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Highlights

• A threedimensional SPH model of non-colloidal suspensions is presented.

• The scheme avoids the use of small time steps for divergent lubrication

forces.

• Rheology of the system is studied for volume fractions up to 0.5.

• Results are compared with available simulation and experimental data.

• Close agreement with the experiments is obtained for volume fractions up

to 0.35.
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Abstract

In this work a Smoothed Particle Hydrodynamics model is presented to study

rheology and microstructure of a non-colloidal suspension of spherical particles

in a Newtonian solvent. The scheme presented in [X. Bian, M. Ellero, Com-

put. Phys. Commun. 185 (1) (2014) 53-62.] is extended to three-dimensions

incorporating both normal and tangential short-range interparticle lubrication

forces which are solved implicitly with a refined splitting strategy. The scheme

allows to bypass prohibitively small time steps generally required for handling

divergent lubrication forces and allows to simulate large particle systems. Rheol-

ogy of a three-dimensional hard-spheres suspension confined in a plane Couette

rheometer is investigated for concentrations up to φ = 0.5. Results for the

relative suspension viscosity ηr are analyzed against sample size and numerical

convergence of the splitting lubrication scheme and compared with available

experimental and simulations data. Very close agreement with the experiments

is obtained for ηr up to φ = 0.35. At larger concentrations, our results are still

unable to explain the significant viscosity increase observed in experiments.

Modest shear-thickening is also observed which is related to anisotropy of the

1A.Vazquez-Quesada@swansea.ac.uk
2M.Ellero@swansea.ac.uk
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particle radial distribution function (RDF) and presence of reversible hydrody-

namic aggregates increasing in size with increasingly applied shear rates.

Keywords: Non-colloidal suspensions, Rheology, Smoothed Particle

Hydrodynamics

1. Introduction

Rheology and dynamics of particles suspended in simple and complex media

represent both a relevant technical issue and an enormous theoretical challenge.

Important industrial applications involve for example pipeline transport of slur-

ries, processing of filled plastics, ceramics and drilling mud for oil recovery but5

also much of our daily-life products in cosmetic, pharmaceutics and food indus-

try deal with complex suspensions of particles [1, 2]. In the oil and gas industry,

for example, colloidal or non-colloidal particles, such as clays or asphaltenes

are typically used for the extraction of hydrocarbons [3] and as a component of

water-based drilling fluids [4]. On the other hand, particulate systems with com-10

plex rheological response have allowed to design recently novel smart materials

and gels with desired target properties [5, 6]. Under real processing conditions,

geometrical confinement is also a critical aspect as it can trigger flow instabili-

ties in concentrated suspensions [7, 8, 9], altering rheo-dynamical response and

playing an essential role in several operations as for example in dispensing ma-15

terial through a narrow nozzle, e.g. in ink-jet technologies [10]. It is therefore

critical to understand, predict and control accurately suspension rheology for a

wide range of systems and under different external conditions in order to target

practical industrial demand.

Suspension characterization is conventionally done via rheological experi-20

ments aiming at the measurement of viscosity and normal stresses under con-

trolled viscometric conditions. Mono-dispersed solid spheres suspended in a

Newtonian medium represent possibly the simplest test-case. However, despite

its apparent simplicity, it is remarkable that even this system is still far from

being completely understood. Several analytical derivations for the suspension25
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viscosity η as function of particle volume fraction φ exist, starting from the Ein-

stein’s formula [11, 12] in the dilute regime, to approximate theories [13, 14] and

semi-empirical expressions [15] at large concentrations. However, for a complete

understanding of the link between suspension microstructure and bulk rheology,

numerical simulations represent a powerful complementary tool to theory and30

experiment. In the past decades several techniques have been developed and

applied successfully to simulation of colloidal and non-colloidal suspensions. Ex-

amples include Finite Element Methods [16, 17], Lattice Boltzmann methods

[18, 19], Dissipative Particle Dynamics (DPD) [20, 21, 22, 23, 24] and the Stoke-

sian Dynamics [25, 26, 27, 28, 29, 30, 31, 32].35

Despite their usefulness however, one of the most serious drawbacks gen-

erally involves predictive capability, being numerical simulations in most cases

restricted to qualitative or at best semi-quantitative agreement. In the context

of non-colloidal suspensions for example, no current numerical method is able

to date to show accurate quantitative agreement with experimental data for the40

effective relative suspension viscosity as a function of the solid volume fraction

[33, 34, 35], with best data [27, 32] still underestimating experiments by over

40 % at moderate concentrations. In these experiments solid particles of size

in the range 10− 100µm are typically used allowing to reach Peclet numbers in

excess of 107 for which Brownian motion is practically not relevant [35].45

Also significant shear-thinning was observed experimentally in these studies

for non-colloidal systems already at moderate φ [33, 35, 9]. Despite this phe-

nomenon has been known for a long time [36, 37], it is quite remarkable that

no simulation is currently capable to predict it and a physical explanation for

it is still missing. Note that this problem is not related to the shear-thinning50

behavior occurring in Brownian colloidal suspensions (small Peclet numbers)

which is well understood in terms of an equilibrium/non-equilibrium transition

in the microstructure [2].

