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The geometric potential force (GPF) used in segmentation of medical images is in general a robust
method. However, calculation of the GPF is often time consuming and slow. In the present work, we
propose several methods for improving the GPF calculation and evaluate their efficiency against the
original method. Among different methods investigated, the procedure that combines Riesz transform
and integration by part provides the fastest solution. Both static and dynamic images have been employed
to demonstrate the efficacy of the proposed methods.

Keywords: Image segmentation; Geometric potential force; Active surface methods; Riesz transform;
Level set methods; Static and dynamic images

1. Introduction

In scan based modelling, segmentation is one of the difficult and time consuming processes. This
can especially be non trivial if the scan quality is not sufficiently high (Sazonov et al. 2011). To
address the lack of robustness and automation in dealing with typical quality medical images
(containing noise, blurring, non-uniform brightness, etc.), a new segmentation method used on
level set approach along with a potential force was introduced in (Yeo et al. 2011). The force
introduced is referred to as the geometrical potential force (GPF), which belongs to active con-
tour/surface gradient based segmentation methods (Malladi et al. 1995; Whitaker 2004). The GPF
has been compared with several well known methods, such as the Generalized Gradient Vector
Flow (GGVF) (Caselles et al. 1997; Xu and Prince 1998), the Elastic Interaction (EI) (Xiang et
al. 2005), Chan&Vese’s algorithm (Chan and Vese 2001). The comparison presented in (Yeo et al.
2011) demonstrates that the GPF method is robust and accurate in segmenting objects of complex
topology and objects with weak edges. The noisy images can also be effectively handled by GPF
based segmentation and the method is not sensitive to initialisation for the deformable model. For
2D images, the method can be reduced to the magneto-active contour (MAC) method proposed in
(Xie and Mirmehdi 2008) and inherits all its advantages and strong theoretical basis. In contrast
to the MAC method, the GPF method can be easily generalized to any dimension n of the image
including 3D static (n = 3) and dynamic (n = 4) scans (Fleureau et al. 2006; Yang et al. 2013).
Theoretically, the method can be applied to even higher dimensions (Boykov and Funka-Lea 2006),
for example, segmenting coloured images, also the extraction of material properties from scans can
be treated as an additional dimension. However, the GPF method in its current form is slow and
it requires a huge memory overhead. As a result, segmentation is often limited to smaller image
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sizes. Thus, present work is focused on improving the efficiency of the GPF calculation. A brief
summary of the GPF based segmentation method is given below before introducing the proposed
improvements.
The GPF based segmentation method is a two stage procedure. At the first stage, the so-called

geometrical potential G is computed through the convolution of the image gradient ∇I with the
vector kernel K, i.e.,

G(xi) =
∑
j ̸=i

∇I(xj) · cn
xi − xj

|xi − xj |n+1 ≡ ∇I ∗K (1)

where n is the domain dimension, · stands for the dot-product of two vectors; xi is coordinate of
the ith image grid point (voxel centre)1; cn is a coefficient explained in Section 2.2, and |xi−xj |
is the Euclidean distance between grid points. In Equation 1, summation is performed through all
the voxels constituting the image.
Once computed, the geometric potential G is used at the second stage to compute the force

acting on the active surface. If the active surface is defined implicitly through the level set function
Φ(xi, t), then the following partial differential equation (PDE) describing the evolution of Φ has
to be numerically solved (see, e.g., (Malladi et al. 1995))

(∂/∂t)Φ = α gκ|∇Φ| − (1−α)F∇Φ (2)

where α is the tuning parameter, g = 1/(1 + |∇I|2) is the stopping function, κ = ∇n̂ is the
curvature of isosurfaces of Φ, n̂ = ∇Φ/|∇Φ| is the unit vector normal to isosurfaces of Φ, F = G n̂
is the force moving the active surface, t is the virtual time used to evolve the level set function in
order to find its equilibrium position in which the r.h.s. of (2) is zero.
The direct method of computing the geometrical potentialG (see Eq. (1)) requires extremely large

