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A novel implementation of computational aerodynamic shape optimisation
using Modified Cuckoo Search™

D. S. Naumann®*, B. Evans?®, S. Walton®, O. Hassan®

¢ Cil & Computational Engineering Centre, School of Engineering, Swansea University, Swansea SA2 8PP, Wales, UK

Abstract

This paper outlines a new computational aerodynamic design optimisation algorithm using a novel method of
parameterising a computational mesh using ‘control nodes’. The shape boundary movement as well as the mesh
movement is coupled to the movement of user—defined control nodes via a Delaunay Graph Mapping technique.
A Modified Cuckoo Search algorithm is employed for optimisation within the prescribed design space defined by
the allowed range of control node displacement. A finite volume compressible Navier—Stokes solver is used for
aerodynamic modelling to predict aerodynamic design ‘fitness’. The resulting coupled algorithm is applied to
a range of test cases in two dimensions including aerofoil lift—drag ratio optimisation intake duct optimisation
under subsonic, transonic and supersonic flow conditions. The discrete (mesh—based) optimisation approach

presented is demonstrated to be effective in terms of its generalised applicability and intuitiveness.

Keywords: mesh movement, Cuckoo search, computational fluid dynamics, aerodynamic shape optimization,

shape parameterisation

1. Introduction

During the last 30 years, the aerodynamic design problems faced by the aerospace industry have been revo-
lutionised by computational fluid dynamics (CFD). Particularly unstructured mesh methods [1, 2, 3] these days
allow the mesh generation on complex three-dimensional geometries within a few hours, that initially required
several months using multiblock techniques for quasi—structured meshes [4, 5]. Simultaneously, the development
of Computer Aided Design (CAD) has had a strong impact on the design cycle of aerodynamic problems [6].
In light of this, CFD and CAD have become integral parts of a typical aerodynamic design cycle apparent in
current aerodynamic design projects. The flow chart in figure 1 [7] indicates the emphasis now placed on CFD
and CAD within the inner and outer design loops.

Despite these advancements, significant challenges remain for the computational modelling community in
order to efficiently transfer geometry between CAD and CFD systems and improve the computationally expensive
mesh re-generation process during optimisation [8, 7]. Main challenges include a lack of standardised shape

parameterisation approaches and the alignment of CAD geometry definition with the CFD solver geometry
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Figure 1: A typical multi-disciplinary aerospace design cycle

definition as well as the lack of standardisation in optimisation approach. Current research tries to overcome
some of these problems by linking CAD systems, CFD tools and the mesh generation process. Examples include
Isogeometric Analysis [9, 10, 11] and NURBS Enhanced Finite Elements Methods [12, 13] . However, limited
progress has been made to link these approaches to computational aerodynamic shape optimisation algorithms
in contexts of generalised applicability. The selected approach usually severely limits the explorable design space
(i.e. range of potential shapes) for the optimiser. Considerable effort into research concerning coupling CFD
modelling with aerodynamic shape optimisation has only been invested in significantly over the last 10 years
[14]. Particularly the use of global optimisation algorithms in this field is only just emerging [15].

This paper presents a novel implementation of computational aerodynamic shape optimisation in which the
parameterisation of the geometry and coupling with an optimisation algorithm is unique. The approach makes
use of the concept of ‘control nodes’ in the mesh as the method for both defining the geometry movements and as
the design parameters for the optimisation process. The Fast Dynamic Grid Deformation (FDGD) approach [16]
has been applied to move the mesh and results in a self-contained algorithm formulated to propagate the effect
of the ‘control node’ displacement throughout the discrete shape boundary and computational mesh. There is
no requirement to re-mesh at each stage in the optimisation. Since all knowledege of the geometry is ‘stored’
in the discrete boundary, there is no requirement to convert the geometry definition stored in the mesh into any
other format during the optimisation process. This reduces the problem of translation of CAD-based geometry
definitions to CFD meshes.

