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ABSTRACT 21 

Global carbon balances are increasingly affected by large fluctuations in 22 

productivity occurring throughout semiarid regions.  Recent analyses found a large C 23 

uptake anomaly in 2011 in arid and semiarid regions of the southern hemisphere.  24 

Consequently, we compared C and water fluxes of two distinct woody ecosystems (a 25 

Mulga (Acacia) woodland and a Corymbia savanna) between August 2012 and August 26 

2014 in semiarid central Australia, demonstrating that the 2011 anomaly was short-lived 27 

in both ecosystems.  The Mulga woodland was approximately C neutral but with periods 28 

of significant uptake within both years.  The extreme drought tolerance of Acacia is 29 

presumed to have contributed to this.  By contrast, the Corymbia savanna was a very large 30 

net C source (130 and 200 g C m−2 yr−1 in average and below average rainfall years, 31 

respectively), which is likely to have been a consequence of the degradation of standing, 32 

senescent biomass that was a legacy of high productivity during the 2011 anomaly.  The 33 

magnitude and temporal patterns in ecosystem water-use efficiencies (WUE), derived 34 

from eddy covariance data, differed across the two sites, which may reflect differences in 35 

the relative contributions of respiration to net C fluxes across the two ecosystems.  In 36 

contrast, differences in leaf-scale measures of WUE, derived from 13C stable isotope 37 

analyses, were apparent at small spatial scales and may reflect the different rooting 38 

strategies of Corymbia and Acacia trees within the Corymbia savanna.  Restrictions on 39 

root growth and infiltration by a siliceous hardpan located below Acacia, whether in the 40 

Mulga woodland or in small Mulga patches of the Corymbia savanna, impedes drainage of 41 

water to depth, thereby producing a reservoir for soil moisture storage under Acacia while 42 

acting as a barrier to access of groundwater by Corymbia trees in Mulga patches, but not 43 

in the open Corymbia savanna. 44 

45 
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1. Introduction 46 

Inter-annual variability in atmospheric concentrations of CO2 is large (Le Quéré et 47 

al., 2014), and much of this variability is driven by fluctuations in the source/sink strength 48 

of terrestrial ecosystems (Cox et al., 2013).  During the latter half of the twentieth century, 49 

global net primary productivity (NPP) may have increased (Nemani et al., 2003), resulting 50 

in a potential increase in uptake of 0.05 Pg C per year (Ballantyne et al., 2012).  Then, 51 

global NPP was reduced by 0.55 Pg C during the period 2000–2009, a result ascribed to 52 

large-scale drought in the southern hemisphere (Zhao and Running, 2010).  Thereafter, Le 53 

Quéré et al. (2014) identified the 2011 land sink anomaly, which was a year of exceptional 54 

productivity, and Poulter et al. (2014) confirmed this anomaly by using a combination of 55 

modelling and remote sensing approaches.  This land sink anomaly was driven by growth 56 

in semiarid vegetation of the southern hemisphere, with almost 60% occurring in Australia 57 

(Poulter et al., 2014).  Importantly, Fasullo et al. (2013) showed that Australia, unlike 58 

continental South and North America, maintained a positive water mass anomaly (i.e., the 59 

extra water received in 2011 remained detectable throughout 2012), suggesting that 60 

increased C uptake may have persisted beyond 2011 in arid Australia. Carry-over of water 61 

from one hydrologic year to the next has been shown to have strong positive effects on 62 

productivity in many arid ecosystems (Flanagan and Adkinson, 2011).  We have 63 

previously shown, using field observations of landscape fluxes of CO2, that one of the 64 

dominant ecosystems of semiarid central Australia was indeed a large sink for C over 65 

almost all of the 12 months between October 2010 and October 2011 (Cleverly et al., 66 

2013a; Eamus et al., 2013).  Large fluctuations in productivity, evapotranspiration (ET) 67 

and ecosystem water-use efficiency (eWUE) across these semiarid regions reflect the very 68 

high ecosystem resilience of vegetation (Ponce Campos et al., 2013), which can have large 69 
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effects on global C relations and consequently drive events such as the land sink anomaly 70 

of 2011. 71 

Globally, dryland regions (arid, semiarid, and subhumid) cover 41% of the land 72 

area (Reynolds et al., 2007).  Within these regions, arid and semiarid environments are 73 

characterised by chronic water shortages.  Thus, productivity and ET are closely 74 

dependent upon the timing, frequency and amount of precipitation (Huxman et al., 2004), 75 

through which plant water availability is mediated by local hydrology (Breshears et al., 76 

2009; Loik et al., 2004; Reynolds et al., 2004). 77 

The semiarid regions of Australia cover 70% of the continent (Eamus et al., 2006; 78 

Warner, 2004) and are dominated by three major biomes along a woodland-savanna-79 

grassland continuum:  (1) Mulga woodlands (Acacia spp.), which cover approximately 80 

20–25% of the continental land area (Bowman et al., 2008), and (2) Corymbia savanna 81 

over a hummock grass (Triodia spp.) understorey that grades into (3) treeless hummock 82 

grasslands. Hummock grasslands and savannas occupy another 20–25% of the Australian 83 

land surface (Bowman et al., 2008).  The co-occurrence of two widely distributed and 84 

highly distinctive vegetation types (i.e., Mulga and hummock) within a single climate 85 

zone in central Australia (O'Grady et al., 2009) provides an opportunity to compare and 86 

contrast their behaviour and to establish their respective contributions to regional C, water 87 

and energy budgets.  88 

Mulga trees range in height (2–10 m) and ground cover (10–70%) (Nix and 89 

Austin, 1973), and they are preferentially located where storage of soil moisture occurs 90 

near the surface in sand dunes, clay-rich soil or over the siliceous hardpans that are 91 

common across semiarid Australia (Bowman et al., 2007; Ludwig et al., 2005; Maslin and 92 