CPU time (see Table 1) and therefore can only be applied to small size 2D images (few hundred-by-
few hundred pixels). Thus, direct computing is not recommended. Since the geometrical potential
computation (1) is written in the form of convolution, a natural way to compute it is to apply the
fast Fourier transform (FFT) as described in (Yeo et al. 2011). However, the FFT based method
in its standard form requires rather large amount of memory when applied to any 3D scan and
the memory requirement easily reaches limits of modern PCs when 4D scans are segmented. In
fact, the image gradient and the kernel are nD vector functions and the direct nD FFT should be
applied 2n times. The results of the FFT calculations have to be stored in 4n arrays of the size of
the initial image(note that one has to store the real and imaginary parts of the Fourier spectrum).
For a 3D image, approximately 20 arrays of initial image size are needed and more for a 4D images.
Thus, currently used standard FFT can only be applied to small sized images (smaller that 2563).
This is the main reason why the GPF based method (Yeo et al. 2011) is not widely used in spite
of all its other advantages.
To avoid the use of large amount of memory, we propose here a new method for computing geo-

metric potential G. The method represents a combination of two independent approaches(Sazonov
et al. 2012). One of the approaches is based upon the use an analytical formula for the Fourier
spectrum of kernel K but can be calculated and multiplied to the kernel spectrum directly on every
grid point. Thus there is no need to store all the components of the kernel and its Fourier spectrum.
This approach results in two fold reducing the memory footprint. In another approach we modify
Eq. (1) such that G can be computed through a convolution of scalar values: the scalar kernel
Q = divK and the image itself I rather than its gradient. This approach gives approximately n
fold memory economy. The two approaches mentioned can be combined if an analytical formula
of the Fourier spectrum of the scalar kernel used in the second approach can be derived. This can

1For the sake of brevity, we use the term voxel for all dimensions n instead of pixel, hypervoxel, etc. Analogously we use the
term active surface for active contour (2D), active surface (3D), active hypersurface or n-surface (4D and higher).
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result in further 2n fold memory economy. The new methods are however slightly more sensitive
to noise when applied to real images and thus they need some regularization of the kernel and high
spectral component filtering when applied to noisy images. Despite this, the numerical examples
presented in Section 4 show that the proposed method is much more effective both in terms of
memory size and CPU time requirements.
In the section below we rigorously derive all the analytical formulas necessary for implementing

an effective version of the GPF method (Section 2), and we consider regularization and filtering of
the kernel in Section 3. The numerical examples concentrating on 3D and 4D examples are provides
in Section 4. All rigorous mathematical derivations and proofs are presented in Appendix A.

2. Methods for Computing Geometrical Potential (GP)

2.1 The standard FFT based method

Let I(x), I : Ω → R, describe a grayscale nD image in the domain Ω ⊂ Rn. We assume that
I ∈C∞(Ω̄) ∩ L2(Ω). The geometric potential G(x) is a function defined by the integral with the
integrand calculated via the dot product of two vector functions, i.e.,

G(x) = lim
ε→0+

∫
Ωε

∇I(x′) · cn
x − x′

|x − x′|n+1 d
nx′ (3)

where Ωε = Ω\{|x − x′| < ε}, i.e. an infinitesimal volume should be excluded from the integration
domain Ω otherwise the integral would diverge when x′ → x in all points in which ∇I(x) ̸= 0. We
can show that the limit in (3) exists if x /∈ ∂Ω.
We now define kernel K and study its properties in the continuous space. We introduce the

n-dimensional distribution K ∈ D′ as

K(x) = cn p.v.
x

|x|n+1 . (4)

where K should be defined as a continuous linear functional ⟨K, ϕ⟩ (D 7→ Rn) acting on a probe
function ϕ ∈ D where D is a space of infinitely differentiable functions (ϕ ∈ C∞) with compact
support (e.g., (Schwartz 1954; Lighthill 1964; Gel’fand and Shilov 1964; Bremermann 1965; Jones
1982; Friedlander and Joshi 1998; Vladimirov 2002)). The functional is defined as the following
inner product

⟨K, ϕ⟩ = cn lim
ε→0+

∫
|x|>ε

ϕ(x)
x

|x|n+1 dnx. (5)

The discrete analogue of kernel K can be computed as

K(xj) =

{
cnxj/ |xj |(n+1) , xj ̸= 0
0, xj = 0

. (6)

Now, the following form of the direct and inverse Fourier transform can be employed:

f̃(k) ≡ F [ f ](k) =

∫
x∈Rn

f(x) e−ikx dnx

f(x) ≡ F−1[ f̃ ](x) =
1

(2π)n

∫
k∈Rn

f̃(k) eikx dnk

3
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where k = [k1, . . . , kn]
T is the wavenumber and the Fourier image f̃ is a spectrum of f . Now,

applying the Convolution theorem (e.g., (Lighthill 1964)) we see that geometrical potential G can
be calculated through the sequence of direct and inverse Fourier transforms, i.e,

G(x) = F−1
[
F [∇I](k) · F [K](k)

]
(7)

The FFT based method described in (Yeo et al. 2011) utilizes the discrete analogue of Eq. (7).
As mentioned in the introduction, we have to compute all the components of ∇I and K and store
them, then we have to perform FFT for every component and store the real and imaginary parts.
If we use an analytical formula for the kernel spectrum K̃, we can avoid all these operations on
the kernel and reach the two-fold memory economy as discussed in the following subsection.

