depend
on the frame index k. Matrix P is responsible for perspective fore-
shortening (unless parallel projection is used), equation (2), applied
to the flow vectors, would therefore result in reduced perceived flow
velocity with increasing distance of the object from the virtual cam-
era. While this is physically correct, we get a better impression of
the flow field if the velocity is independent from the distance to the
view point, therefore we employ equation (1). However, ultimately
the user may choose whether or not to use a perspectively shortened
vector field. See Figure 5 for two example velocity images at two
consecutive frames.

The task of the fragment program is to resample the image of the
previous frame k−1 to the current frame k under possibly changed
viewing parameters. In contrast to a previous approach using 3D
noise functions [Weiskopf and Ertl 2004], the resampling proce-
dure allows to maintain coherent images with 2D noise only. Since

1 float4
2 main(VertexFragment vf,
3 uniform float2 vpsize,
4 uniform float4x4 A,
5 uniform samplerRECT prev_img): COLOR
6 {
7 vf.wpos.w = 1;
8 float4 prev_hom = mul(A, vf.wpos);
9 float3 prev = prev_hom.xyz / prev_hom.w;

10 float lum;
11
12 if((prev.x < 0) || (prev.x > vpsize.x) ||
13 (prev.y < 0) || (prev.y > vpsize.y) ||
14 (prev.z < 0) || (prev.z > 1))
15 lum = 0;
16 else
17 lum = texRECT(prev_img, prev.xy).r;
18
19 return
20 float4(vf.texCoord0.xy, lum, vf.wpos.z);
21 }

Figure 6: Cg code for pass 1 (fragment program): resampling the
velocity image from the previous to the current frame.

the homogeneous screen space coordinates x′k = (x′k,y
′
k,z
′
k,w
′
k)T at

each fragment position (x′k,y
′
k)T are available to the fragment pro-

gram, we can reconstruct the location of each currently processed
fragment in world coordinates by applying the inverse projection.
In turn we can also compute the screen space coordinates of the
same fragment in the previous frame. We therefore can track pixels
under modified viewpoint and viewing direction as follows:

x′k−1 = (Pk−1Vk−1Mk−1)(PkVkMk)−1
︸ ︷︷ ︸

A

x′k (3)

Matrix A is constant for each frame, it is therefore computed by the
CPU and passed as a constant to the GPU (Figure 6 line 4).

We have to verify that the corresponding pixel in the previous frame
is contained within the view-port. If it is not, we cannot use it for
the convolution computation and therefore mark it as invalid (i.e.,
assign zero luminance, see Section 3.5 for more details).

The resampling process is illustrated in Figure 7. Figure 7(a) cor-
responds to the geometry of Figure 5(a). For illustrative purposes,
we use a checkerboard pattern instead of the actual output at frame
k−1. The pattern is resampled to the geometry of Figure 5(b), the
results are shown in Figure 7(b). Note that regions of the mesh that
have been outside the viewport in frame k− 1 are rendered with
the background color in frame k. Self-occlusions of the object are
not accurately resolved since the frame buffer can only hold a single
color value per pixel. However, this is not a problem since sufficient
noise is injected to remove the resulting artefacts in short time, e.g.,
a fraction of a second.

(a) image at frame k−1 (b) image at frame k− 1 re-
sampled to frame k

Figure 7: Resampling the velocity image of the previous frame to
the geometry of the current frame. Normally the camera does not
move this much between frames, this is for illustration.

The final image encodes the screen space flow direction (red and
green channel, Figure 5(b)), the luminance for the convolution com-
putation (blue channel, Figure 7(b)), and the depth for detecting
depth discontinuities (alpha channel, not shown). These values cor-
respond to “flow/conv./depth” in Table 1.

Due to the limitation to four values in a texture image, the z-
coordinate of the projected flow vector can not be stored at this
stage. Therefore it has to be recalculated by the hardware in the
third pass, where a color value corresponding to flow velocity is
computed.

3.5 Pass 2: Image Space Advection

The vertex program at this stage performs the standard model-view-
projection transformation as given in equation (2). The Cg code is
not shown since it is basically a subset of the code in Figure 4.