Reid, 2012; Nano and Clarke, 2010; Nix and Austin, 1973; Thiry et al., 2006; Tongway 93 

and Ludwig, 1990).  In contrast, tree density (stems per hectare) and cover in Corymbia 94 
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savannas are very low, and tree height ranges from 5–15 m.  Corymbia opaca is deep-95 

rooted (8–20 m), and tends to be groundwater dependent in semiarid areas (Cook and 96 

O'Grady, 2006; O'Grady et al., 2006a; O'Grady et al., 2006b).  The understory in the 97 

Corymbia savanna is characterised by a continuous cover of perennial hummock grasses 98 

(Triodia spp.), which are widespread throughout Australia and cover an additional 20–99 

25% of the continental land area (Bowman et al., 2008; Nano and Clarke, 2010; Reid et 100 

al., 2008). 101 

Water-use-efficiency (WUE) has traditionally been measured at leaf-scales (as the 102 

ratio of net assimilation to transpiration), but eddy covariance measurements also allow 103 

determination of ecosystem-scale WUE as the ratio of net ecosystem productivity (NEP) 104 

to ET (eWUE; Eamus et al., 2013). Given the very large difference in LAI of the C4 grass 105 

understory between Mulga and Corymbia savannas, we hypothesised that ecosystem-scale 106 

WUE of the two biomes would differ. Furthermore, given the large differences in 107 

phyllode structure of the C3 trees, comparisons of leaf-scale measures of WUE across two 108 

co-occurring species within a single biome (i) provide information about C and water 109 

economies and (ii) contribute to our understanding of hydraulic niche separation of co-110 

occurring species (Peñuelas et al., 2011) that cannot be addressed through eWUE.  111 

The aim of this study was to investigate fluctuations in the fluxes of C and water 112 

from iconic Australian semiarid vegetation in response to reductions in precipitation 113 

subsequent to the 2011 land sink anomaly.  In this manuscript we compare and contrast 114 

the behaviour of two disparate arid-zone tropical ecosystems (Mulga woodland and 115 

Corymbia savanna) in central Australia to address four over-arching questions:  (a) did the 116 

2011 anomaly persist into 2012/2013/2014 in either biome; (b) do these two contrasting 117 

ecosystems respond similarly to almost identical weather patterns; (c) how do ecosystem 118 

water-use efficiencies compare across ecosystems; and (d) at small spatial scales within 119 
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the Corymbia savanna, how do leaf-scale water-use efficiencies across the two tree species 120 

(Acacia and Corymbia) differ? 121 

 122 

2. Materials and Methods 123 

2.1. Site descriptions 124 

This study was located on Pine Hill cattle station in the Ti Tree catchment of 125 

central Australia and was co-located with several previous hydrological, ecological and 126 

ecophysiological studies (Calf et al., 1991; Cleverly et al., 2013a; Eamus et al., 2013; 127 

Harrington et al., 2002; Ma et al., 2013; O'Grady et al., 2009; Scanlon et al., 2006).  The 128 

Ti Tree catchment is an enclosed basin that covers 5,500 km2 and contains two main 129 

ecosystems:  Mulga woodlands and Corymbia savanna (Harrington et al., 2002).  130 

Measurements were collected from two locations: one in the Mulga woodland and one in 131 

the Corymbia savanna.  An eddy covariance tower was located in each ecosystem, 132 

separated by 40 km at the same latitude ([22.3 °S 133.25 °E] and [22.3 °S 133.65 °E]). 133 

A full description of the soil, floristics, leaf area index (LAI), energy balance and 134 

C relations of the Mulga woodland can be found in Cleverly et al. (2013a) and Eamus et 135 

al. (2013).  Briefly, the Mulga woodland is characterised by a discontinuous canopy of 136 

short (3–7 m), evergreen Acacia trees (A. aptaneura and A. aneura) with an understorey 137 

of shrubs, herbs and grasses (C3 and C4) that are conditionally active depending upon 138 

moisture availability and season (Cleverly et al., 2013a). The cover of Acacia is 74.5 % of 139 

the land area in the Mulga woodland; C. opaca is essentially absent from the Mulga 140 

woodland (one tree within the EC footprint, cf. Section 2.2). The basal area of Acacia 141 

within the woodland is 8 m2 ha-1 (Eamus et al., 2013). 142 

 The second eddy covariance site contains two species of trees: widely spaced and 143 

tall Corymbia opaca trees above a matrix of hummock grass (Spinifex, Triodia schinzii) 144 
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and small patches of Mulga (A. sericophylla, A. melleodora and A. aptaneura) that contain 145 

an understorey of herbs and tussock grasses (Aristida spp., Eremophila latrobei subsp. 146 

glabra, Eragrostis eriopoda subsp. red earth, Paraneurachne muelleri and Psydrax 147 

latifolia).  Although the distribution of T. schinzii does not substantially overlap with 148 

Mulga, C. opaca trees were present in both habitats.  Representing only 0.4 % cover 149 

(basal area of 0.21 m2 ha-1), C. opaca are found predominantly in the open savanna, 150 

although they are found occasionally in the isolated small Mulga patch close to the EC 151 

tower within in the Corymbia savanna.   Soil texture is sandier in the Corymbia savanna 152 

(loamy sand) than in the Mulga woodland (sandy loam).  Soil organic matter is less than 153 

1% at both sites.  In the Corymbia savanna, the energy balance ratio (H + LE) ⁄ (Rn − G) 154 

was 0.97 ± 0.005 (January 2013–July 2014), wherein H is sensible heat flux, LE is latent 155 

heat flux, Rn is net radiation and G is ground heat flux.  Over the same period in the Mulga 156 

woodland, the energy balance ratio was 0.89 ± 0.005.  The Bowen ratio (H ⁄ LE) was large 157 

at both sites:  37.5 (range 0.78–408) in the Mulga woodland and 37.9 (0.23–511) in the 158 

Corymbia savanna. 159 

 Long-term annual average precipitation (1987–2014) at the nearest meteorological 160 

station (Territory Grape Farm, 18 km due south of the Corymbia savanna site) is 320.7 161 

mm (http://www.bom.gov.au).  The monsoon tropics of Australia are defined by the 162 

receipt of 85% of annual precipitation during the November–April monsoon season 163 