2.2 Proposed modified approach

If we define the coefficient cn = 2
σn+1

with σn+1 being the area of unit hypersphere in Rn+1, then

for the infinite domain (Ω = Rn), integral (3) coincides with the Riesz transform in which kernel
(4) has an explicit expression for its spectrum (e.g., (Stein 1970; Stein and Wiess 1971))

F [K] (k) = −i
k

|k|
. (8)

Note that

σn =

∮
|x|=1

dnx =
2πn/2

Γ(n/2)
(9)

where Γ(·) is the gamma-function, that gives

c1 =
1

π
, c2 =

1

2π
, c3 =

1

π2
, c4 =

3

4π2
, . . . (10)

Substituting the analytical expression (8) into Equation (7) we obtain

G(x) = F−1

[
F [∇I](k) · −ik

|k|

]
(11)

instead of computing the kernel in the x-space and then applying the FFT method as in (7).
Another approach to decrease the memory used is via re-arranging the integrand in (3) as a

product of scalar function and a scalar kernel. Applying a sort of integration by parts, we can
transfer the nabla operator from the image gradient to the kernel, i.e.,

G(x) =

∫
I(x′) (∇K)(x−x′) dnx′ (12)

where ∇K ≡ divK is a formal scalar kernel. As kernel K is a distribution, we should show that
the scalar kernel ∇K ∈ D′ and integral (12) make sense. To do this we introduce the distribution

Q(x) = −cnP
1

|x|n+1 (13)
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defined as the following inner product⟨
P 1

|x|n+1 , ϕ(x)

⟩
= p.v.

∫
Rn

ϕ(x)− ϕ(0)

|x|n+1 dnx. (14)

It can be shown that Q(x) = ∇K(x) in the D′ space means ⟨Q,ϕ⟩ = −⟨K,∇ϕ⟩. Kernel Q is a
regular function: Q = −cn |x|−n−1 for all x except the origin and has a singularity at x = 0. The
singularity is such that integral of Q through the total space is zero

∫
x∈Rn

Q(x) dnx = 0.

Proposition 2.1. The geometrical potential can be calculated through the following convolution of
scalar functions

G(x) = cn lim
ε→0+

∫
|x′|>ε

I(x′)− I(x − x′)

|x′|n+1 dnx′. (15)

The proof of the above expression is presented in Appendix A. A discrete analogue of scalar kernel
Q can be approximated as follows

Q(xj) =

− cn

|xj |n+1 , xj ̸= 0

S, xj = 0
, S =

∑
xj ̸=0

cn

|xj |n+1 . (16)

This guaranties that
∑

xj∈ΩQ(xj) = 0. Thus the geometric potential may now be computed as

G(x) = F−1
[
F [I](k)F [Q](k)

]
(17)

where Q is defined by (16) in the discrete case.
The equations (11) and (17) may be combined together to give a new method. The nabla operator

the in x-space is equivalent to the multiplication by ik in the k-space. Since an analytical formula
for vector kernel is known and given by (8), we easily derive the analytical formula for the scalar
kernel spectrum as

Q̃ = ikK = |k| . (18)

Therefore, in the new method, the geometric potential is computed through direct and inverse FFT
of the scalar valve, i.e.,

G(x) = F−1
[
F [I](k)

(
|k|

)]
. (19)

In this new method we have to store only three arrays of the original image size. Thus, this
method substantially reduces the memory requirement compared to the standard FFT procedure
described earlier.
Table 1 shows the comparison of CPU time for various options available. The numerical com-

putations confirm that the new method is the most efficient in terms of memory and CPU time
requirements for computing geometrical potential. The model problem used to produce the results
of Table 1 is the synthetic image described in Section 4.
Although the new method increases the efficiency substantially, as soon as noise is added to

synthetic images or when dealing with real medical scans, this method is sensitive. This results
in unsatisfactory value of geometrical potential. Thus, some kernel regularization methods are
explained in the following section to reduce sensitivity to noise.

5
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Table 1. CPU time and memory recruitment for computation of G for a 3D image size of 2563 = 0.14G.