A non-colloidal suspension can be regarded as the infinite Peclet number

limit of colloidal system. Based on this analogy recently Cwalina et al. com-55

pared their high-shear rates viscometric data for a suspension using 260nm-
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radius silica nanoparticles [38] with data for non-Brownian systems. Results

for the relative suspension viscosity agree very well with non-colloidal data of

Nott et al. [34]. Despite the good agreement in the systems investigated in [38]

shear-thickening (as opposite to shear-thinning) is typically observed at high60

shear rates, which appears to be related, at least in its “continuous” manifes-

tation, to formation of transient reversible hydrodynamics aggregates, termed

“hydroclusters” [39, 28, 27, 2, 40]. The idea behind hydrocluster theory is

that upon increasing shear rate, convective forces dominate over entropic re-

pulsive Brownian forces, being able to bring particles close together forming65

large hydrodynamic aggregates. In the thin gaps between particles inside hy-

droclusters, diverging lubrication forces are active which in turn induce larger

stresses in the system. The existence of hydroclusters is confirmed by experi-

ments [41, 42, 40] flow-small angle neutron scattering [43, 41, 42], optical meth-

ods including flow dichroism [41], fast confocal microscopy [40] and numerical70

simulations [39, 28, 27]. Very recently highly accurate measurement of non-

equilibrium microstructure through the shear thickening transition using small

angle neutron scattering (SANS) measurements was presented in [44].

With regarding to the suspension rheology, it is worth to notice that dif-

ferent experimental systems -colloidal/non-colloidal- exhibiting very different75

rheological responses still appear to deliver relative viscosity data which agree

extraordinary well together. As mentioned above quantitative agreement with

these data cannot be reached to date with available numerical techniques.

In relation to this point, it should be also remarked that, in order to repro-

duce numerically the higher viscosities observed in experiments, and “discontin-80

uous” shear-thickening -i.e. a sudden jump (as opposite to continuous mild rise)

in suspension viscosity- some authors have introduced in their models also fric-

tional forces acting between particles -in addition to lubrication contributions

[45, 46, 31, 47]. It is expected that for sufficiently high concentrations parti-

cles become so close that contacts among them happen, increasing therefore the85

system viscosity. Despite this approach has allowed to reproduce the observed

discontinuous shear thickening behavior in dense suspensions [45, 46, 31], the
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effect of the roughness in the viscosity still does not match the experimental

results [48]. Moreover, deviations between simulation results and experimen-

tal data appear already in moderately concentrated case, significantly below90

the jamming transition, where the system would reach frustration and granular

dynamics governed by frictional contacts is expected to dominate.

In the present work numerical simulations of suspensions of non-colloidal

spherical particles confined between two planar walls under shear flow have been

performed using Smoothed Particle Hydrodynamics (SPH) [49], a Lagrangian95

meshless method where flow fields are represented by means of co-moving fluid

volumes interacting via pairwise forces. Given the local nature of the method,

SPH enjoys a high degree of parallelization [50] enabling direct High Perfor-

mance Computing applications (HPC).

We extend here the scheme presented initially in [51, 52] to three-dimensional100

cases and incorporate, beside normal also tangential contributions to short-range

interparticle lubrication forces. In fact it was recently showed that normal

lubrication contributions alone under-predict suspension viscosity [53] and does

not allow to reach accurate agreement with available simulation data [27, 32]. A

refined splitting strategy presented here allows to handle simultaneously all the105

contributions of the diverging lubrication forces implicitly, bypassing the need of

prohibitively small numerical time steps and allowing to simulate large particle-

systems. More importantly, implicit iteration allows to control accurately the

residual error in the numerical integration of the lubrication dynamics and to

check convergence on viscometric properties.110

Advantages of using this technique include also the possibility in the fu-

ture to study rheology of (i) suspension of arbitrary-shape suspended particles

[51] or confining geometries; (ii) incorporation of Brownian effects -i.e. via

Smoothed Dissipative Particle Dynamics (SDPD) [54, 55, 51] - as well as (iii)

non-Newtonian effects of the suspending phase [56, 57].115

The structure of the paper is as follows: a brief introduction of the SPH

model for the description of the suspending phase is outlined in section 2.1. The

non-colloidal suspension model is described in section 2.2 where interaction fluid-
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solid and lubrication forces between suspended solid particles are also described.

In section 2.3 the modified splitting scheme for the implicit integration of the full120

set of lubrication forces is presented in detail. Finally, in section 3 numerical

results are presented. In particular, the dynamics of two hydrodynamically-

interacting spherical particles undergoing a shear flow is described in Sec. 3.1

Afterwards, the rheology (Sec. 3.2) and microstructure (Sec. 3.2.1) of a many-

particle system confined and shared in a plane Couette rheometer is investigated125

for concentrations up to φ = 0.5. Results of the suspension viscosity and mi-

crostructure are reported for systems with N ≥ 3000 suspended hard spheres

and for Couette gap to particle radius ratio up to Lz/a = 64 which is compa-

rable to common experimental setups [35, 30]. Conclusion and final discussion

are finally reported in section 4.130

2. The suspension model

In this section the details of the model are presented, separately, for the

solvent medium and for the suspended solid particles.

2.1. The SPH model for the suspending fluid

SPH is a meshless Lagrangian fluid model where the Navier-Stokes equations135

are discretized using a set of points denoted as fluid particles. Positions and

momenta of every fluid particle (labelled by Latin indices i = 1, .., N) evolve in

a Lagrangian framework, according to the SPH discrete equations.