(Bowman et al., 2010), which places these sites within the monsoon zone on average 164 

(Cleverly et al., 2013a).  However, during the first 16 months of this study (August 2012–165 

November 2013), very little rain was received and there was consequently negligible 166 

grassy understorey, in contrast to the extensive understorey that was present during the 167 

land sink anomaly of 2011 (Eamus et al., 2013). 168 

 169 
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2.2. Eddy covariance data 170 

Eddy covariance analyses of NEP and ET were used as measures of net C uptake 171 

and ecosystem water use.  In the eddy covariance method, ET is determined from the 172 

covariance between vertical wind speed (w) and specific humidity (q):  ET = <w′q′> ⁄ ρw, 173 

where < > represents an average in time and the prime operator represents the deviation 174 

from a mean: q′ = <q> − qi.  Similarly, NEP was taken to be the negative covariance 175 

between w and [CO2] (c):  NEP = −<w′c′>.  By this definition, NEP is positive during C 176 

uptake (i.e., photosynthesis, C sink) and negative for net C emissions (C source).  The 177 

trade-off between C uptake and ET was represented by eWUE, which was calculated as 178 

the ratio of NEP and ET.  Because of non-linearity at very small values of ET, eWUE was 179 

determined only when ET was larger than 0.2 mm d−1. 180 

Both tower sites are part of the OzFlux Network (Cleverly, 2011; Cleverly, 2013).  181 

The 90% flux footprint (Kljun et al., 2004) under turbulent conditions extended 200–300 182 

m to the southeast of either tower, although variability in roughness length across the 183 

Corymbia savanna interferes with the reliability of footprint estimates at that site.  In the 184 

Corymbia savanna, approximately 25% of the flux footprint covered the Corymbia 185 

savanna, while the remaining 75% of the footprint was located over the small Mulga patch 186 

that included Acacia, Corymbia and tussock grasses.  The trees nearest the tower in the 187 

open Corymbia savanna are Acacia with a canopy height of 4.85 m, in contrast to the 6.5 188 

m tall Acacia in the Mulga woodland.  Thus, measurements were made over the Corymbia 189 

savanna at a slightly lower height (9.85 m) than above the Mulga woodland (11.6 m, 190 

Cleverly et al., 2013a).  Where possible, the instruments on each tower were the same 191 

(e.g., Campbell Scientific CSAT3) or only different in the model of sensor (e.g., Kipp & 192 

Zonen CNR1 v. CNR4, Li-Cor 7500 v. 7500A), in which the newer models were used in 193 

the Corymbia savanna. 194 
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All estimates of error were determined as the standard error (s.e. = σ ⁄ n0.5, where σ 195 

is the standard deviation and n is sample size). 196 

 197 

2.2.1. Quality control, corrections and gap-filling 198 

Quality control of meteorological and flux measurements (QA/QC) was performed 199 

on both towers as described in Eamus et al. (2013).  Briefly, QA/QC procedures included 200 

spike detection and removal, range checks that include rejection of measurements when 201 

the wind was from a 90° arc behind the sonic anemometer (CSAT3) and tower (10% of 202 

observations, only during the passage of frontal systems that generate advection and 203 

negative fluxes of LE; Beringer and Tapper, 2000), and filtering for bad measurements of 204 

humidity from the IRGA in comparison to a slow-response sensor.  Corrections included 205 

2-dimensional coordinate rotation (Wesely, 1970), frequency attenuation correction for 206 

time averaging and sensor displacement (Massman and Clement, 2004), conversion of 207 

virtual to actual sensible heat flux (Campbell Scientific Inc., 2004; Schotanus et al., 1983), 208 

correction for flux-density effects (the Webb, Pearman and Leuning correction, which 209 

accounts for density effects arising from heat and water vapour fluxes; Webb et al., 1980) 210 

and storage of heat in the soil above the ground heat flux plates.  Corrections and QA/QC 211 

steps were performed using OzFluxQC and the OzFluxQC Simulator, both in version 212 

2.8.5 and available online (e.g., Cleverly and Isaac, 2015).  Gaps in fluxes were filled 213 

using a self-organising linear output (SOLO) that was trained on a self-organising feature 214 

map (SOFM) of meteorological (net radiation, air temperature, vapour pressure deficit, 215 

specific humidity) and soil measurements (G, soil temperature, soil moisture content at the 216 

surface) (Eamus et al., 2013).  SOLO is a statistical artificial neural network (ANN) and 217 

was chosen for its resistance to overtraining (Hsu et al., 2002), ability to simulate fluxes 218 
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(Abramowitz et al., 2006), and small RMSE relative to feed forward ANNs (Eamus et al., 219 

2013). 220 

In contrast to gaps in the flux measurements, two types of gaps were identified in 221 

the meteorological data:  those that were due to measurement over-ranging on the 222 

datalogger and those that occurred during system maintenance.  Over-ranging was 223 

identified in the measurement of solar radiation during periods when reflection from a 224 

cloud face generated large (> 1200 W m−2) radiant fluxes.  To avoid underestimation bias 225 

in these cases, gaps in 30-minute solar (Rs) and net (Rn) radiation were filled from the 226 

measured value in each minute that did not report an over-ranging error (26–29 one-227 

minute values).  These gaps first occurred during the summer 2012–2013 at the Corymbia 228 

savanna site, after which modifications to the datalogger prevented re-occurrence of solar 229 

spike gaps. 230 

 System maintenance gaps were typically 30–300 minutes and did not coincide 231 

among sites.  Filling of gaps in the meteorological variables that were used as predictors 232 

for gap filling of fluxes was performed using several methods: 1) linear interpolation, 2) 233 

replacement of measurements from the companion tower, and 3) SOLO-SOFM trained on 234 

measurements from the paired tower.  Gaps in meteorological measurements were filled 235 

using the method that produced the smallest disjunction at gap boundaries. 236 

 237 

2.3. Trends in satellite derived enhanced vegetation index (EVI) for the two sites  238 

The moderate resolution imaging spectroradiometer (MODIS) enhanced vegetation 239 

index (EVI) is sensitive to vegetation “greenness” (i.e., chlorophyll content) and structural 240 

properties (e.g., LAI, canopy type, plant physiognomy, canopy architecture) (Huete et al., 241 