Memory required CPU time

Direct method (Equation (1)) 0.6G ∼ 7days
Standard FFT based method (Yeo et al. 2011) (Equations (6)–(7)) 1.8G 91s
Approach based on Equation (11) 1.0G 55s
Approach based on Equations (16)–(17) 0.6G 42s
Recommended new method: (Equation (19)) 0.4G 30s

3. Kernel Regularization

3.1 Smoothing the impact of discrete domain

The enhanced noise sensitivity of the new method is mainly caused by the way in which gradient
of I(x) is computed. In the direct and FFT method described in (Yeo et al. 2011), it is calculated
via the central differences which, for example, in 1D case has the form,

∂I

∂x
≈ I(x+ h)− I(x− h)

2h
. (20)

whereas in the new method it is computed through the FFT, i.e.,

∂I

∂x
≈ F−1

[
ikF [ I ]

]
. (21)

Computation of derivative through the FFT transform provides a higher order accuracy (com-
parable with the number of grid points) whereas the central difference provides second order accu-
racy. Therefore on a smooth synthetic image having the spatial frequencies much smaller than the
Nyquist cutoff wavenumber, the FFT based method can approximate its gradients better. Never-
theless, for a real image, often containing δ-correlated random noise (i.e with the spatial frequencies
exceeding the Nyquist cutoff wavenumber), the FFT based method can be less accurate compared
with the lower order methods and therefore needs some filtering (see Aprovitola and Gallo (2014)).
To illustrate this, we consider, a smooth 1D function I(x) = exp{−x2} set on xj =

{−7,−6, . . . , 8}. The error of this function derivative computed by the central difference method
is 0.24, whereas the error of derivative computed through the FFT is only 0.08 as shown in Fig-
ure 1(left).
However if the function is not smooth (for example, contains δ-correlated noise) the situation

is quite opposite. Consider, as an example, a discrete implementation of Dirac’s delta function,
δ(x). The derivative computed by the central differences gives a reasonable approximation for δ′(x)
coinciding with its numerical implementation (dashed green), whereas the FFT method gives an
oscillatory and unrealistic result as depicted in Figure 1(right).
The oscillatory response of the FFT method may be reduced by computing the central difference

using FFT. To do this, recollect that in a continuous, infinite space the derivative can be expressed
as a convolution using δ′(x) as

∂I/∂x = I(x) ∗ δ′(x) =
∫ +∞

−∞
I(u) δ′(x− u) du.

The Fourier transform results in the spectrum F [δ′(x)](k) = ik. The central differences can
also be computed analogously as a convolution with the function 1

2h

(
δ(x+h) − δ(x−h)

)
having a

spectrum of

F
[ 1

2h

(
δ(x+h)− δ(x−h)

)]
=

i

h
sin(kh) (22)

6
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Figure 1. Function I(x) (black): Right: I(x) = exp{−x2}, left: I(x) = δ(x); derivative computed by central-difference (red),
the same—through FFT (blue). The dashed green line represents the exact analytical derivative (left) or the numerical imple-
mentation of δ′(x) (right).

which tends to ik if h → 0. In an nD case, spectrum of the gradient operator, ik, should be replaced
by vector iq where

q(k,h) =

[
sin k1h1

h1
,
sin k2h2

h2
, . . . ,

sin knhn
hn

]T
. (23)

Here h = [h1, h2, . . . , hn]
T is a vector of the grid size. Now Eq. (19) may be transformed to give,

G(x) = F−1
[
F [I](k)

(
iq · (−i)

k

|k|

)]
, (24)

As seen in Figure 1(right) the FFT based central difference calculation gives a solution that is
identical to direct central difference method. Thus, the proposed new method (Equation (24)) with
the FFT based central difference is expected to give more accurate solution.

3.2 Improving the impact of finite domain

The analytical solution for the spectrum derived previously (Equation( 8)) is for an infinite domain.
To employ this expression on finite domains, a discrete approximation of Equation ( 8) is essential.
However, such a discrete approximation develops spatial oscillations of the kernel in the physical
domain. To demonstrate this, lets consider a 1D problem for which integral (3) coincides with the
standard Hilbert transform. A discrete analogue of kernel K = p.v. 1

πx in a 1D finite domain (16
grid points) is depicted in Figure 2(left) by the blue line, and its FFT image, F [K], is drawn by the
same colour line in Figure 2(right). The analytical kernel spectrum computed by (8) has a constant

magnitude: |K̃| = const everywhere except at origin as shown by dashed line in Figure 2(right) and

Its inverse FFT image, F−1[K̃], is drawn by the same dashed line in Figure 2(left). As we see from
the figures, the numerical spectrum F [K] decays approximately linearly through the k-domain in

contrast to constant magnitude of the analytical spectrum K̃. Also, the numerical spectrum has
some unwanted oscillation. Both the disagreement between analytical and numerical spectrums
and oscillations in numerical spectrum are caused by the finiteness of the domain.
Although we use finite domains, the use of FFT treats kernel K as a periodically repeated

function in an infinite domain. Thus, the kernel has a discontinuity at the boundary of any finite
domain as shown in Figure 2(left) by a light blue segment. The FFT shift is used just to display
this border discontinuity more clearly. This border discontinuity generates the unwanted oscilla-
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Figure 2. Left: discretized kernels; Right: their spectra. Red: kernel p.v. 1
x
. Black-dashed: kernel having spectrum iπ sign k.