ṙi = vi (1)

mv̇i = −
∑

j

[
Pi
d2i

+
Pj
d2j

]
∂W (rij)

∂rij
eij

+
∑

j

(D + 2)η0

[
1

d2i
+

1

d2j

]
∂W (rij)

∂rij

eij · vij
rij

eij (2)

where D is the number of dimensions of the system, Pi the pressure of particle i,

eij = rij/rij the unit vector joining particles i and j, vij = vi−vj their velocity140
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difference and η0 the viscosity of the solvent. di =
∑
jW (rij , rcut) is the number

density associated to particle i estimated as a weighted interpolation with a bell-

shaped function W with compact support rcut [54]. With this definition, mass

conservation and continuity equations for the mass density ρi = mdi (m particle

mass) are implicitly satisfied, whereas the Newton’s equations of motion (2) for145

the particles are a discrete representation of the momentum Navier-Stokes equa-

tion in a Lagrangian framework, with the first summation in Eq. (2) representing

the pressure gradient term and second summation corresponding to the Lapla-

cian of the velocity field. Advantage of these SPH equations over alternative

choices is that both linear and angular momentum are exactly conserved [58],150

which is a critical requirement to reproduce accurately the dynamics of freely-

translating/rotating solid particles in a fluid medium [51]. For the weighting

function W , the present work adopts a quintic spline kernel [59] with cutoff

radius rcut = 4 dx (dx being the mean fluid particle separation) where accurate

velocity fields and drag data were obtained in [60]. Finally, in order to close155

the equations of motion an equation of state for the pressure is used relating

it to the estimated local mass density, i.e. Pi = p0[(ρi/ρ0)γ − 1] + pb, where

the input parameters ρ0, p0 and γ are chosen to have a liquid speed of sound

cs =
√
γp0/ρ0 sufficiently larger than any other velocity present in the problem,

therefore enforcing approximate incompressibility [61] and pb is a background160

pressure.

2.2. Solid particles: fluid-structure interaction

Solid inclusions of arbitrary shape can be modelled using boundary particles

similar to fluid ones, located inside the solid region [51] (Fig. (1)). Boundary

particles interact with fluid particles by means of the same SPH forces described165

in Eq. (2). No-slip boundary condition at the liquid-solid interface is enforced

during each interaction between fluid particle i and boundary particle j by

assigning an artificial velocity to the boundary particle j, which satisfy zero

interpolation at the interface [59]. The same approach is also used to model any

arbitrary wall. Once all the forces acting on every boundary particle j belonging170
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Figure 1: Scheme of the location of the boundary particles (white spheres) within a

solid sphere. The resolution is 5 boundary particles per radius and corresponds to

that used in this study.

to a solid domain (labelled by Greek indexes α) are calculated, the total force

F sph
α and torque T sph

α exerted by the surrounding fluid modelled by SPH can

be obtained as

F sph
α =

∑

j∈α
F j , T sph

α =
∑

j∈α
(rj −Rα)× F j (3)

where Rα is the center of mass of the solid particle α (Fig.1). When properly

integrated, F sph
α and T sph

α allow to obtain the new linear velocity V α, angular175

velocity Ωα and position of the solid inclusion. Positions of boundary particles

inside α are finally updated according to a rigid body motion [53].

2.3. Normal/tangential lubrication force between solid particles

The present SPH model captures accurately the long range hydrodynamic

interactions (HIs) between solid particles [51]. As discussed in detail in [52, 53]180

when two solid particles (e.g. α and β) get very close to each other, the HIs

mediated by the SPH fluid are poorly represented and need to be corrected. In

[53] we have considered an analytical solution for the pairwise short-range HIs

obtained in the limit of small sphere’s separation and superimposed it to the

9
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far-field multi-body SPH HIs. In [53] a standard choice for short-range normal185

hydrodynamic force (denoted as lubrication force), i.e. directed along the vec-

tor eαβ joining the centers of mass of solid particles α and β was adopted, that

reads F lub
αβ (s) = −6πη0

(
aαaβ
aα+aβ

)2
1
s (V αβ · eαβ) eαβ where V αβ is their relative

velocity, aα and aβ their radii and s is the distance in the gap between sphere-

sphere surfaces. This expression was motivated by the fact the it represents the190

leading order term in the analytical solution for lubrication, i.e. diverging as

O(1/s) for s → 0. Although, the normal lubrication model was able to repro-

duce accurately the dynamics of two solid spheres approaching each other in a

quiescent fluid and interacting under a constant shear flow [53], it was noticed

that values of total suspension viscosity for a multi-particle system were visibly195

smaller than those obtained using previous numerical techniques, e.g. Stokesian

Dynamics [27, 32]. In order to address this problem, in this work we extend

the lubrication HIs between solid particles incorporating higher-order contribu-

tions according to [62]. The new terms introduce corrections of O(1/ln(s)) in

the normal lubrication force but also new tangential forces acting between the200

spheres arise, as follows:

F n
αβ(s) = fαβ(s)V αβ · eαβeαβ

F t
αβ(s) = gαβ(s)V αβ · (1− eαβeαβ) (4)

where the scalar functions fαβ(s) and gαβ(s) are defined as

fαβ(s) = −6πη



(

aαaβ
aα + aβ

)2
1

s
+ aα




1 + 7
aβ
aα

+
(
aβ
aα

)2

5
(

1 +
aβ
aα

)3


 ln

(aα
s

)



gαβ(s) = −6πηaα




4
aβ
aα

(
2 +

aβ
aα

+ 2
(
aβ
aα

)2)