The fragment program at pass two is the core of the advection im-
plementation. Starting at the pixel coordinates generated by the
rasterizer, a fixed number of pixels is visited according to the lo-
cal flow direction. These computations are carried out in floating
point accuracy, however, the noise textures are accessed by integer
coordinates. It would be possible to perform bilinear interpolation
at each convolution step, but this is a costly solution in terms of
performance.

We empirically adjusted some parameters of the advection algo-
rithm. As few a five iteration steps turned out to be sufficient to
compensate for the effects of coordinate quantization and to pro-
vide a good result. Moreover, we are using a constant convolution
kernel. More precisely, it is a box function f (x) with f (x) = 1
for x ∈ [0;N− 1] and f (x) = 0 elsewhere. This is implied by the
iteration algorithm performing N steps. We also tried an exponen-
tially decreasing kernel, but didn’t observe improvements. More so-
phisticated kernels (such as those proposed by [Cabral and Leedom
1993]) need to be precomputed and stored in a one-dimensional
texture (similar to the color map approach explained in Section 3.6)
since performance is critical at this stage.

Examples of texture advection and noise injection are displayed in
Figure 9. The texture advection algorithm creates the image in
Figure 9(a). Note that regions that have been outside the view-
port in the previous frame are immediately replaced by the current
noise texture (Figure 9(b)) instead of being blended with noise over
several frames. The combination of both images is shown in Fig-
ure 9(c). The amount of injected noise is controlled by the parame-
ter “noise blend” (Figure 8).

1 float4
2 main(VertexFragment vf,
3 uniform float ztol,
4 uniform float noise_blend,
5 uniform samplerRECT flow,
6 uniform sampler2D noise): COLOR
7 {
8 float2 pos = vf.wpos.xy;
9 float zprev = texRECT(flow, pos).w;

10 float color = 0, denom = 0, real_blend;
11
12 for(int i = 0; i < 5; ++i) {
13 float4 flowval = texRECT(flow, pos);
14
15 if((abs(flowval.w - zprev) < ztol) &&
16 (flowval.b != 0)) {
17 color += flowval.b;
18 ++denom;
19 pos -= flowval.xy;
20 }
21 }
22
23 if(denom == 0) {
24 denom = 1;
25 real_blend = 1;
26 }
27 else
28 real_blend = noise_blend;
29
30 float n = tex2D(noise, vf.wpos.xy);
31 color = lerp(color / denom, n, real_blend);
32 return float4(color, color, color, 1);
33 }

Figure 8: Cg code for pass 2 (fragment program): image space
advection is performed by the loop from lines 12 to 21, noise is
injected in lines 30 and 31.

Another task performed at this stage is the detection of depth dis-
continuities. This can easily be done since depth values have been
computed and stored in the alpha channel at pass one. This is im-
portant for two reasons:

• If the depth discontinuity is caused by one object (partly) oc-
cluding another, we want to prevent texture flow across object
boundaries.

• If an object is displayed against the background, we do not
want the background to “smear” into the interior of the ob-
ject’s projection.

The convolution computation can only use pixels corresponding to
the screen-space projected surface in the previous frame. Since both
background pixels and pixels outside of the view-port are assigned
zero luminance, they can easily be detected and ignored. Since it is
not possible to terminate a loop in a fragment program, we simply
test the above conditions at each iteration and update the weighted
sum only for continuous regions.

Finally, noise is injected into the image by blending the intensity
found by convolution with a pixel from the noise image. The re-
sulting image is used for two purposes:

• as the input of the resampling stage at the next frame

• as one contribution to the final image, that is improved in the
rendering pass that follows

(a) advection applied to Figure 7(b) (b) noise texture at frame k (c) noise added to advected image

Figure 9: Image space advection and noise injection: (a) advection is performed on the resampled image, (b) the noise image (replaced by a
checkerboard pattern) is extracted from texture memory, (c) both images are superimposed according to a user-defined ratio.