Green: the kernel based on the Hilbert transform on a circle. The kernels and their spectra are plotted in the FFT shifted

domain: negative values are located after the positive ones.

tions in the kernel spectrum as shown in Figure 2(right, blue). This is manifestation of the Gibbs
phenomenon (e.g., (Arfken and Weber 1995)).
This border discontinuity can be removed in 1D case by the use of the Hilbert transform on the

unit circle with the kernel i
2πp.v. cot(x/2), x ∈ [0, 2π) (e.g., (Kress 1989; Schneider 1998)) instead

of the standard Hilbert transform. This approach is equivalent to replacing the original kernel by
an infinite sum of the same kernels periodically distributed along the domain, i.e,

K =
1

π

+∞∑
m=−∞

1

x− Lm
=

1

L
cot(

xπ

L
), x ̸= 0,±L, . . .

where L is the domain size. This kernel and its spectrum are drawn by red lines in Figure 2. One can
see that the function is smooth everywhere except at the singular point (x = 0) and its spectrum
behaves linearly up to the highest wavenumber kmax. The discrete spectrum values calculated is
exactly represented by the following formula:

K̃ = −i sign(k)
(
1− k/kmax

)
, kmax = π/h (25)

where h is the grid size.
In nD, the analogous approach gives the following sum for the kernel

K(x) =

M∑
m1,...,mn=−M

x−m ·L
|x−m ·L|n+1

, x ̸= 0 (26)

where L = [L1, . . . , Ln]
T is a vector of the physical domain size; m = [m1, . . . ,mn]

T ∈ Zn. For
M = ∞, equation (26) can be treated as a nD generalization of the Hilbert transform on a circle.
Unfortunately, unlike1D case, there is no known explicit formula for its spectrum. For segmentation

purposes, we propose a suitable approximation for K̃(k) below.
Analysis of the spectrum computed for the kernel evaluated through (26) and also a comparison

with 1D spectrum (25), give the following approximation for the spectrum in multi dimensions

K̃ = −i
k

|k|
[ (

1− |k′|
)
+ V (k)

]
, k′ =

[
k1
k1,max

, . . . ,
kn
kn,max

]T
(27)

where K̃(0) = 0. Here V (k) is a function making the spectrum smoother at the highest wave
number: vanishing when ki → ki,max; ki,max = π/hi. The following approximation of V (k) gives a

8
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Figure 3. Absolute value of the spectrum for a 32× 32. Green: computed via (6) and FFT. Red: computed via (26) for M = 5

and FFT. Blue: computed analytically by (27)–(29).

rather smoother spectrum

Vn=

n∑
m=2

am
∑

i1 ̸=... ̸=im

vi1 · · · vim , vi=1− cos
πki
2ki,max

(28)

with

an = −fn −
n−1∑
m=2

(
m

n

)
am, fn = 1−

√
n (29)

In multi dimensions with n = 2, 3 and 4 the equations take the forms

V2 = a2v1v2, a2 = −f2 = 1−
√
2,

V3 = −a2 (v1v2 + v2v3 + v3v1)− a3v1v2v3

a3 = −f3 − 3a2 = 2− 3
√
2 +

√
3

and

V4 = a2 (v1v2+v2v3+v3v1+v1v4+v2v4+v3v4)

+ a3 (v1v2v3+v2v3v4+v3v4v1+v4v1v2) + a4v1v2v3v4

a4 = −f4 − 6a2 − 4a3 = −1 + 6
√
2− 4

√
3

respectively.
The method proposed appears to have a large number of steps. The standard computation of

geometrical potential for a 2563 needs 22.12s without correction, 22.65s with correction (23)–(24)
and the method takes only 22.95s if correction (27)–(29) is also added.
Kernel spectra computed by different methods for a 2D image are shown in Figure 3. The green

mesh shows kernel spectrum computed as in (Yeo et al. 2011). It has unwanted oscillations at low
wave numbers. The red mesh shows spectrum for a generalized Hilbert kernel on a circle, Eq. (6)
combined with FFT. One can see that it behaves smoothly for low wave numbers and almost

9
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coincides with the green mesh at high wave numbers. The kernel spectrum computed directly in
the k-space via (27)–(29) is shown using the blue mesh. It behaves smoothly and almost coincides
with that shown by the red mesh but decays faster when wave number approaches the highest
value.