2002).  Thus, the satellite product MODIS EVI was used in this study to assess structural 242 

and functional responses of the vegetation.  The MOD13Q1 product was retrieved from 243 
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the ORNL DAAC depository at a temporal resolution of 16 days and a spatial resolution 244 

of 250 m.  Values were composited into a single 9 × 9 pixel centred on each tower (2.25 245 

km resolution, only pixels that passed QA at 100% were used).  The MODIS satellite was 246 

launched in 2000, and we present the entire record to provide context for the ecosystem 247 

dynamics observed over this two-year study. 248 

 249 

2.4. 13C foliar stable isotopes 250 

To compare leaf-scale intrinsic WUE (WUEi) at small spatial scales within the 251 

Corymbia savanna, leaf samples were collected in September 2013 for analysis of the 252 

stable isotope ratio of C (δ13C).  Mature leaves of Corymbia opaca and Acacia trees were 253 

collected from three habitats within the Corymbia savanna.  The first habitat was from the 254 

Corymbia savanna per se; the second habitat was the small Mulga patch close to the EC 255 

tower within the Corymbia savanna; the third habitat was the transition between the small 256 

Mulga patch and the Corymbia savanna.  For comparison with Acacia sampled within the 257 

Corymbia savanna, δ13C of bulk leaf tissue was also measured in the Mulga woodland 258 

from two replicate branches of three replicate trees of Acacia. 259 

In Corymbia, three leaves from different branches were collected.  Each leaf was 260 

ground and subsampled to obtain three representative independent values per tree.  261 

Likewise, Acacia phyllodes were sampled from three different branches, although several 262 

phyllodes were combined from each branch due to their small size.  The C isotopic 263 

composition was measured using a Picarro G2121-i Analyser for Isotopic CO2 (Picarro 264 

Inc., Santa Clara CA USA).  Atropine and acetanilide were used as internal reference 265 

standards and calibrated against international measurement standards sucrose (IAEA-CH-266 

6, δ13CVPDB = −10.45 ‰), cellulose (IAEA-CH-3, δ13CVPDB = −24.72 ‰) and graphite 267 

(USGS24, δ13CVPDB = −16.05 ‰).  Values of δ13C in bulk leaf samples represent an 268 
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integrated value of Ci ⁄ Ca (i.e., the ratio of internal leaf and atmospheric CO2 density) 269 

during the entire age of the leaf. 270 

 271 

3. Results 272 

3.1. Water fluxes: daily, seasonal and annual precipitation 273 

Daily rainfall across the two-year period showed minimal differences between the 274 

Mulga woodland and Corymbia savanna sites (Fig. 1a, b).  Rainfall in both years was 275 

concentrated between November and early May, although both sites received about 12 276 

mm of rain in July 2014.  During the first year of this study (2013–2014), rainfall during 277 

the monsoon season (November–April) was 71 and 74% of total annual rainfall for that 278 

year in the Mulga woodland and Corymbia savanna, respectively.  In the following year, 279 

rainfall during the monsoon season was 92% of total annual rainfall at both sites.  280 

Although these sites are within the monsoon zone on average (Cleverly et al., 2013a), the 281 

monsoon did not penetrate inland to the location of these sites in the first year of the 282 

present study (August 2012–July 2013).  Due to the proximity between sites, annual 283 

rainfall did not differ in either of the two years of the present study.  Likewise, due to 284 

cross-correlation between precipitation versus temperature (maximum, mean, minimum), 285 

solar radiation and vapour pressure deficit (Cleverly et al., 2013a), meteorological 286 

conditions were equivalent across sites (data not shown). 287 

In the 2010–2011 hydrological year (August–July), annual rainfall (565 mm) was 288 

significantly larger than the long-term average of 320.7 mm (Table 1).  In contrast, annual 289 

rainfall was smaller than average in hydrological years 2011–2013 (Table 1).  During the 290 

first year of this study (August 2012–July 2013), annual rainfall was approximately 40% 291 

less than the long-term average (192.8 and 190.6 mm in the Mulga woodland and 292 

Corymbia savanna, respectively).  In the second year of this study (2013–2014), rainfall 293 
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was 294.6 and 289.8 mm in the Mulga woodland and Corymbia savanna, respectively 294 

(approximately 8% below the long-term average).  Monthly patterns and cumulative 295 

annual (August–July) rainfall in the first year of study were almost identical at the two 296 

sites (Fig. 1c).  In contrast there was more rain earlier in the second hydrologic year 297 

(November 2013–February 2014) at the Corymbia savanna than the Mulga woodland, 298 

although annual totals for the two sites did not differ. 299 

 300 

3.2. Water fluxes: evapotranspiration 301 

Patterns in daily ET were similar across the two-year study at both sites (Fig. 2a) 302 

and closely followed those observed for rainfall.  Daily ET at both sites was negligible 303 

during those periods when daily rainfall was zero for more than two weeks (e.g., August 304 

2012 and 2013, June 2014).  Maximum rates of daily ET from the Corymbia savanna were 305 

either equal to or frequently larger (by up to approximately 80%) than those from the 306 

Mulga woodland (Fig. 2a).  Summer total and maximum daily rates of ET were larger in 307 

the second summer than in the first at both sites.  As with rainfall, 73 and 88% of ET was 308 

lost from the Mulga woodland during the first and second monsoon seasons, respectively.  309 