Aerodynamic designers prefer to use tools that are both intuitive and have wide-ranging applicability. The
optimisation and design process requires an effective geometry parameterisation to allow sufficient exploration
of a design space. Furthermore, a minimisation of the number of parameters defining the position in a design

space is of benefit in order to also minimise computational cost. The approach described in this paper is a



‘control node’ mesh—based parameterisation. Well-known mesh—based optimisation test cases were performed
by Jameson [17, 18] using control theory coupled with an adjoint approach|[7, 19, 18] to solve for gradients. Other
implementations of parameterisation schemes in the literature include CAD based [20], analytical, basis vector
[21], free form deformation (FFD) [22, 23], domain element methods [24], and the control grid approach [25]. A
thorough review of shape parameterisation techniques is provided by Samareh in [26]. In this paper it will be
argued that the ‘control node’ approach presented here has advantages over these methods in terms of ease of

implementation, user intuition and generalised applicability.

2. Methodology

2.1. Geometry Shape Parameterisation

One of the common practical problems in industrial implementations of CFD—based aerodynamic design is the
translation of geometries from CAD systems into computational meshes for simulation. This is often referred to
as the bottleneck of the design process [8, 7] due to differing tolerance levels required for CAD systems compared
with CFD [27, 28]. Solutions currently researched, for example Isogeometric Analysis and NURBS Enhanced
Finite Elements Methods emphasize the development of a new CFD solver based on the geometry definition of
the CAD system [12, 13, 9, 10, 11].

Once the initial computational mesh has been created (which could have originated as a CAD geometry),
the geometry is then parameterised by choosing ‘control nodes’ at critical positions defined by the user on the
discrete shape boundary. The number and position of these control nodes is important in determining how the
geometry will evolve. Figure 2 shows the definitions of the terms ‘control nodes’, ‘boundary nodes’ and ‘domain
nodes’ that will be used throughout this paper.

One of the important features of this parameterisation technique is that as the number of control nodes,
Ten, approaches the number of boundary nodes, n,, the parameterisation approaches an unlimited scope of the
potential design space for a given boundary discretisation, B , i.e. if B € R then as ng, — ny, B — R d
describes the degrees of freedom within the system. Thus, the dimensionality of the explorable design space can
be adjusted through the number of control nodes.

A general definition of the total degrees of freedom within the system is given by

d= ncnfcn (1)

where f., is the number of degrees of freedom per control node. Generally, for 2-D cases, f., would be 2,

however, in some of the case studies considered here, the f., value was reduced to 1 (by restricting potential

control node movement) to further reduce the design space dimensionality and, therefore, computational cost.
The explorable design space should be considered as a range of displacements from an initial discrete shape

boundary, where the boundary deformation is a function of control node movement as,

Biew = Binit + AB(ACL . ACncn) (2)

where Byt is the initial boundary definition, Bjeq is the new boundary shape and Cj is the position vector

of control node, 1.
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Figure 2: Definitions of control nodes, boundary nodes and domain nodes

2.2. Mesh Movement
2.2.1. Background

Significant challenges are involved with mesh movement techniques particularly in cases of large geometry
deformation. Existing methods are commonly separated into two different categories: schemes based on mesh
connectivity and point-by-point schemes[29]. Examples of the first category include the widely used spring
analogy / solid body elasticity approaches [30, 31, 32, 33] which exploit the mesh connectivity but require
the solution of large systems of equations resulting in high computational expense. Point-by-point approaches
[34, 29, 35, 36] offer similar robustness at considerably lower computational cost by modifying the positions of the
mesh nodes without using the making use of the mesh connectivity. The most promising point-by-point method
investigated is based on Delaunay Graph (DG) Mapping called ‘Fast dynamic grid deformation’ (FDGD) [16].

This method was utilised as the basis for the mesh movement in the work presented in this paper.

2.2.2. Control Node Approach for Mesh Movement

The mesh movement is a three step process to propagate the initial movement of the control nodes first to the
discrete boundary and then throughout the entire computational mesh. An overview of the scheme employed is
provided in Figure 3. The optimisation algorithm dictates the displacement of the control nodes by analysing the
fitness of each geometry (details are presented in Section 2.3). In the second step, the discrete shape boundary

is deformed. Finally, the domain nodes are moved.