15
(

1 +
aβ
aα

)3


 ln

(aα
s

)
(5)

As discussed in [52, 53], when simulating two spheres moving towards each

other with constant velocity, the normal hydrodynamic force acting on them

and computed uniquely from the SPH discretization of the suspending fluid205

deviates from the divergent behavior predicted by the theory typically at a gap

10
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distance equal to half cutoff snc = rcut/2 and remains approximately constant at

smaller distances. When using the normal lubrication force at distances below

snc , the constant SPH force contribution should be removed [19, 52] from Eq. (4)

in order to obtain a well-defined and accurate transition between the far/short210

range HIs. The normal lubrication correction force reads therefore

F n,corr
αβ (s) =





F n
αβ(s)− F n

αβ(snc ), if s < snc

0, if s ≥ snc

(6)

In the first graph of Fig. 2 the correction of the normal lubrication ap-

plied to a SPH simulation of two equal particles of radius a = aα = aβ = 1

approaching each other with equal and opposite velocities V = ±1 and im-

mersed in a quiescent solvent characterized by a viscosity η0 = 8.46, a speed of215

sound cs = 30 and a density ρ0 = 1, is compared to the force obtained without

any correction. The corresponding particle Reynolds number for this flow is

Re = aVαρ0/η0 ≈ 0.1 and the Mach number Ma=0.03. The size of the simu-

lation box is Lx = Ly = Lz = 16a and the number of computational particles

in each direction is Nx = Ny = Nz = 80. The cutoff radius of the SPH kernel220

is rcut = 0.8a. Periodic boundary conditions are considered in every direction.

It has been checked that the size of the box is big enough to avoid periodicity

effects on the following results. For comparison, the merged theoretical solution

between the close and far field approaches calculated in [63] is used. As it can

be seen, the correct normal HI is reproduced at every interparticle distance.225

A similar argument can be applied to the tangential component of the lubri-

cation in the case of two particles moving perpendicular to their center lines. Un-

like the normal component, in this case it is found that the distance where SPH-

mediated HIs fail to predict the theoretical solution is approximately stc = rcut/8

and therefore the tangential lubrication correction is applied for s < stc as follows230

F t,corr
αβ (s) =





F t
αβ(s)− F t

αβ(stc), if s < stc

0, if s ≥ stc

(7)

11
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Comparison between the SPH force with and without tangential lubrication

correction is shown in the second graph of Fig. 2. Again good agreement is

obtained over the entire range of interparticle distances s.

It should be remarked that, beside short-range lubrication forces, additional

repulsive forces acting between solid particles are introduced to stabilize simu-235

lations and prevent solid particle penetrability which might occur, especially in

the case of highly concentrated multi-particle suspensions. They read [64, 65].

F rep
αβ = F0

τe−τs

1− e−τs eαβ (8)

where τ−1 determines the range of the repulsive force, and F0 its magnitude.

2.3.1. Semi-implicit integration scheme for lubrication

Since the lubrication force (4) is divergent at vanishing separation, inte-240

gration of the solid particle equations of motion will pose a serious time-step

limitation when an explicit scheme is used. In [52, 53] we have proposed an

efficient implicit splitting scheme to integrate accurately and stably singular

normal lubrication forces between nearly contacting solid spheres. In this work

we generalize this strategy to both normal and tangential components. In order245

to calculate the evolution of the solid particles from time step n to n + 1, the

exerted forces on the solid particles are split in several contributions. First, for

every solid particle, velocities are updated explicitly according to the long-range

hydrodynamic force F sph
α exerted by the SPH fluid particles, i.e.

V ′α = V n
α + F sph

α ∆t/mα (9)

where mα is the mass of the particle α. After this step, the integration of the250

short-range lubrication forces are considered. As mentioned above, an explicit

method is not suitable for treating the lubrication force, especially in very con-

centrated suspensions, because of the small time steps required. In order to

deal with this problem, the following splitting integration scheme is used. Col-

lecting Eqs. (4), (6) and (7) we can write the total lubrication correction force255

12
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Figure 2: Overall hydrodynamic force acting between two equal spheres (aα = aβ =

a = 1) moving with constant relative velocity V αβ approaching along center-to-center

line eαβ (top graph), or perpendicular to their center-to-center line (bottom graph):

theoretical curves are obtained from [63]. SPH results before and after correction

using Eqs. (6) and (7) are shown. Dashed vertical lines determine the distances where

lubrication correction is activated (at snc = rcut/2 = 0.4a for the normal case and at

stc = 0.1a for the tangential one).
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incorporating both normal and tangential terms as

F corr
αβ (s) = F n,corr

αβ (s) + F t,corr
αβ (s)

= V αβ {[fαβ(s)− fαβ(snc )] [1−H(s− snc )] eαβeαβ+

[
gαβ(s)− gαβ(stc)

] [
1−H(s− stc)

]
[1− eαβeαβ ]