Likewise in the Corymbia savanna, 71 and 91% of ET was lost during the respective 310 

monsoon seasons. 311 

In both hydrologic years (August 2012–July 2014), patterns of cumulative ET 312 

were broadly similar at the two sites, but with a consistent difference in the total amount 313 

of ET (Fig. 2b).  Moreover, the annual sum of ET was smaller for the Mulga woodland 314 

than the Corymbia savanna in both years.  The annual total ET for the Corymbia savanna 315 

was 96 and 110% of annual rainfall in each year (2012–2013 and 2013–2014, 316 

respectively), but in the Mulga woodland the annual sum of ET was approximately 80% 317 

of total rainfall in both years (cf. Figs. 1c and 2b).  Immediately following precipitation, 318 
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there were larger pulses of ET from the Corymbia savanna than from the Mulga woodland 319 

(cf. Figs. 1c and 2a).  These short imbalances were more prominent in the second year, 320 

when ET was 110% of precipitation in the Corymbia savanna. 321 

 322 

3.3. Carbon fluxes: net productivity and water-use efficiency 323 

In contrast to the very similar patterns in daily ET at both sites, patterns in daily 324 

NEP differed substantially between the two sites (Fig. 3a).  During the winter and early 325 

spring (August–October) of 2012, the Mulga woodland was a small sink (NEP = 0.1 to 0.3 326 

g C m−2 d−1), but the Corymbia savanna was a moderate source for C (NEP = −0.6 to −0.3 327 

g C m−2 d−1).  This pattern was repeated in the second winter/early spring (June–August 328 

2013).  The Corymbia savanna remained a moderate-to-strong source (NEP = −1.75 to 329 

−0.5 g C m−2 d−1) between November 2012 and January 2014, with the exception of a 330 

short period during June 2013 when the Corymbia savanna became C neutral (uptake 331 

equalled release) (Fig. 3a).  The Corymbia savanna was a sink for C (maximum daily NEP 332 

= 1.5 g C m−2 d−1) for approximately six weeks in the summer of 2014 (late January to 333 

early March).  The Mulga was a moderate-to-large C source for the spring and early 334 

summer of 2014 and became a moderate sink (maximum NEP = 0.75 g C m−2 d−1) in late 335 

summer and autumn of 2014 (Fig. 3a). 336 

During summer in the Corymbia savanna, the pulse of productivity was rapid and 337 

large following the largest storm in the two years of study (> 100 mm in January 2014; cf. 338 

Figs. 1 and 3a), and this was due to the dominant cover of C4 grasses (90%).  By contrast 339 

in the Mulga woodland, productivity was limited during the summer, acting as a source 340 

for several weeks until late summer and early autumn of 2014 (Fig. 3a).  In contrast, both 341 

sites were a C source in January 2013 (Fig. 3a).  During this time, ecosystem respiration at 342 

night was similarly small in the Mulga woodland and Corymbia savanna (Fig. 4).  343 
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However, during the sunlit hours, NEP diverged between the two sites. By example in 344 

January 2013 the Mulga woodland was a net C source. However, in the mornings of 345 

January, a positive NEP (C sink, reflecting a stimulation of photosynthetic C uptake 346 

through increased solar radiation input) was recorded, followed by a rapid decline from 347 

mid-morning through to early evening (Fig. 4). NEP was negative (C source) prior to 348 

sundown. By contrast, NEP was consistently negative in the Corymbia savanna, which 349 

was a stronger C source during daylight hours than at night, reflecting the enhanced rates 350 

of C emissions that occurred during sunlit hours in the savanna.   351 

Cumulative annual NEP in both hydrologic years showed the Corymbia savanna to 352 

be a strong source (cumulative NEP = −197 and −131 g C m−2 y−1 for the first and second 353 

years, respectively; Fig. 3b).  In contrast, the Mulga woodland was a small source (−26 g 354 

C m−2 y−1) in the first hydrologic year but a small sink (12 g C m−2 y−1) in the second year.  355 

It wasn’t until the occurrence of a wet summer that the Mulga woodland again became a 356 

moderate-to-strong sink (0.9 g C m−2 d−1), although annual C uptake was considerably less 357 

than that observed in the 2010–2011 anomaly (12 versus 259 g C m−2 y−1), reflecting the 358 

non-linear response of NEP to total annual rainfall in this system.  The trend in cumulative 359 

NEP at the two sites diverged in early March 2014, with the Corymbia savanna reverting 360 

to a source for the remaining five months of the study and the Mulga continuing as a net 361 

sink (Fig. 3b). 362 

In the Corymbia savanna, eWUE was negative (negative because respiratory loss 363 

exceeded photosynthetic C gain) for most of the two years of study (Fig. 5) and was more 364 

negative in the first hydrologic year than the second.  Periods of very small positive or 365 

slightly negative eWUE for the Corymbia coincided with the rainfall of November 2012–366 

February 2013, May 2013 and January–March 2014.  In contrast, the Mulga woodland 367 

maintained near-zero values of eWUE in both years, although eWUE increased gradually 368 
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in autumn (March – May) as soil water stores that were recharged during the wet season 369 

declined following the cessation of summer rainfall (Fig. 5). 370 

 371 

3.4. Trends in enhanced vegetation index and foliar 13C stable isotope contents 372 

MODIS EVI exhibited strong peaks at the study sites in five of 13 years since the 373 

launch of the satellite:  March 2000, April 2001, April 2007, March 2010 and March 2011 374 

(Fig. 6).  In a given year, neither ecosystem consistently responded to precipitation with 375 

more production of green tissue than the other (Fig. 6).  While MODIS EVI was generally 376 

larger in the Mulga woodland than in the Corymbia savanna, two periods (2004 and 2010) 377 

when this pattern was reversed are apparent (Fig. 6).  Note that during the first year of this 378 

study (2012–2013), MODIS EVI values were the smallest on record for the Mulga 379 

woodland and as small as previous minima in the Corymbia savanna (2008, 2009).   380 

In Acacia phyllodes, δ13C values averaged −27.9‰ and did not differ substantially 381 

across the two sites and in the three habitats sampled within the Corymbia savanna.  By 382 

contrast, δ13C in Corymbia opaca leaves declined substantially across habitats (Fig. 7).   383 