2.2.3. Fast Dynamic Grid Deformation

To move a mesh using FDGD five steps are employed: 1. generate a coarse ‘background’ Delaunay Graph
(DG) using all boundary nodes. 2. locate the domain nodes in the coarse DG. 3. calculate the area coefficients
of each of the domain nodes. 4. move the DG according to the boundary change. 5. relocate the domain nodes
by maintaining area coefficients [16].

In order to apply the technique for both moving the boundary nodes as well as the domain nodes, the

methodology has been extended and a ‘hyper-coarse’ background mesh has been introduced. In effect, the
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Figure 3: Mesh movement methodology: (a) Initial mesh provided as an input and starting point for the optimisation (b)
the control nodes are relocated based on the MCS optimiser (c) the discrete shape boundary is moved (d) the domain
nodes within the mesh are moved whilst retaining mesh connectivity Red points - control nodes

methodology is duplicated to first move the boundary nodes based on the ‘control node’ displacement. The
‘control nodes’ and the corner nodes in the far field boundary are used to generate a DG termed the ‘hyper-
coarse background’ DG. Next, the domain nodes are moved based on the boundary node movement by generating
a DG using all boundary nodes. This is termed the ‘coarse background’ DG. Implementing this modification,

the methodology becomes:

generate hyper-coarse background DG with ’control nodes’ (Figure 4 (a)-(b))

locate the boundary nodes in the hyper-coarse DG

generate coarse background DG with boundary nodes (Figure 4(d)-(e))

locate the domain nodes in the coarse DG

calculate Area Coefficients of domain nodes in coarse DG

calculate Area Coefficients of boundary nodes in hyper-coarse DG

move the hyper-coarse DG according to the 'control nodes’ displacement (Figure 4c)

relocate boundary nodes by maintaining Area Coefficients

© X N WD

move the coarse DG according to the boundary movement (Figure 4f)

,_.
e

relocate domain nodes by maintaining Area Coefficients

The mesh M is now solely influenced by the ‘control node’ displacements AC and can be described by the
equation
Mnew = init T AM(ACh ceey ACncn) (3)

where M+ is the initial mesh, My, ¢, is the new mesh.

Apart from its known effectiveness, the method also benefits from very good shape preservation characteristics
for deformations with equal ‘control node’ displacement. This enables aerodynamic optimisation cases that need
to preserve the relative shape definition, thus, only allowing the translation of the shape. Figure 3 shows such a
translation, where the relative shape is well preserved with only 2 control nodes. Applications benefiting from
this behaviour include optimisation of configurations such as the optimum mounting location of an engine below
the wing or angle of attack optimisation of a wing. The second case is conducted as a 2D example in section
3.1.2.
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2.3. Optimisation Approach
2.8.1. Background

A significant advantage of the intuitive parameterisation approach is the easy coupling with an optimisation
algorithm since the ‘control nodes’ act naturally as the design parameters during the optimisation process. The
components of the position vector of each control node effectively become the parameters of the design space.
The large range of control node displacement that are allowed led to the testing of global optimisers in this
study, in particular, evolutionary algorithms. Traditionally gradient based optimisers [37, 18, 20] have been
the preferred choice for aerodynamic shape optimisation. The large design space exploration possible using the
approach identified here, however, always results in the risk of the optimiser ‘getting trapped’ in local minima.

Genetic Algorithms describe a subclass of such gradient free, evolutionary methods and are heuristic in
nature, operate globally and use large populations of agents to search the design space. All Genetic Algorithms
follow a similar principle that adopts the idea of ‘survival of the fittest’ using a series of mutations and crossovers
per optimisation iteration (or ‘generation’). As the number of generations increases, the best agents ideally

approach the global optimum. In contrast to gradient based techniques, testing for global convergence is not



straightforward and these types of algorithms tend to be left to run for a pre-set wallclock time, or fixed number
of generations, rather than a clearly defined convergence target. The fitness of each agent has to be evaluated at
every generation. As a result, the computational efficiency of gradient free techniques is often inferior to gradient
based methods due to the large number of fitness evaluations [38]. The problem is particularly significant when
considering applications where a single fitness evaluation represents a significant computational cost as is the
case in shape optimisation. Nevertheless, gradient based methods are highly depend on the initial design [37]
which is something that the authors wished to move away from in this implementation.