4. Numerical examples

In this section, some synthetic and real images used to calculateG are segmented using the improved
algorithm proposed. The first step of the algorithm involves calculation of the geometrical potential
(1) which is computed through Equations (6)–(7) (Yeo et al. 2011) and, accounting for the kernel
regularization corrections, through

G = F−1
[
F [I] Q̃

]
, Q̃ =

q · k
|k|

(1− |k′|+ V (k)) (30)

where q is given by (23), k′ is defined in (27) and V (k) is given by (28)–(29).
Been computed once, the geometric potential is used for the integration of PDE (2) for level set

function Φ(x, t) which defines implicitly (Φ(x, t) = 0) the active surface. The implementation of
the stage is described in (Yeo et al. 2011) and (Sazonov et al. 2011) in detail. The initial surface
is set inside the object to be segmented. For the real medical image, it has to be set manually (as
it can contain a number of objects) but rather arbitrary as the algorithm is quite robust for the
choice of initial surface. In (Yeo et al. 2011) initial surface Φ(x, 0) = 0 is set as a parallelepiped and
the initial level set then is calculated through the distance transform from its boundary. Here we
prefer to set the initial surface as a ball due to smaller number of parameters needed and to work
with the non-smooth level set function defined as Φ(x, 0) = −1 inside the ball and Φ(x, 0) = 1
outside it which does not affect the final result. The integration is stopped when the binary image
of the segmented object (defined as a set of voxels in which Φ(x, t) ≤ 0) remains the same in the
subsequent time steps.

4.1 Synthetic images

The 3D synthetic geometry used here is a three dimensional star as shown in Figure (4). Analytical
level set functions are used on a grid to describe the object. A small Gaussian delta-correlated noise
is added to the analytical level set. The total domain size is 64× 64× 32 and the centre of the star
coincides with the domain centre. The 4D image of the star is created by elongating and shortening
the star arms along the x4-axis which is the physical time coordinate in contrast to the virtual
time t used in (2) for evolution of the level set function. Its size is 64 × 64 × 32 × 16. Thus, the
image contains 16 different instances of 3D images and some of them are shown in Figure 4. The
star arms vary in time periodically with the period of 16 but not harmonically (to have a richer
spectrum along the x4-coordinate).
In Figures 5, 6, 7, the variation of G(x) computed along x1-axis for the 3D object is shown. The

remanning coordinates are fixed at the centre, i.e., x2 = 32 and x3 = 16. Thus, the geometrical
potential is shown along the line passing through the centre of the object. Also in these figures,
the black curve indicates the segmentation method based on threshold, i.e, the function Im − I(x)
is plotted with Im = 1

2(Imax + Imin) being the threshold value.
In Figure 5, the geometrical potential computed using Equation (19) without any kernel correc-

tion is compared against the threshold method, direct calculation of G and standard form of FFT
used in reference (Yeo et al. 2011) . One can see that despite all the methods produce a geometrical
potential distribution suitable for segmentation (points G = 0 are close to points I = Im). However
the proposed new method, despite giving a sharp distribution of G, is more sensitive to noise and
produced oscillatory G distribution.
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Figure 4. Object shape at various instances.
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Figure 5. The G variation along the x1 direction through the centre of the 3D image. Comparison of the proposed new method
without corrections against other less efficient methods.

In Figure 6, the G values computed with the proposed method and corrections described in
Section 3.1 are shown. As seen the oscillations are reduced but the results still not as good as the
standard FFT based method. In Figure 7, the both corrections introduced in Sections 3.1 and 3.2
are employed along with the new method proposed. As seen the oscillations are vanished the the
proposed method provides a result that is accurate and it is more than four times memory efficient
and three times faster than standard FFT based method used in reference (Yeo et al. 2011).
The improvements in G calculations obtained for 3D images are directly extendable to 4D images

as shown in Figures 8 and 9. In Figure 8 the spatial variation along the centre at x4 = 6 (the physical
time) are shown. As seen the proposed new method provides an acceptable and accurate spatial
variation. Figure 9 shows the time (x4) variation of G(x) in a single spatial point [x1, x2, x3] selected
in such a way that it is outside the object at different instances. As seen, the time variation of G
is accuracy and discrepancy against the standard FFT method is within one time step.
The most important for segmentation are the discrepancies between surfaces G(x) = 0. Regions

where the geometrical potential passes zero value are specially zoomed in Figures 7–8. Form these
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Figure 6. The G variation along the x1 direction through the centre of the 3D image. Comparison of the proposed new method

with correction described in Section 3.1 against other less efficient methods.
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Figure 7. The G variation along the x1 direction through the centre of the 3D image. Comparison of the proposed new method

with both corrections described in Sections 3.1 and 3.2 against other less efficient methods.

figures it is seen that distances between surfaces G(x) = 0 computed by old and the new methods
are essentially less than voxel size that is absolutely satisfactory.