Leaf δ13C of the Corymbia trees declined in the sequence: Corymbia trees in the Mulga 384 

patch within the Corymbia savanna > Corymbia trees in the transition between the Acacia 385 

patch and open Corymbia savanna > Corymbia trees in the extensive open savanna (Fig. 386 

7).  Leaf δ13C in Corymbia was less negative than in Acacia phyllode in the Mulga patch 387 

(Fig. 7).   388 

 389 

4. Discussion 390 

4.1. The 2011 anomaly and beyond 391 

Although measurements were not initiated in the Corymbia savanna until after the 392 

conclusion of the land sink anomaly, C fluxes in subsequent years can only be explained 393 
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within the context of the land sink anomaly.  Several lines of field-based evidence support 394 

the conclusion (Le Quéré et al., 2014; Poulter et al., 2014) that Australian semi-arid 395 

vegetation had a major role in the large global land sink anomaly of 2011.  First, our field-396 

based studies of CO2 fluxes in central Australia (Table 1; Eamus et al., 2013) 397 

demonstrated that the Mulga woodland was indeed a large sink for C (259 g C m−2 y−1, 398 

Table 1) during that year (September 2010–August 2011; Eamus et al., 2013).  This sink 399 

formed in response to a disproportionate increase in gross primary production (GPP, 793 g 400 

C m−2 y−1) relative to the moderate increase in ecosystem respiration (Cleverly et al., 401 

2013a).  Second, the largest value of EVI since 2000 was observed in hydrologic year 402 

2010–2011 (Ma et al., 2013), which suggests as large a C sink in the Corymbia savanna as 403 

in the Mulga woodland due to the close correlation between EVI and GPP across tropical 404 

and semi-arid Australia (Donohue et al., 2014; Ma et al., 2013; Ma et al., 2014).  Third, 405 

2010–2011 was identified as having the largest rates of ET in the Ti Tree basin since 1981 406 

(Chen et al., 2014). Finally, the Gravity Recovery and Climate Experiment (GRACE) 407 

satellite data recorded significant increases in the amount of water stored across the 408 

Australian landmass in 2011 (Boening et al., 2012), coincident with the extremely large 409 

La Niña conditions that dominated weather across Australia in that year. 410 

During the global land sink anomaly of 2011, rainfall at our sites was almost 411 

double the long-term average (565 mm versus 320.7 mm, 1987–2014), resulting in very 412 

large rates of ecosystem productivity in the Mulga woodland (Eamus et al., 2013) and the 413 

Corymbia savanna (Fig. 6).  Across a range of biomes, different combinations of rainfall, 414 

temperature, solar radiation and vapour pressure deficit are the principle determinants of 415 

NEP and GPP (Baldocchi, 2008; Baldocchi and Ryu, 2011; Kanniah et al., 2010; van Dijk 416 

et al., 2005; Zha et al., 2013).  It is apparent that inter-annual differences in precipitation 417 

are the principle causes of interannual differences in sink strength for the Mulga woodland 418 
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(Table 1), in strong agreement with multiple other arid and semiarid biomes (Barron-419 

Gafford et al., 2012; Chen et al., 2014; Flanagan and Adkinson, 2011; Huxman et al., 420 

2004; Ma et al., 2012) but in marked contrast to boreal forests, tropical montane forests, 421 

temperate mesic deciduous forests and tropical mesic savannas, where temperature, solar 422 

radiation and the length of the growing season are the principal factors limiting NEP 423 

(Baldocchi, 2008; Dunn et al., 2007; Keenan et al., 2014; Luyssaert et al., 2007; Ma et al., 424 

2013; Whitley et al., 2011; Zha et al., 2013). We now discuss the question: did this 425 

anomaly persist into 2012–2014 for our two study sites? 426 

Despite the persistence of anomalously large moisture reserves in Australia 427 

through 2012 (Fasullo et al., 2013), the productivity pulse of 2011 (Eamus et al., 2013) did 428 

not persist in either ecosystem following the conclusion of the 2011 global land C sink 429 

anomaly.  Productivity declined in the Mulga woodland by July 2011, which was four 430 

months following the end of the summer rains (Cleverly et al., 2013a; Eamus et al., 2013), 431 

and the Mulga woodland was effectively C neutral (i.e., near zero within the limits of 432 

measurement uncertainty) in the three following years (2012–2014).  The ratio of GPP to 433 

ecosystem respiration fell between 2011 and 2012, reflecting a two-fold decline in annual 434 

GPP (Cleverly et al., 2013a) and a four-fold decline in the seasonal peak of daily GPP (Ma 435 

et al., 2013).  Similarly, there was little evidence of productivity in the Corymbia savanna 436 

during the first nine months of the current study (August 2012–May 2013).  In pyrophytic 437 

landscapes such as the Corymbia savanna, large amounts of fuel can accumulate following 438 

very wet periods (King et al., 2013; Schlesinger et al., 2013).  However, large rates of C 439 

loss from this biome during subsequent dry years imply a rapid loss of fuel load via 440 

photodegradation.  Thus, Corymbia savannas that do not burn in the first few years 441 

following very wet conditions are less likely to burn thereafter. 442 

 443 
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4.2. Corymbia savanna versus Mulga woodland 444 

In this section, we address the question: how do current behaviours of the Mulga 445 

woodland (in terms of CO2 and water fluxes) compare to those of an adjacent, floristically 446 

different, Corymbia savanna? 447 

Some of the ET excess in the Corymbia savanna in the second year of study (ET = 448 

110% of precipitation) arose from precipitation that fell during the first year but 449 

contributed to second-year ET, while the remainder may illustrate the opportunistic use of 450 

groundwater by Corymbia trees in the open savanna during short periods of cloud cover, 451 

cool temperatures, and low VPD that accompany rainfall.  What was perhaps surprising 452 

was the continued ET deficit in the Mulga woodland (about 80% of annual rainfall) in the 453 

very wet (2011) year (Eamus et al., 2013) and the subsequent dry years, with little 454 

apparent use of water that was carried-over in soil storage, in marked contrast to the 455 

generally positive effect of carry-over of water from one year to the next in arid zones 456 