}
(10)

where H is the Heaviside step function. The time step ∆t is split in Nsweep

substeps of size ∆tsweep = ∆t/Nsweep. For every pair of solid particles α and β,

their velocities are updated pair-wisely and implicitly from the following system

of equations260

Ṽ α = V ′α + F̃
corr

αβ (s)∆tsweep/mα

Ṽ β = V ′β − F̃
corr

αβ (s)∆tsweep/mβ (11)

Given that F̃
corr

αβ is a linear function of Ṽ αβ , Eqs.(11) are a linear system of

six unknowns, which can be reduced to three when the conservation of lin-

ear momentum between pairs of particles is considered. More importantly, no

numerical inversion of matrices is needed, since a solution of Eqs.(11) can be

obtained analytically. This is done by subtracting the second equation of (11)265

to the first one, which after simple rearrangement, gives

Ṽ αβ · [(Bαβ −Aαβ) eαβeαβ + (1−Bαβ) 1] = V ′αβ (12)

with Aαβ , Bαβ defined as

Aαβ =





[fαβ(s)− fαβ(snc )] ∆tsweep

[
1
mα

+ 1
mβ

]
, if s < snc

0, otherwise

Bαβ =





[gαβ(s)− gαβ(stc)] ∆tsweep

[
1
mα

+ 1
mβ

]
, if s < stc

0, otherwise

(13)

The solution to this system can be obtained by inverting the matrix of the sys-

tem. This is done by considering that its structure is of the form [Yαβ1 + Zαβeαβeαβ ]
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where Yαβ and Zαβ are functions to be determined. The solution is270

Ṽ αβ =

(
1

1−Bαβ

)
V ′αβ ·

[
1 +

(
Aαβ −Bαβ

1−Aαβ

)
eαβeαβ

]
(14)

Given that linear momentum conservation must be held, individual velocities of

the particles are finally calculated as

Ṽ β =
mα

(
V ′α − Ṽ αβ

)
+mβV

′
β

mα +mβ
Ṽ α = Ṽ αβ + Ṽ β (15)

In conclusion, implicit solution of pairwise lubrication interaction is estimated

in one step and it can be repeated very efficiently for all the possible pairs of

solid particles interacting via lubrication.275

In order to control this parameter, an adaptive criterion is adopted: we

perform one default number of sweeps Nsweep = 2m and another one with

Nsweep = 2m−1. Difference between the solid particle velocities {Ṽ α} obtained

from the two loops is measured by a non-dimensionalized L2 norm

em =

√
∑N
α=1

(
Ṽ mα − Ṽ m−1α

)2

√
∑m
α=1

(
Ṽ mα

)2 (16)

and compared with a predefined tolerance ε. Numerical convergence is obtained280

after a prescribed Nsweep which is changed dynamically during the simulation

to guarantee em < ε. For the typical value of ε = 10−2 chosen in this work,

an averaged number of 2-3 iterations per time step is sufficient for convergence.

For details about the iteration loop and improved performance, see Ref.[52].

Finally, once the implicit splitting scheme has been applied for normal and285

tangential lubrication interactions, repulsive forces between solid particles are

considered. Given that it is an interaction depending only on the position, a

Verlet Scheme [52] is used.
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Figure 3: Top: sketch of the simulations of two particle in a shear flow. and rotating

in a uniform shear flow. Bottom: comparison of the SPH results (dots) with the

Batchelor’s analytical solution (solid lines) [13] for different initial conditions.

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Numerical results

3.1. Trajectories of two spheres in a constant shear flow290

In this section, the trajectories of two solid spheres embedded in a liquid

under uniform shear flow (Fig. 3, top) are considered and compared to the

analytical solutions of Batchelor [13]. Both spheres have identical radii a and

simulation box size is Lx = Ly = 8a, Lz = 16a. In x and y directions periodic

boundary conditions are considered. However in this case, two parallel walls295

are placed at the upper/lower boundaries of the box in the z direction. In

order to produce a uniform shear flow, the two walls are moving in opposite

direction with velocities ±Vw. Again, it has been checked that the size of the

box is large enough to avoid effects of the walls and the periodic boundaries

on the final particle trajectories. Both, viscosity and speed of sound are taken300

as in Sec. 2.3, whereas the shear rate now is γ̇ = 2Vw/Lz = 0.053. The

tolerance of the splitting implicit integrator is taken as ε = 0.01. Comparisons

of the simulated trajectories with the analytical Batchelor’s results are given in

the Fig. 3 (bottom) showing very close agreement for all the initial conditions

considered.305

3.2. Suspension rheology

In this section we consider a suspension of solid spheres of radius a confined

between two parallel walls and study its viscometric behaviour under constant

shear. Particle concentration is defined as φ = 4πNca
3/3V where V = Lx ×

Ly ×Lz is the total volume of the simulation box and Nc is the number of solid310

particles. In Fig. 4 a snapshot for domain size V = 32a× 32a× 32a is depicted.

Box sizes corresponding to V = 16a × 8a × 64a have been also considered to

test finite size effects.