A large body of work published on the application of gradient free techniques to shape optimisation focuses
on attempts to address the issue of computational cost. This is usually addressed by the use of cheap surrogate or
meta models which approximate the expensive objective function [39, 40, 41, 42]. These were not implemented in
the study presented here as the focus of this work was the effectiveness and applicability of the parameterisation
scheme itself. Future work will be conducted into algorithm acceleration using Reduced Order Modelling.

Modified Cuckoo Search (MCS) was specifically developed with the aim of reducing the number of fitness
evaluations required to find the global optimum [43]. Since its introduction MCS has been shown to be efficient
when compared with other gradient free techniques in real applications [44, 45] which motivates its use in the

present context.

2.3.2. Modified Cuckoo Search

The basis for the MCS is the Cuckoo Search algorithm (CS). Inspired by the reproduction strategy of cuckoos
the CS algorithm [46] has been used in a variety of applications [47, 48, 49, 50, 51]. The key component of the
strategy, which is mimicked by CS, is the aggressive behaviour of cuckoos, which lay eggs in the nests of other
species. If the cuckoo egg differs significantly from the eggs of the host bird, there is the chance that the host
may abandon the nest and the eggs. Cuckoo eggs have slowly evolved to prevent this by mimicking the patterns
of the eggs belonging to other local species of birds [52].

In the MCS algorithm the agents, called eggs, are each generated to represent a particular set of design
parameters. The initial generation is build by sampling the entire design space. The fitness of all eggs is
evaluated and finally the eggs are placed in nests. To model the effect in nature of a host bird discovering eggs
with poor fitness, a fraction of eggs with the worst fitness are discarded at each generation and new eggs are
generated by performing a random Lévy flight [53]. For the retained assembly of ‘best’ eggs, each best egg
is randomly paired with another best egg and a ‘cross-breading’ between them is performed to create a new
egg, which is kept and placed in a new nest only if the fitness outperforms the fitness of its ‘parent eggs’. The
optimum ratio of best to worst eggs has been found, empirically, to be 1:3 [43]. The process of replacing and

creating eggs continues until a stopping criterion is met (often simply a prescribed number of generations).

2.8.3. Initial Sampling

In the first generation, a set of agents is required for the MCS algorithm to form the initial population with
size N. Naturally, the initial geometry provided by the user of the algorithm functions as a starting point.
Based on the initial geometry, the initial population is generated by sampling the entire design space (defined
by the allowed range of control node displacements) using Latin Hypercube Sampling (LHS) [54]. Each degree
of freedom of the system d (dimensions of the design space) is divided into N equal intervals to create N¢ cells.

Then, one cell is selected at random. Any other cell in the same interval of every dimension is now excluded.



This process is repeated N times until each interval contains exactly one selected cell. The ideal population
size N is difficult to pre-determine but the rule of thumb that N = 10d was used in this work as a compromise

between fast convergence whilst minimising computational cost.

2.4. Computational Fluid Dynamics

All case studies conducted in this work were two—dimensional in space, although all the techniques considered
have natural three dimensional extensions. This will be covered in future work. Since the algorithm utilizes the
CFD solver as a black box, the CFD approach will only be described briefly.

Two dimensional unstructured triangular meshes were generated using the FORTRAN-based Swansea Uni-
versity FLITE CFD system [28]. The advancing layers technique was used to generate the boundary layer mesh
with cell heights defined by the user. An isotropic triangular mesh is then generated using the Delaunay technique
with point insertion governed by a pre-defined mesh cell size function across the computational domain.

The FLITE CFD system fluid solver is an edge—based, node—centred finite volume discretisation for solution of
the compressible Navier—Stokes equations [55]. The results of the CFD solver forms the input for the optimisation

algorithm to determine the shape ‘fitness’ value.