(Flanagan and Adkinson, 2011).  However, the abundant sunshine and soil moisture 457 

availability during the summer of 2013–2014 may suggest that ET was limited by 458 

stomatal responses to high temperature and large VPD (Cleverly et al., 2013b) rather than 459 

energy or water availability.  Thus, recharge and discharge of soil moisture storage (and 460 

the ratio of ET to precipitation) vary on longer timescales than the scope of our 461 

measurements, in contrast to the intra-annual carry-over of water from the wet season into 462 

the cool season observed in North American drylands (Hastings et al., 2005).  In both 463 

ecosystems, the increase in evaporative fraction (defined as the ratio of ET to net 464 

radiation) from the first to the second summer was the result of higher ET and lower net 465 

radiation during the second summer.  This difference between summer seasons was the 466 

consequence of disparities in the amount and temporal distribution of rainfall.  In the 467 
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second summer, larger storms and fewer sunny days caused VPD to be much smaller, with 468 

a consequential reduction in leaf stress. 469 

The resilience of both ecosystems (sensu Ponce Campos et al., 2013, where 470 

resilience is defined as ecophysiological drought tolerance that does not diminsh 471 

photosynthetic responses to subsequent periods of favourable moisture availability) 472 

resulted in large fluctuations of eWUE and a near-neutral annual C balance in the Mulga 473 

woodland (Fig. 3 and Cleverly et al., 2013a), whereas the C cycle in the Corymbia 474 

savanna was dominated by large C losses (Fig. 3).  Two reasons may be postulated to 475 

explain the difference in C balance of the two sites.  First, Acacia has a suite of traits that 476 

are indicative of a high degree of drought tolerance compared to Corymbia:  larger wood 477 

density, smaller specific leaf area (SLA, ratio of leaf area to leaf dry mass) and larger 478 

Huber value (ratio of sapwood cross-sectional area to leaf area) (O'Grady et al., 2009).  479 

Large wood densities are strongly correlated with enhanced resistance to xylem embolism, 480 

reduced soil-to-leaf hydraulic conductance and small transpiration rates (Wright et al., 481 

2006; Zhang et al., 2009), while a small SLA correlates with an ability to tolerate lower 482 

(more negative) canopy water potentials.  As a result, small rates of productivity in the 483 

Mulga woodland were sufficient for maintaining C neutrality.  Second, woody plants 484 

dominate the Mulga woodland, whereas the contribution of Acacia and Corymbia to the 485 

cover, basal area and LAI of the Corymbia savanna is small relative to the extensive C4 486 

grasses.  We propose that the large amount of standing dead biomass in the Corymbia 487 

savanna (accumulated during the 2011 anomaly) was subject to physical fragmentation by 488 

photodegradation (i.e., in the presence of light, e.g. Fig. 4, and absence of soil moisture; 489 

Rutledge et al., 2010; Vanderbilt et al., 2008). 490 

 491 
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4.3. Ecosystem-scale water use efficiency (eWUE) and small-scale differences in 492 

foliar WUE (WUEi) 493 

By delaying production until the autumn of 2014, eWUE in the Mulga woodland 494 

was larger than in the Corymbia savanna.  In addition to the traits of drought tolerance, 495 

which are correlated to large WUE, the large foliar N content of the nitrogen fixing Acacia 496 

allows for significant resource substitution, whereby larger-than-expected rates of 497 

photosynthesis can be sustained in arid environments through preferential allocations of 498 

nitrogen to Rubisco (Taylor and Eamus, 2008).  When stomatal conductance and 499 

transpiration rates decline in response to large VPD, resource substitution results in large 500 

eWUE.  Further, spatial variability in soil properties (especially the distribution of the 501 

hardpan) restricts soil moisture availability (Chen et al., 2014) and contributes to large 502 

values of eWUE in the Mulga woodland.   503 

It is important to note that the eWUE of the Mulga woodland consistently showed 504 

that photosynthetic C uptake exceeded respiratory loss per unit ET during the early or late 505 

summer and autumn of both years, as previously observed by Eamus et al. (2013).  The 506 

very low values of eWUE in the Corymbia savanna imply that C source strength was 507 

maintained regardless of moisture status, thus eWUE became much more negative during 508 

dry periods than eWUE in the Mulga woodland (Fig. 5).  These predominantly large, 509 

negative values of eWUE (respiration exceeds C gain per unit ET) in the Corymbia 510 

savanna are further symptomatic of photodegradation. Despite the differences in eWUE 511 

between ecosystems and the plants that co-exist in them, eWUE in the Mulga woodland 512 

and the Corymbia savanna showed large fluctuations between wet and dry periods that 513 

reflected differences in the moisture requirements of photosynthesis, autotrophic and 514 

microbial respiration, and photodegradation. 515 
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In leaves of Corymbia across all three habitats, declining leaf δ13C represents 516 

increased access to water and declining WUEi (Leffler and Evans, 1999; Zolfaghar et al., 517 

2014) and has been previously used to infer access to groundwater (Zolfaghar et al., 518 

2014).  We interpret this as reflecting an increasing rooting depth of Corymbia trees 519 

within the Corymbia savanna when moving into the extensive open savanna from the 520 

Mulga patch.  The potential for groundwater access by deeply rooted Corymbia in the 521 

extensive savanna, where groundwater depth is approximately 8 m, is presumably large 522 

and may explain the lower WUEi of Corymbia, while the presence of an inferred hardpan 523 

within the Mulga patch prevents access to the water table and hence an increased WUEi 524 

for Corymbia within the Mulga patch.  The absence of any significant change in phyllode 525 