5. Segmentation of a 3D medical scan

Now that the accuracy, speed and memory efficiency of the proposed method is proved, further tests
on real medical images are carried out in this and following subsection. In this section we provide
the segmentation results for a 3D scan of a thoracic part of an aorta. The results are compared
against the ones presented in (Yeo et al. 2011) to estimate approximate accuracy. The equation
describing the evolution of the 3D level set function Φ(x, t) and its solution are same as the ones
presented in (Yeo et al. 2011). The numerical scheme used is described in detail in (Sazonov et al.
2011). In Figures 10 and 11 the stages of level set evolution are shown at t = 0 (initial surface was a
ball inside the lower part of the aorta), t = 100, 200 and 260. The steady state is reached at t = 260
at which Φ change is negligibly small. In Figure 10 the standard method of FFT used in reference
(Yeo et al. 2011) for calculation of G is used and Figure 11 is generated using the proposed new
method with corrections described in Sections 3.1 and 3.2. As seen the proposed new method is
as accurate as the original method but the cost is substantially lower. Analysis of non-coinciding
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Figure 8. The G variation along the x1 direction through the centre of the 4D image in the y, z and t directions.
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Figure 9. Time variation of the geometrical potential at a single spatial point.

voxels (background-image) in the objects segmented by the old and the new methods shows that
their share is less than 1% in the segmented object, and the ‘thickness’ of the non-coinciding layer
of voxel does not exceed one voxel).

Figure 10. Segmentation of an aorta. Standard FFT of reference (Yeo et al. 2011) used in the G calculations.

6. Segmentation of a 4D medical scan

As mentioned previously, the proposed new method is more than four times memory efficient and
three times faster than the original geometrical potential based segmentation method. Thus, it is
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Figure 11. Segmentation of an aorta. Proposed new method used in the G calculations. .

now possible to segment much larger problems of practical interest. In this section, we provide a
4D problem that is often very difficult to segment using many of the existing methods. Although it
is possible to segment the 4D image by dividing into 3D + 1D image, the proposed new method is
able to handle 4D image as a single problem. This way, the topology of the object can be preserved.
The example of 4D object presented here is a 3D scan of a beating heart with 10 different instances

in time. The internal part of the heart ventricle considered here has a complicated geometry due
to trabeculaes. The geometry of trabeculaes is important as it can affect the flow parameters as it
injects blood into the aorta or to the pulmonary vein. The size of the scan is 256× 256× 155× 10.
Since the number of frames in the time direction is only 10, discrete Fourier transform (DFT) is
used here in stead of FFT. With smaller number of points FFT has no advantage over the DFT.
The FFT is however used in all the three partial directions.
Note that coupling between spatial x1, x2, x3 and temporal, x4 coordinates occurs in computing

G(x) by use of a 4D kernel and also during the integration of PDE (2) for level set function Φ(x, t)
with respect to virtual time t.
The heart scan voxel size is 0.570313 × 0.570313 × 0.9mm. The voxel grid is used as the grid

for solving the PDE governing the level set functions. An important issue to be considered in 4D
images is the relationship between spatial and temporal intervals. The ratio between the temporal
and spatial steps should be finite. Unless this ratio is correctly selected the interaction between
the spatial and temporal variation may be non-existent. A reasonable assumption is that the ratio
between the time step and spatial step should be approximately 10 for the geometrical potential
calculation. A large value of the order of 50 may be used when solving the PDE for the level set
functions. In the problem considered, computation of the geometrical potential for the 256× 256×
155 × 10 image using the proposed method with both kernel corrections described in Section 3
needs 257s ≈ 4 min and 1.9G of memory. A solution to Eq. (2) for 2000 steps needs approximately
two hours.
The initialisation of the level set function is selected in such a way that the active 4-surface

represents a set of ellipsoids (balls in the grid coordinates) of different sizes but centered in the
same point in every frame as shown in Figure 12 (left). The location is selected arbitrarily but
the initial active surface is allowed to intersect the segmented object in some parts. As seen from
Figure 12 (left), the initial surface is absent in some frames. This is done on purpose to show
that active surfaces is moving from frame to frame during its evolution to the final state, i.e., the
spatial and temporal variations are coupled. As seen the active surfaces penetrates empty frames
gradually with time. The final segmented object is depicted in Figure 13 for all 10 frames. All the
computations are carried out on Linux, Intel(R) Xeon 3.00GHz, RAM 4G (no parallelization or
GPU are employed).
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Figure 12. Earlier stages of integration (2) for the 4D segmentation of the heart.