2.5. Summary: global methodology

In order to gain an overview of the entire algorithm it is worth considering the problem as a sensitivity
analysis [26]. A general CFD—coupled aerodynamic shape optimisation algorithm can be understood as a series
of sensitivity derivatives (which in the case of a gradient free approach are never explicitly computed) through
which the sensitivity of the solution fitness f varies with the design parameters v as,

o= o | 5ee] I3l | 5] n

where R,, defines the computational mesh used for the CFD analysis, R defines the boundary/surface mesh,
and Ry is the geometry definition. One of the advantages of the control node parameterisation outlined in this
paper is that the control nodes are used both to move the boundary and to parametrically provide a geometry

definition such that the third and fourth sensitivity derivatives collapse to become
ORy | [ORg| _ [OB (5)
OR, ov |  |oC

where v = C and Ry becomes B. Equation 2 outlines the simple relationship between B and C. Through the

implementation of the FDGD method this system further collapses and yields

ORn | [0B] _ [OM (6)
0B oc| | oC
since the effect of control node displacement is directly propagated throughout the entire mesh M. Finally,

Equation 4 becomes

- (22

oC  |oM | | oC
and sensitivity analysis is reduced to two parts. In the approach outlined in this paper, the sensitivity [%} is

determined using the FLITE CFD solver and [%} is never explicitly computed but the population of agents
are ‘steered’ by MCS and the effect of this is propagated to the computational mesh via FDGD.



A flow chart of the overall algorithm is given in figure 5. The entire algorithm has been developed in
FORTRAN and the CFD solver is embedded as a black box. The code has been parallelised to take advantage
of High Performance Computing with each agent in the population being allocated a PC cluster core.
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Figure 5: Flow chart of the overall algorithm developed in this paper



3. Case Studies

Four 2D aerodynamic design case studies, of varying complexity, are considered in this section to demonstrate
the characteristics of the algorithm presented. The first two cases are simple angle of attack optimisation cases
to illustrate the effectiveness of the algorithm regarding shape preservation as outlined in section 2.2.3. Finally,
the algorithm is applied to the problem of subsonic, transonic and supersonic engine intake duct optimisation in
order to test its robustness and effectiveness regarding shape optimisation. All case studies have been run on the
HPC Wales machine [56], a super-cluster exhibiting Westmere/Sandy Bridge processors with approximately 2.6
Ghz per core. Any computation, processing and run times provided in this section are based on these processors.

The population size within each case study was calculated according to the N = 10d rule of thumb. Further-
more, a generous stopping criteria of 100 Cuckoo generations has been set for all cases to achieve a comprehensive

understanding of the algorithm functionality in the context of convergence behaviour.

3.1. Aerofoil

Two simple aerofoil configuration optimisation cases are first considered in which the preservation of the
aerofoil shape is desired but the angle of attack of the aerofoil is varied. Both utilise the NACA 0012 aerofoil.
Flow was considered to be inviscid and at a Mach number of 0.5. The mesh is shown in Figure 6 and contains
4551 nodes and 8884 triangular elements.

Two control nodes were placed at the leading edge and trailing edge to control the aerofoil angle of attack.
The first control node at the leading edge C1(Zcn,,Yen, ) was fixed and the second control node at the trailing

edge Co(Ten,, Yen,) Was constrained to an arc defined as
(l'cng - xcn1)2 + (ycn2 - ycn1)2 =c? (8)

where c is the chord length of the aerofoil. C5 travels a distance s along the arc dependent on the change in
angle of attack Ac«, which is given by
s= — Aac (9)

As a result, the problem was reduced to one degree of freedom (d = 1), as the design parameter is solely the

position of the control node on the arc distance s. The explorable design space was limited by constraining the

T T
187 18

results for the full range of case studies considered.

range of motion of control node Cs to s € | ]. Note that Table 1 summarizes all input parameters and

3.1.1. Fitness (objective function)

The fitness f; for the first case was,

fr=—IL /4 (10)
and the fitness fo for the second case was,
L
=5 (11)

where ¢, is the freestream dynamic pressure, L is aerofoil lift and D is aerofoil drag defined as,

L= $ping)dB, (12)

10



D= ?{p(nz) dB, (13)

Here, p is the non-dimensionalized static pressure, n is the normal unit vector directing into the surface, ¢ and
J are the parallel and vertical unit vectors in relation to the freestream velocity direction and B, is the aerofoil

shape boundary.
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Figure 6: Initial aerofoil mesh  (a) entire domain (b) zoom