1 VertexFragment
2 main(ApplicationVertex av,
3 uniform float4x4 modelViewMatrix,
4 uniform float4x4 modelViewProjMatrix,
5 uniform float shading_blend,
6 uniform float4x4 modelViewIT)
7 {
8 VertexFragment vf;
9 vf.position =

10 mul(modelViewProjMatrix, av.position);
11 vf.texCoord0 =
12 mul(modelViewMatrix, av.texCoord0);
13 float3 normal =
14 mul(modelViewIT, av.normal).xyz;
15 normal = normalize(normal);
16 float c =
17 lerp(1, abs(normal.z), shading_blend);
18 vf.color0 = float4(c, c, c, 1);
19 return vf;
20 }

Figure 10: Cg code for pass 3 (vertex program): recomputation
of flow vector projection and evaluation of GOURAUD illumination
model.

3.6 Pass 3: Shading

So far we have only dealt with monochrome images under ambient
illumination. To add realism to the scene, the third pass performs
lighting operations and applies a color-mapping corresponding to
velocity magnitude.

As mentioned above, the vertex program at this stage recalculates
the transformed flow vectors in the same way as in the first pass.
Moreover, a simple lighting model with LAMBERT illumination is
applied. If the modelview transformation is described by the matrix
MV, the normal vectors n need to be transformed according to

n′ = ((MV)−1)T

to obtain correct illumination of the transformed object. Under the
assumption of directional light parallel to the viewing direction, the
z-coordinate of the transformed normal vector n′ is proportional
to the intensity of the reflected light. For correct illumination of
backfacing polygons we take the absolute value of this quantity.
The user can select the desired ratio between ambient and diffuse
reflection by the parameter “shading blend” (see Figure 10). The
result of these computations is shown in Figure 12(a).

1 float4
2 main(VertexFragment vf,
3 uniform float lookup_offset,
4 uniform float lookup_scale,
5 uniform float color_blend,
6 uniform samplerRECT lookup): COLOR
7 {
8 float len = length(vf.texCoord0.xyz);
9 float arg = (len + lookup_offset) *

10 lookup_scale;
11 return vf.color0 *
12 lerp(float4(1, 1, 1, 1),
13 texRECT(lookup, float2(arg, 0)),
14 color_blend);
15 }

Figure 11: Cg code for pass 3 (fragment program): color mapping
according to flow velocity magnitude is applied to the GOURAUD-
shaded image.

In the fragment program, the magnitude of the flow velocity is cal-
culated at each pixel and used as an index into a color lookup table
(i.e., a 256× 1 texture image). Once again, the ratio between this
color and the shaded image can be selected by the user (parameter
“color blend”). Figure 11 shows the corresponding code.

The output of pass 3 is not directly stored in the framebuffer, but
combined with its previous content (which is the result of pass 2)
according to the OpenGL blending mode GL DST COLOR, which is a
component-wise multiplication of the three color channels. The fi-
nal image resulting from this operation is presented in Figure 12(b).

4 Results

We tested our system on a number of different machines to evalu-
ate the impact of hardware components (CPU and GPU) to overall
performance (see Table 2). We observe large differences between
the two GPU models in our experiments. Moreover, even the same
GPU model gives different results on different platforms. We do
not have a detailed explanation for this behaviour since it involves
internals of the proprietary graphics driver as well as bus system
implementation. It reflects the rate at which the CPU can provide
data to the GPU.

The influence of different numbers of convolution steps is shown
in Figure 14. Figure 14(a) is not satisfactory, quantization arte-

(a) LAMBERT light model applied (b) color overlay applied

Figure 12: Shading and color overlay applied to the output of the advection and noise injection stage (Figure 9(c)).

frames/second
method CPU (Intel/AMD) GPU (NVidia) main graphics hemisphere ring cooling jacket

memory memory (2.5kQ) (10.6kT) (228kT)
ISA-GPU Pentium III 600MHz GeForce FX 5900XT 512MB 128MB 30 16 1
ISA-GPU Pentium IV 2.4GHz GeForce FX 5900XT 1GB 128MB 46 28 3.3
ISA-GPU Athlon 64 1.8GHz GeForce 6800 1GB 128MB 115 65 3.5
ISA-GPU Pentium IV 3GHz GeForce 6800 1GB 128MB 191 112 7.7

IBFVS 2×Pentium IV 2.8GHz 980 XGL Quadro 1GB 128MB n/a 49 2.7
ISA 2×Pentium IV 2.8GHz 980 XGL Quadro 1GB 128MB n/a 2.7 3.1

Table 2: Frame rates achieved with our method (ISA-GPU) on several hardware platforms for different models at an image size of 5122

pixels, and frame rates for the IBFVS and ISA (5122 advection mesh size) methods as reported by [Laramee et al. 2004c]. The primitive
count (kT for 1000 triangles, kQ for 1000 quadrilaterals) of each model is given in parentheses. The hemisphere has been used throughout
Section 3, see Figures 13 and 14 for the cooling jacket and ring data sets, respectively.