As in Ref.[53], a shear rate is applied to the sample by moving upper and

lower planar walls with equal and opposite velocities ±Vw. Unlike ideal bulk315

systems, e.g. simulated using Lees-Edwards boundary conditions, a sheared

confined suspension might exhibit a small amount of slip at the walls. As a
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Figure 4: Snapshot of a simulation corresponding to solid concentration φ = 0.4, and

box size Lx = 32a, Ly = 32a, Lz = 32a. Total number of solid particles was Nc = 3129

and SPH fluid particles N ≈ 4.3× 106. Solid and fluid particles have been drawn with

grey and blue colors respectively. In the inset, blue lines correspond to velocity vectors

associated to SPH fluid particles. For clarity, upper/lower walls have not been drawn.

consequence, the input shear rate defined as γ̇in = 2Vw/Lz might be slightly

different to the real shear rate effectively experienced by the suspension. In

order to take into account this effect, similarly to experiments, we estimate an320

effective shear rate γ̇ measured by interpolating the linear velocity profile in the

bulk region [66], therefore eliminating possible artifacts due to wall slip.

From γ̇ and from the component σxz of the shear stress (obtained from the

total force Fx exerted by the fluid on the walls), the total suspension viscosity

can be calculated as325

η =
σxz
γ̇

=
Fx

LxLyγ̇
(17)

Initial positions are calculated by using a pre-processing Monte-Carlo algorithm

which assigns an appropriate potential V (r) to every solid particle and therefore

drives them to non-overlapping positions as explained in Ref. [53]. We have

tested in specific situations the effect of the choice of different random initial

conditions on the final results for the viscosity and have found no deviations for330

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 1

 10

 100

 0.01  0.1  1  10  100

η 
/ 

η 0

γ
.
 
*

φ = 0.15

φ =   0.3

φ =   0.4

φ = 0.45

φ =   0.5

Figure 5: Viscosity of the suspension for different shear rates and concentrations.

the wall force data averaged once the system reached a stationary state.

Solvent viscosity η0, speed of sound cs as well as input shear rate γ̇in are

taken as in the previous section. Particle Reynolds number is fixed to Rep =

a2γ̇inρ0/η0 = 0.00625. In order to study the rheology a dimensionless shear

rate γ̇∗ = 6η0aγ̇
F0

is defined [39], which is controlled by changing the amplitude335

F0 of the repulsive force.

Results for the relative suspension viscosity ηr = η/η0 have been drawn in

Fig. 5 for different γ̇∗. Parameter τ−1 = 0.001a in Eq. (8) has been chosen

corresponding to a very short-range interparticle repulsion and mimicking the

nearly hard-sphere case.340

The behavior of the suspension is clearly Newtonian at low solid concentra-

tions, up to φ ≈ 0.3. For larger concentration weak shear-thickening is observed,

which remains however very mild up φ = 0.5, with a modest maximal 10 % in-

crease over three orders of magnitude in γ̇∗. These results are in line with

previous data obtained using Stokesian Dynamics simulations of bulk systems345

in Refs.[27, 32] and with our previous 2D simulations under very weak confine-

ment (large Couette gap) [66]. In order to compare our data with available

results in the literature, in figure 6 the dependence of the relative suspension vis-

cosity ηr on the volume fraction φ is shown. Results are presented together with

numerical data of Sierou and Brady [27] and the experimental data of Zarraga350
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Figure 6: Relative viscosity vs volume fraction. Results of SPH are compared with

the experiments by Zarraga et al [33] (�). and the simulations by Sierou et al [27]

(©). Low-shear rate (•) and large-shear rate (•) SPH viscosities from Fig. 5. Effect

of smaller tolerance ε on convergence of the measured viscosity (•) is also shown .

Einstein and Batchelor solutions [11, 67] valid in the dilute/semi-dilute regimes are

shown in the inset.

et al. [33]. For sake of clearness, we reported only these two indicative set of

measurements in figure 6, being the recent experimental results of Bertevas et

al. [32] quasi overlapping with data from Ref.[33]. Moreover, numerical data of

Sierou et al. show the largest viscosities and, to the best of our knowledge, they

represent the set of simulation data which is currently closest to experimental355

values.

Two curves have been drawn from our SPH simulations corresponding, re-

spectively, to the maximum and minimum viscosity values obtained at large

and small applied shear rates. Strictly speaking, only values corresponding to

the Newtonian plateau for every concentration are shear-rate independent and360

should be drawn in figure 6. However, for sake of completeness we reported both

extremal values in order to visualize also the maximal measured deviations in

the simulations. Moreover, maximal values within the shear-thickening regime

were reported in the Sierou curve (see classical Fig. 2 in Ref.[27] - no Newtonian

plateau was observed by the authors), and so do we too.365
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Present work exp num

φ γ̇∗ ≈ 0.1 γ̇∗ ≈ 100 [33] [35] [27] [32]

0.05 1.20 1.20 − − − −
0.10 1.39 1.40 − 1.35 − 1.32

0.15 1.70 1.72 − − 1.60 1.56

0.20 − − 2.14 2.03 − 1.89

0.234 2.54 2.60 − − − −
0.25 − − − − 2.45 2.36

0.30 3.63 3.87 3.75 3.59 3.19 3.14

0.35 4.89 5.19 5.45 5.32 4.40 4.39

0.40 6.57 7.40 8.69 8.14 6.23 6.17

0.45 9.95 11.68 16.28 14.05 9.42 −
0.50 16.27 19.47 41.99 − 15.22 −

Table 1: Relative viscosity of current SPH simulations for several concentrations compared

with previous experimental, (Zárraga et al. [33] and Tanner et al [35]) and numerical data

(Sierou et al. [27] and Bertevas et al. [32]).