8.1.2. Lift minimisation

The first case was a very basic proof of concept in which the angle of attack o of an aerofoil was optimised
for minimal lift as given in equation 10. Here, the optimal solution is known to be a = 0, since NACA0012
is a symmetrical aerofoil. Hence, the final outcome can be compared against the known global optimum. The
initial geometry was created at an angle of & = 9°. The results in figure 7 show a rapid convergence towards
the known optimum within 10 generations. The improvements seen in the initial generation is a result of the
sampling rather than the Cuckoo search optimisation. The subsequent convergence displayed in the close-up of
Figure 7 (a) was achieved by the MCS. Afterwards, slight changes occur for example at step 29. Nonetheless,
the MCS never reaches the final optimum with a final fitness of -0.06 m? over an initial value of -0.89 m?2.

The total computational expense for the given set-up and 10 generations is approximately 9.5 core hours,
which is unreasonable for a simple case as presented here (which could easily have been solved using a gradient
based optimiser). Nevertheless, this case demonstrated that the optimiser and mesh movement algorithm were

both working effectively.

11
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8.1.3. Lift to Drag mazximisation
The second case is another example of an optimisation requiring shape preservation in which the angle

of attack « of an aerofoil was optimised for maximizing L/D according to equation 11. The level of shape

preservation is illustrated in figure 8 for an example case of s = {5 showing negligible discrepancy between the

starting shape and the moved shape at its optimum angle of attack. An initial angle of a = 0° was defined
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and the movement of the control node Cy at the trailing edge was again constrained providing the relationship
in equation 9. This time, the optimal solution was less obvious compared to the previous case and has been
estimated based on the data received from every agent during the run. The result is plotted in Figure 9 presenting
the fitness of every agent (L/D) over the respective control node positions. In comparison, Figure 10 illustrates
the convergence of the fitness and the change in control node position over the generations using MCS. It can
be observed, that a solution in the area of the global optimum was reached taking noise effects in the fitness
evaluation into account. However it is unclear, whether the final optimum has been obtained sufficiently. The
final fitness value (L/D) is 32.4 and 6.9 % of the improvement was achieved after the initial sampling.

When compared to the previous case, a fast convergence in the initial phase becomes apparent with almost
no changes appearing after generation 10. A comparison of the initial and final pressure field in Figure 11
illustrates, that the pressure distribution has significantly improved. The computational expense is equal with

approximately 9.5 h per 10 generations.

40
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50 L L - L L L L
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Figure 9: Lift to Drag over the control node position

3.2. Intake Duct Optimisation

Having validated the algorithm’s ability to find known optima, a more sophisticated aerodynamic optimisation
problem was tackled. A common problem definition in aerodynamic design is the optimisation of a jet engine
intake duct[5] tailored to a specific aircraft configuration. In order to ensure efficient performance and avoid stall
or surge, the flow pattern at the engine’s compressor face must be satisfactory across the entire speed range and
flight conditions that the vehicle will experience. Experience and engineering intuition are often the primary
tools used to solve this aerodynamic design problem in industry[57, 28].

The starting geometry was an engine intake duct of a land—based supersonic vehicle. The mesh utilized is
illustrated in Figure 12 and exhibits 82868 mesh nodes and 163419 mesh elements. Solutions to the problem
were sought at a range of Mach numbers Ma = [0.5,0.8,1.1,1.4] using viscous CFD simulations. To capture
viscosity effects, a triangulated boundary layer mesh with 7 layers was integrated into the mesh. The number of

control nodes differed between both cases. At first, one control node has been defined at the tip of the upper lip

13
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of the intake. Afterwards, an additional three control nodes were added. Figure 12 (b) visualises their location.
All control nodes were allowed movements in both vertical and horizontal direction with a specified explorable
design space of ¢ € [-0.3,0.3] and yo € [—0.3,0.3] for each control node C, where the design space has been

normalized in relation to L of equation 14. Table 1 summarizes all parameters.

3.2.1. Fitness (objective function)
Distortion is one of the main flow parameters a jet engine intake is designed for and provides a measure of

standard deviation of the total pressure across a plane of interest, in this case the jet engine compressor face.