Figure 13. Final result of the 4D segmentation of a beating heart.

Conclusion

In this paper a set of substantial improvements to the GPF method ((Yeo et al. 2011)) is proposed.
It is shown that upgraded version of GPF method does not decrease the quality of the segmentation
but improves efficiency mainly via reduced memory requirement and CPU time. The improved
version of the GPF method allows automatic segmentation of large 3D and 4D scans on standard
personal computers. The Riesz transform provides a methods of rapidly computing the geometrical
potential but leads to oscillatory solution. The oscillations are removed via effective correction
methods. The final results save substantial amount of memory, up to four times, and CPU time,
up to three times.
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Appendix A. Proof of proposition 2.1

Assume that the image occupy the total space Rn, belongs to D. We make the substitution x − x′ =
x′′ in integral (15):

G(x) = lim
ε→0+

Gε(x) where

Gε(x) = cn

∫
|x′′|>ε

∇I(x− x′′) · x′′

|x′′|n+1 d
nx′′. (A1)

Now we introduce the n-spherical co-ordinates x = rξ(θ) where r = |x|, ξ = x/r. Angular
coordinates θk form a (n−1)-vector θ = [θ1, . . . , θn−1] where θk ∈ [0, π) for k = 1, . . . , n−2 and
θn−1 ∈ [0, 2π). They are defined such that Cartesian components of vector ξ are

ξ1 = cos θ1
ξ2 = sin θ1 cos θ2
ξ3 = sin θ1 sin θ2 cos θ3

· · ·
ξn−1 = sin θ1 sin θ2 · · · sin θn−2 cos θn−1

ξn = sin θ1 sin θ2 · · · sin θn−2 sin θn−1.

We write the n-spherical volume element in the form

dnx = rn−1 dr dn−1θ

dn−1θ = sinn−2 θ1 sin
n−3 θ2 · · · sin θn−2 dθ1 · · · dθn−1.

Here dn−1θ is the solid angle element, i.e. the area element of the unit n-sphere.
Passing to the spherical coordinates in integral (A1) we obtain

Gε(x) = cn

∮ ∫ +∞

ε
∇I(x− r′′ξ′′) · ξ

′′

r′′
dr′′dn−1θ′′.

Observe that ξ′′ is the unit vector normal to the boundary of the domain of integration: |x′′| > ε.
Therefore the dot product with this vector gives the radial component only, and we can substitute
∇I by Ir′′ = (∂/∂r′′) I:

Gε(x) = cn

∮ ∫ +∞

ε
Ir′′(x− r′′ξ′′)

1

r′′
dr′′dn−1θ′′.

Now we apply the integration by parts in the integral with respect to r′′ representing the primitive
as

∫
Ir′′(x− r′′ξ′′) dr′′ = I(x− r′′ξ′′)− I(x):

Gε(x) = cn
1

ε

∮ [
I(x)− I(x− εξ′′)

]
dn−1θ′′

+ cn

∮ ∫ +∞

ε

[
I(x− r′′ξ′′)− I(x)

] dr′′

(r′′)2
dn−1θ′′.

For ε small enough we can expand I(x− εξ′′)− I(x) into Taylor’s series in the vicinity of point x:

I(x− εξ′′)− I(x) = ∇I(x) · εξ′′ +O(ε2).
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Substituting the series into the first integral and integrating term-by-term we can write

Gε(x) = cn

[
−∇I(x) ·

∮
ξ′′ dn−1θ′′ +O(ε)

]
+ cn

∮ ∫ +∞

ε

[
I(x− r′′ξ′′)− I(x)

] dr′′

(r′′)2
dn−1θ′′.

Using the property of symmetry we can show that
∮

ξ′′dn−1θ′′ = 0. Returning to the Cartesian
coordinates we have

Gε(x) = cn

∫
|x′′|>ε

I(x − x′′)− I(x)

|x′′|n+1 dnx′′ +O(ε).

Passing to the limit ε → 0+ we have

G(x) = cnp.v.

∫
x′′∈Rn

I(x − x′′)− I(x)

|x′′|n+1 dnx′′. (A2)

�
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