Before to discuss them, we should stress that these results are obtained

with a SPH model which is tuning-parameter free. In fact, no calibration of

particle radius based on Stokes flow (hydrodynamic radius) or radial distribution

function needs to be done as in DPD [24, 68], LBM [18, 19] or in a recent

grid-based method [69], but solid particle size is defined in terms of a precise370

prescription of the solid-liquid interface and therefore of geometrical radius a.

This is particularly important when defining φ at large concentration, where

estimates based on radii calibrated from single-sphere measurements in a dilute

regime might be wrong.

In the dilute and semi-dilute regimes our data reproduce exactly the Ein-375

stein’s solution for φ ≤ 0.1 [11] and high-order Batchelor’s correction [67] (inset

figure 6). For φ > 0.15 deviations from analytical theories are evident. In

the moderately dense and concentrated regime our data, compared to simula-
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tions of Ref. [27] (black circles), are always larger, both in the shear-thickening

(red circles) and low-shear Newtonian plateau (blue circles). Due to the ver-380

tical logarithmic scale the difference is more evident at φ = 0.3 than at larger

concentrations.

Compared to Ref. [33] (green squares), the current SPH results match ex-

perimental data up to φ ≈ 0.35, with large deviations in ηr still occurring at

larger concentrations. This last discrepancy with experiments is present also in385

other numerical schemes and it might be due to the presence of interparticle

contact forces, surface roughness or three-body lubrication effects which have

not been included in the model.

It should be also stressed that these results are fully converged in terms of

an ε analysis (see Sec. I.C). In fact two different tolerances ε = 0.01, 0.002 in390

the semi-implicit lubrication iteration have been considered and the measured

viscosities match fairly well at the two concentrations considered (see Fig. 6).

Moreover it should be remarked that confinement and finite size effects have

been ruled out in our simulations. We have systematically checked that size of

the system both, in the periodic direction (Lx, Ly) as well in the direction of395

confinement Lz are sufficiently large to deliver the converged results reported

in Fig. 6.

Full set of data are presented in Table 1 and compared with numerical and

experimental data. Although the deviations with simulation data of Sierou [27]

are not significant, only ≈ 20 % at φ = 0.5, (and they certainly do not explain400

the largest increase of ηr still observed experimentally), these are, to the best

of our knowledge, the highest fully-converged viscosity values reported in the

literature for hydrodynamically interacting non-colloidal suspensions.

It is worth to notice that a difference with previous numerical approaches

[27, 32] lies in the evaluation of the suspension viscosity which is normally done405

via Irving-Kirkwood theory. Here, a wall-force based approach is considered

instead which is closely related to the way viscosity is determined in experiments.

In [20] the two approaches have been compared numerically showing excellent

agreement, in such a way that we do not expect significant deviations associated
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to the procedure adopted.410

It should be also remarked that no particle-wall lubrication has been consid-

ered in this work. Introduction of this force could affect the suspension viscosity

by effectively changing the “slip” occurring at the wall and therefore modifying

the shear-rate defined in terms of wall velocities. On the other hand, similarly to

experiments [2], we obtain here a corrected effective shear-rate by interpolating415

the linear velocity profile directly from the bulk, therefore ruling out system-

atically possible slip effects. As a consequence, we do not expect significant

influence on our viscosity measurements.

3.2.1. Suspension microstructure

In order to understand the cause of the observed shear-thickening for this420

suspension, in this section we focus on the microstructure by analyzing the

particle radial distribution function (RDF). In particular we investigate the

influence of shear rate γ̇∗ on the RDF along different planes. We focus on

suspension at concentration φ = 0.4 where mild, but visible, shear-thickening is

observed in Fig. 5.425

Fig. 7 shows respectively the RDF along the velocity/velocity-gradient plane

xz (top figures), along the vorticity/velocity-gradient plane yz (middle figures)

and along the velocity/vorticity plane xy (bottom figures) at three indicative

shear rates γ̇∗ ≈ 1, 10, 100. Consistently with established results for non-

colloidal suspensions [2], the RDF in the shearing plane xz is shown to be430

anisotropic and fore-aft asymmetric indicating uneven probability for particle

arrangements with areas of high probability in correspondence of strong bound-

ary layers located along the compressive axis of shear and a depleted area in

the recession quadrant (top).

The broken symmetry in the shearing plane is a direct consequence of short-435

range repulsive force, which slows down approaching and accelerates departing

of any two nearby particles. This fore-and-aft asymmetry resembles Parsi&Gadala-

Marias experimental measurements on a concentrated suspension of solid spheres

[70] as well as recent experiments and simulations using Stokesian Dynamics
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[30]. On the other hand, no particular structure is observed in the remaining440

planes, with an RDF isotropic indicating presence of a disordered-state for the

solid particles at every shear rate investigated. Note that we did not observed

Figure 7: Radial distribution function for a sheared particle suspension at φ = 0.4 with

τ−1 = 0.001a. Top figures show averaged RDF projected into different planes for differ-

ent shear rates. Top: velocity/velocity-gradient plane xz. Middle: vorticity/velocity-

gradient plane yz. Bottom: velocity/vorticity plane xy.
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any asymmetry, i.e. weak particle chaining, in the vorticity direction as recently

reported in SANS measurements of colloidal systems in [44].