The deviation across the plane should be kept minimal for an optimum flow pattern into the engine. Fitness is

always defined in the context of maximization. Thus, in order to minimize distortion, fitness is a product of the

negative distortion o.

LR

F:— —
7 BL

dl (14)
0
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(b)

Figure 12: Mesh of supersonic vehicle with engine intake duct (a) total mesh  (b) detailed mesh including

the control node locations and their range of motion

where P, is the total pressure and P, is the mean total pressure. [ is a coordinate moving along a line in 2D,
both of which are defined along the engine inlet. The equation is normalized against L, which is the length of

the engine inlet.

3.2.2. 1 Control Node case

For a third case, one control node has been selected with allowed movements in both dimension x and y.
Therefore, the population size was set 20. However, since the calculation of the optimal population size is a
subjective decision as outlined in section 2.3.3, the case has been utilized to test the effect of varying population
sizes. Thus, the same case was performed twice with a population size of 10 and 20. An overview of the fitness
development of both cases for all Mach numbers Ma = [0.5,0.8,1.1, 1.4] are shown below in Figure 13 and all
fitness values are detailed in table 1.

As a general observation, all fitness values have improved over the Cuckoo generations. This becomes more
evident in Figure 14, that visualises the flow patterns across all Mach numbers for the case with a population
size of 10 emphasizing the engine inlet. A more homogeneous pressure pattern was obtained at the engine inlet
resulting in a reduction in pressure distortion (fitness). Additionally, in Figure 13, an expected improvement
of the final results can be seen for the case with increased population. An average improvement across all four
Mach numbers of 6.65 % has been achieved illustrating the benefit of an increased population for otherwise equal
input parameters. It can be argued, that a twofold increase in number of generations possibly has a similar
impact. However, in the context of wall-clock time efficiency for a parallelised code, an increase in the number
of agents is more advantageous over increasing the number of generations.

When further comparing both cases with different population size no sign of faster convergence towards an
optimum can be detected as both runs show examples with partly significant changes close to the end. Besides,
large jumps in the fitness may occur even after a period of almost no change in fitness and a perceived convergence.
This outlines the difficulty to define a suitable convergence criteria or population size for a generic engineering
problem with unknown outcome when using global optimisation algorithms. Most certainly, population size

and number of generations should therefore be driven by the real time and computation time constraints of an
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Figure 13: Fitness development over cuckoo generations with population size of (a) 10  (b) 20

individual project.

Figure 15 displays the movements of the control node of the agent with the best fitness at each generation.
The results coincide with the characteristics in Figure 13. Active control nodes generate better results compared
to control nodes with little motion. Only the large jump in fitness of the Ma 0.5 run with a population size of
10 is not reflected in the motion of its control node. In conclusion, the activity of the control node may well be
an indicator of convergence towards a global optimum, however, a sudden discovery of a new global optimum is
always possible.

All four Mach numbers for a population size of 20 required approximately 10,000 core hours and 5,000 core

hours for a population size of 10.

3.2.3. 4 Control Nodes case

Finally, four control nodes have been applied with allowed movements in both dimension as prescribed in
Figure 12 (b). Again the case was conducted for four Mach numbers. The population size was set to 80. The
fitness development of all cases is shown in Figure 16.

Again, all fitness values have improved over the Cuckoo generations. Table 1 provides details of all values
including start and end values of the fitness. The improvement is more apparent in Figure 17, that visualises
the flow pattern for Mach number 1.4 emphasizing the engine inlet. A more homogeneous pressure pattern was
obtained at the engine inlet resulting in a reduction in pressure distortion (fitness). It needs to be noted, that
the rather unusual optimised shape is a result of the choice of objective function. A multi-objective optimisation
including other important factors in the design (for example total flow rate) would most likely result in a
different shape but this is beyond the purpose of this paper which is simply to prove the concept. In Figure 16,
the convergence pattern over the generations is comparable to the previous case. After the first significant step

generated by the initial sampling, the fitness advances further due to the MCS until only little changes occur.
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Figure 14: Pressure Fields of the supersonic vehicle with engine intake duct of  (a) initial geometry  (b)