δ13C for the Acacia at any of the three locations within the Corymbia savanna reflects the 526 

shallow rooting habit of Acacia (Pressland, 1975). More importantly, there was no 527 

difference in foliar 13C content of Acacia sampled from the Mulga woodland where 528 

groundwater depth is known to exceed 50 m, further supporting the conclusion that access 529 

to groundwater by Mulga within the Corymbia savanna is not occurring. The low values 530 

of δ13C in Acacia phyllodes are consistent with their anisohydric stomatal responses to soil 531 

drying; that is, their stomata remain open even at very low water potentials (O'Grady et 532 

al., 2009; Winkworth, 1973). 533 

 534 

5. Conclusions 535 

We have demonstrated that the large 2011 anomaly in terrestrial C uptake was 536 

short-lived in the arid zone of central Australia.  In the Mulga woodland, storage of soil 537 

moisture within the root zone contributed to C neutrality (i.e., C sources were equivalent 538 

to sinks) in the subsequent drier-than-average years by facilitating the delayed response of 539 

productivity to precipitation.  We also demonstrated that productivity in the Mulga 540 
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woodland was larger than that of the Corymbia savanna in the drier-than-average years of 541 

the study and attributed this to the multiple drought tolerant attributes and the larger 542 

potential for resource substitution of Acacia compared to Corymbia.  Drought tolerance in 543 

the Mulga woodland further restricted ET to 80% of precipitation in each year since 2010, 544 

indicating that variations in soil moisture storage occur over very long timescales.  In 545 

contrast, ET from the Corymbia savanna was larger than precipitation in the near-average 546 

rainfall year, illustrating that groundwater use by Corymbia occurred opportunistically 547 

during wet periods.  However, the Corymbia savanna was a strong source of CO2 in drier-548 

than-average and near-average years due to photodegradation of the extensive grassy 549 

understorey.  Finally, we demonstrated that ecosystem water-use efficiency was larger in 550 

the Mulga woodland than in the Corymbia savanna, while differences in leaf/phyllode 551 

δ13C between Acacia and Corymbia reflected differential access to groundwater and the 552 

different rooting characteristics of these two tree species. 553 

  554 

555 
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8. Legends 837 

Table 1.  Summary of rainfall and net ecosystem productivity (NEP) for four years 838 

of study at the Mulga woodland.  Data for 2010–2012 from Eamus et al. (2013) and 839 

Cleverly et al. (2013a). 840 

Figure 1. Daily (a, b) and cumulative (c) precipitation in the Mulga woodland (a, 841 

solid line c) and the Corymbia savanna (b, broken line c). 842 

Figure 2.  Daily (a) and cumulative (b) evapotranspiration (ET) in the Mulga 843 

woodland (solid line) and the Corymbia savanna (broken line). 844 

Figure 3.  Daily (a) and cumulative (b) net ecosystem productivity (NEP) in the 845 

Mulga woodland (solid line) and the Corymbia savanna (broken line). Daily values are 846 

shown as the 3-day running average. Values of NEP that are larger than zero (dashed line) 847 

represent C uptake. 848 

Figure 4.  Daily cycle of NEP. Values represent hourly average ± standard error 849 

(s.e.) during January 2013. 850 

Figure 5.  Daily ecosystem water use efficiency (eWUE). Values were determined 851 

as NEP ⁄ ET and shown for days when ET > 0.2 mm d−1. Values above zero (dashed line) 852 

represent photosynthetic eWUE, while increasingly negative values of eWUE represent 853 

increasing values of respiratory eWUE. 854 

Figure 6.  MODIS enhanced vegetation index (EVI) as a four-month running 855 

average. 856 

Figure 7.  Carbon stable isotope ratio (δ13C) of Acacia (squares) and C. opaca 857 

(circles) leaves in the Mulga woodland and across three habitats (Mulga patch, open 858 

savanna, transition) within the Corymbia savanna. Symbols show mean ± s.e. 859 
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Table 1.  Summary of rainfall and net ecosystem productivity (NEP) for four years 862 

of study at the Mulga woodland.  Data for 2010–2012 are from Eamus et al. (2013) and 863 

Cleverly et al. (2013a).  Data for 2012–2014 are from this study. 864 

 865 
Year Rainfall 

(mm y−1) 
NEP 

 (g C m-2 y-1) 
2010–2011 565 259 
2011–2012 184 −4 
2012–2013 193 

−25 
2013–2014 295 12 

 866 

867 
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 868 

Figure 1. Daily (a, b) and cumulative (c) precipitation in the Mulga woodland (a, 869 

solid line c) and the Corymbia savanna (b, broken line c). 870 

871 
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 872 

Figure 2.  Daily (a) and cumulative (b) evapotranspiration (ET) in the Mulga 873 

woodland (solid line) and the Corymbia savanna (broken line). 874 

875 
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 876 

Figure 3.  Daily (a) and cumulative (b) net ecosystem productivity (NEP) in the 877 

Mulga woodland (solid line) and the Corymbia savanna (broken line). Daily values are 878 

shown as the 3-day running average. Values of NEP that are larger than zero (dashed line) 879 

represent C uptake. 880 

881 
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 882 

Figure 4.  Daily cycle of NEP. Values represent hourly average ± standard error 883 

(s.e.) during January 2013. 884 

885 
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 886 

Figure 5.  Daily ecosystem water use efficiency (eWUE). Values were determined 887 

as NEP ∕ ET and shown for days when ET > 0.2 mm d
−1

. Values above zero (dashed line) 888 

represent photosynthetic eWUE, while increasingly negative values of eWUE represent 889 

increasing values of respiratory eWUE. 890 

891 
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 892 

Figure 6.  MODIS enhanced vegetation index (EVI) as a four-month running 893 

average. 894 

895 
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 896 

Figure 7.  Carbon stable isotope ratio (δ
13

C) of Acacia (squares) and C. opaca 897 

(circles) leaves in the Mulga woodland and across three habitats (Mulga patch, open 898 

savanna, transition) within the Corymbia savanna. Symbols show mean ± s.e. 899 
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