Figure 13: Visualization of flow at the complex boundary surface
of a cooling jacket. Color is mapped to velocity magnitude.

facts are clearly visible. While one might prefer static images
with 10 or more convolution steps (Figures 14(c) and 14(d)),
those tend to overly blur the injected noise for animation pur-
poses. Best animation results were found with 5 convolution steps
(Figure 14(b)), which was also used for the accompanying video
(http://www.VRVis.at/scivis/laramee/ISAonGPU).

5 Conclusions

The experiments reported in Section 4 demonstrate the high effi-
ciency of the GPU-based Image Space Advection algorithm. It can
improve previous results [Laramee et al. 2004c] by a factor of up

to 40 (comparing ISA-GPU and ISA on the ring data set, see Ta-
ble 2). These results have been achieved with arbitrary perspective
projection without any coherence constraints between successive
frames, i.e., the user can freely explore the scene with a 3D naviga-
tion system. The main limitation of the current approach is that it
does not take into account occlusions, i.e., advection is performed
for every fragment, regardless if it will ultimately become visible
or occluded by other fragments. This is a sub-optimal use of re-
sources, in particular for objects with high depth complexity, i.e.,
many (self-) occlusions, such as the cooling jacket.

6 Future work

The NVidia GeForce 6800 graphics card became available to us
only at the end of this work, we therefore didn’t yet make use of
its advanced features to further improve performance. We expect
a significant performance boost by using multiple render targets to
overcome the depth complexity problem. Moreover, utilizing float-
ing point textures will resolve some issues related to accuracy and
lead to a cleaner implementation.

The models we have been working with exhibit large regions of
relatively constant flow direction and some smaller more turbu-
lent areas. The presence of information at different scales lends
itself to a multiresolution approach, where unnecessary (i.e., re-
dundant) details are replaced by a simplified representation under
controlled approximation error. Existing multiresolution methods
(such as quadric error metrics [Garland and Heckbert 1997]) can be
extended to incorporate flow direction into the set of simplification
criteria.

(a) 2 steps (b) 5 steps (c) 10 steps (d) 20 steps

Figure 14: Flow at the boundary surface of the ring data set visualized using different numbers of convolution steps. Low resolution images
were intentionally selected for better observation of the resulting artefacts.

Our partners in automotive engineering have confirmed the useful-
ness of Virtual Reality (VR) applications in a previous project in-
volving static scalar fields [Grabner et al. 2004]. We plan to inte-
grate the present method for visualization of dynamic vector fields
into the existing VR prototype.

7 Acknowledgments

The authors thank all those who have contributed to this research
including AVL (www.avl.com), the Austrian national research pro-
gram called Kplus (www.kplus.at), and the VRVis Research Cen-
ter (www.VRVis.at). CFD simulation data courtesy of AVL.

References

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging Vector Fields Using
Line Integral Convolution. In Poceedings of ACM SIGGRAPH 1993,
ACM Press / ACM SIGGRAPH, Annual Conference Series, 263–272.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification us-
ing quadric error metrics. In SIGGRAPH 97 Conference Proceedings,
Addison Wesley, T. Whitted, Ed., Annual Conference Series, ACM SIG-
GRAPH, 209–216. ISBN 0-89791-896-7.