optimised geometry  for Ma 0.5, 0.8, 1.1, 1.4

Nonetheless, the level of improvement has increased by a magnitude of approximately 3 due to more flexibility
by implementing three more control nodes. In accordance with the latter case, the majority of improvement is
achieved in the early stages. Looking at the behaviour of the control nodes in Figure 18, one may notice the
large magnitude of change in control node position occurring for most Mach numbers. That implies a more
complex objective function with an increasing number of local optima. It leads to the conclusion, that the MCS
algorithm is very good at finding global optima in design space but struggles in converging precisely to the local

optima.
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Finally, the effect of control nodes appear to differ, since the control node 3 changes less particularly in the

vertical motion compared to other nodes. That raises the question whether control nodes may be more effective

at some locations than on others.

. . .
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Fitness development over cuckoo generations of 4 CN case
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Figure 17: Pressure Fields of (a) initial geometry  (b) optimised geometry for Ma 1.4

Case | Mesh | Control Nodes | Agents Ma | Re | Fitness | CPU |
[ np ne | men d | start After LHS End | h Cores |
3.1.2 4551 8884 2 1 10 0.5 oo -0.89 -0.12 -0.06 95 10
3.1.3 4551 8884 2 1 10 0.5 oo 0.03 30.5 32.4 95 10
3.2.2 82868 163419 1 2 10 0.5 6.5e5 -0.089 -0.074 -0.060 5e3 10
3.2.2 82868 163419 1 2 10 0.8 6.5e5 -0.082 -0.068 -0.059 5e3 10
3.2.2 82868 163419 1 2 10 1.1 6.5e5 -0.087 -0.078 -0.058 4.5e3 10
3.2.2 82868 163419 1 2 10 1.4 6.5e5 -0.085 -0.063 -0.061 4e3 10
3.2.2 82868 163419 1 2 20 0.5 6.5e5 -0.089 -0.058 -0.056 10e3 20
3.2.2 82868 163419 1 2 20 0.8 6.5e5 -0.082 -0.064 -0.059 10e3 20
3.2.2 82868 163419 1 2 20 1.1 6.5e5 -0.087 -0.071 -0.055 9e3 20
3.2.2 82868 163419 1 2 20 1.4 6.5e5 -0.085 -0.062 -0.052 8e3 20
3.2.3 82868 163419 4 8 80 0.5 6.5e5 -0.089 -0.027 -0.025 40e3 80
3.2.3 82868 163419 4 8 80 0.8 6.5e5 -0.082 -0.027 -0.024 40e3 80
3.2.3 82868 163419 4 8 80 1.1 6.5e5 -0.087 -0.035 -0.026 36e3 80
3.2.3 82868 163419 4 8 80 1.4 6.5e5 -0.085 -0.021 -0.020 32e3 80

Table 1: Summary table of all input parameters. The first two cases are aerofoil cases of section 3.1. All following cases
display engine intake duct optimisation cases of section 3.2, that differ in their Mach number or number of agents.

4. Conclusions

An new computational acrodynamic shape optimisation algorithm has been developed making use of the novel
concept of control nodes. The control nodes, located on the discrete shape boundary, are used for both defining
the geometry movements and as the design parameters for the optimisation process. The approach has been
coupled to the FDGD mesh movement technique to propagate the displacement of the control nodes, driven by
a Modified Cuckoo Search evolutionary optimiser to the computational mesh for CFD analysis. The approach
is CAD-free and requires no remeshing between generations. The resulting algorithm has been successfully
applied to four different aerodynamic case studies including aerofoil lift minimisation, lift—drag ratio optimisation
optimisation and subsonic, transonic and supersonic engine intake duct design. It is demonstrated to be effective
across a range of aerodynamic design problems, is intuitive for the user and significant improvements in the
fitness were achieved over relatively few generations. It also benefits from the property of shape preservation
where it necessary simply to optimise based on translation or rotation of parts of the geometry. In future work,
the algorithm is being developed to include a CEFD acceleration approach such as Reduced Order Modelling,

optimised and variable control node location selection and extension to three dimensions.
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