GRABNER, M., BORNIK, A., SCHMIDT, S., REITINGER, B., SCHLÖGL,
O., AND GARRIDO, L. 2004. Exploration of CFD data in a Virtual Re-
ality setup. In Proceedings Virtual Product Development in Automotive
Engineering.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. 1999.
Applications of Pixel Textures in Visualization and Realistic Image Syn-
thesis. In ACM Symposium on Interactive 3D Graphics, 127–134.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2000. Hardware-
Accelerated Texture Advection. In Proceedings IEEE Visualization
2000, IEEE Computer Society, 155–162.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2001.
Lagrangian-Eulerian Advection for Unsteady Flow Visualization. In
Proceedings IEEE Visualization ’01, IEEE.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, Y. 2002. Lagrangian-
Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visu-
alization. IEEE Transactions on Visualization and Computer Graphics
8(3), 211–222.

LARAMEE, R. S., HAUSER, H., DOLEISCH, H., POST, F. H., VROLIJK,
B., AND WEISKOPF, D. 2004. The State of the Art in Flow Visualiza-
tion: Dense and Texture-Based Techniques. Computer Graphics Forum
23, 2 (June), 203–221.

LARAMEE, R. S., SCHNEIDER, J., AND HAUSER, H. 2004. Texture-Based
Flow Visualization on Isosurfaces from Computational Fluid Dynamics.
In Data Visualization, The Joint Eurographics-IEEE TVCG Symposium
on Visualization (VisSym ’04), Eurographics Association, 85–90,342.

LARAMEE, R. S., VAN WIJK, J. J., JOBARD, B., AND HAUSER, H.
2004. ISA and IBFVS: Image Space Based Visualization of Flow on
Surfaces. IEEE Transactions on Visualization and Computer Graphics
10, 6 (Nov.), 637–648.

MAX, N., AND BECKER, B. 1995. Flow Visualization Using Moving
Textures. In Proceedings of the ICASW/LaRC Symposium on Visualizing
Time-Varying Data, 77–87.

MAX, N., AND BECKER, B. 1999. Flow Visualization Using Moving
Textures. In Data Visualization Techniques, 99–105.

NVIDIA. 2004. Cg Toolkit User’s Manual - A Developer’s Guide to Pro-
grammable Graphics. NVidia corporation, Jan.

POST, F. H., VROLIJK, B., HAUSER, H., LARAMEE, R. S., AND
DOLEISCH, H. 2002. Feature Extraction and Visualization of Flow
Fields. In Eurographics 2002 State-of-the-Art Reports, The Eurograph-
ics Association, 69–100.

SHEN, H. W., AND KAO, D. L. 1997. UFLIC: A Line Integral Convo-
lution Algorithm for Visualizing Unsteady Flows. In Proceedings IEEE
Visualization ’97, IEEE Computer Society, 317–323.

STEGMAIER, S., AND ERTL, T. 2004. A Graphics Hardware-based Vortex
Detection and Visualization System. In Proceedings IEEE Visualization
2004, IEEE, 195–202.

SUNDQUIST, A. 2003. Dynamic Line Iintegral Convolution for Visualiz-
ing Streamline Evolution. In IEEE Transactions on Visualization and
Computer Graphics, vol. 9(3), 273–282.

VAN WIJK, J. J. 2002. Image Based Flow Visualization. ACM Transactions
on Graphics 21, 3, 745–754.

WEISKOPF, D., AND ERTL, T. 2004. A Hybrid Physical/Device-Space Ap-
proach for Spatio-Temporally Coherent Interactive Texture Advection on
Curved Surfaces. In Proceedings of Graphics Interface, 263–270.

WEISKOPF, D., HOPF, M., AND ERTL, T. 2001. Hardware-Accelerated
Visualization of Time-Varying 2D and 3D Vector Fields by Texture Ad-
vection via Programmable Per-Pixel Operations. In Proceedings of the
Vision Modeling and Visualization Conference 2001 (VMV 01), 439–446.

WEISKOPF, D., ERLEBACHER, G., HOPF, M., AND ERTL, T. 2002.
Hardware-Accelerated Lagrangian-Eulerian Texture Advection for 2D
Flow Visualizations. In Proceedings of the Vision Modeling and Visual-
ization Conference 2002 (VMV-01), 439–446.

WEISKOPF, D., ERLEBACHER, G., AND ERTL, T. 2003. A Texture-Based
Framework for Spacetime-Coherent Visualization of Time-Dependent
Vector Fields. In Proceedings IEEE Visualization ’03, IEEE Computer
Society, 107–114.