Boundary layers and corresponding peak location in the xz-plane is com-445

pletely determined by the balance of shearing and repulsive forces which is

changed by the effective shear rate parameters γ̇∗ = 6η0aγ̇
F0

. For different val-

ues of γ̇∗ balance will be reached at increasingly smaller interparticle distances,

where lubrication forces are stronger and explain the increased viscosity. In

[39, 28, 27] this explanation for the onset of shear-thickening has been pushed450

forward by contemplating the existence of finite regions of local high solid par-

ticle density, termed “hydroclusters”. Upon increasing shear rate, convective

forces dominate over entropic repulsive Brownian forces, being able to bring

solid particles close together forming these transient hydrodynamic aggregates.

In the thin gaps between multiple interacting particles inside hydroclusters, di-455

verging lubrication forces are active which in turn induce even larger stresses

in the system. The existence of hydroclusters was confirmed by experiments

using flow-small angle neutron scattering [43, 42], optical methods including

flow dichroism [41], fast confocal microscopy [40] and numerical simulations

[39, 28, 27].460

Although hydrocluster theory seems not be able to predict the large dis-

continuous shear-thickening observed in many experiments [71, 72, 73] - for

which new interparticle modelling based on contact friction forces is emerging

as novel paradigm [46, 45] - it was recently shown that continuous but significant

shear-thickening can be still obtained in two-dimensional systems in presence of465

confinement [52].

Hydrodynamic cluster analysis: in this subsection we present an analysis

of the suspension microstructure for hard spheres based on a cluster detection

algorithm proposed in Ref.[66] for two-dimensional systems. The goal is to verify

the existence of a detectable increased portion of hydroclusters which can be470

directly connected to the small shear-thickening observed in Fig. 5.

In order to detect a cluster, we take surface distance 0.001a as a threshold

below which two particles are considered to be ’connected’. Ncluster is defined
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as the number of solid spheres inside every cluster and determines its size.

One-dimensional RDF of solid particles for a typical system with φ = 0.4 are475

shown in Fig. 8 (top). As discussed above, the maximum probability peak moves

towards smaller averaged interparticle gaps s for increasing shear rates, and

consequently the role played by lubrication interaction becomes more relevant.

Probability distribution function (PDF) of cluster size are shown in Fig. 8

(bottom) for several applied shear rates. At low shear rates -corresponding to480

the Newtonian plateau of Fig.5 clusters of size Ncluster ≥ 1 are barely formed.

At the largest shear rate investigated γ̇∗ = 100, the tails of the PDF extend

visibly indicating presence of larger aggregates through the domain in agreement
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Figure 8: Top: one-dimensional RDF from the simulation of φ = 0.4 at different shear

rates. Bottom: PDF of hydroclusters size for φ = 0.4 at different shear rates.
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with experimental findings [40].

Similarly, an instantaneous real-space configuration of hydroclusters has485

been extracted from simulations and is shown in Fig. 9 for the shear-thickening

regime (γ̇∗ = 100, blue curve in Fig. 8 (bottom)). Different colors indicate

different cluster-size with smaller aggregates being depicted in transparent style

for sake of clarity. The aggregates as well as their morphologies can be fully ap-

preciated and exhibit qualitative similarities with the snapshots obtained form490

confocal movies in [40]. Similarly to what observed in [66], hydroclusters do rep-

resent truly transient aggregates varying continuously in size and location. With

the same choice of the threshold distance only rare events with Ncluster ≈ 2− 4

could be detected at γ̇∗ = 10 and are not shown here.

It should be remarked that possible time-dependent behaviour in the build-495

up of microstructure could arise, which in turn can be related to rheological

changes. Study of the rheology-microstructure link under transient flow condi-

Figure 9: Snapshot of hydroclusters configuration for φ = 0.4 and γ̇∗ = 100 corre-

sponding to viscosity data shown in Fig. 5. Cluster detection was obtained by defining

a minimal cutoff distance between suspended particles Rc = 10−3a. With this choice

for Rc only rare events with Ncluster ≈ 2 − 4 could be detected at γ̇∗ = 10.
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tions, e.g. start-up shear, will be a matter of future investigations.

4. Conclusions

In this work we have presented a Smoothed Particle Hydrodynamics model500

to study rheology and microstructure of a non-colloidal suspension of spheri-

cal particles in a Newtonian solvent. The splitting scheme presented in [52] is

generalized to three-dimensions and interparticle normal/tangential lubrication

forces are considered. Singular lubrication dynamics is calculated implicitly by

solving analytically the two-body lubrication problem iteratively all over the505

pairs of suspended particles. In order to check the accuracy, the new model is

first tested for the dynamics of two hydrodynamically-interacting spherical par-

ticles undergoing a shear flow. Rheology of a three-dimensional hard-spheres

suspension confined in a plane Couette rheometer is investigated for solid volume

fractions up to φ = 0.5. We focus here specifically on the relative viscosity ηr510

where simulation data are analyzed against numerical convergence of the split-

ting scheme for the lubrication dynamics. Converged viscosity values are com-

pared with available experimental and simulations data. Excellent agreement

with experiments (within 5 %) is obtained up to concentrations φ = 0.35 where

a Newtonian plateau for ηr is observed over three order of magnitudes in the515

applied shear rate. These data confirm both experimental findings [33, 34, 35]

and previous simulations [27, 32]. Viscosity data presented here, although show-

ing slightly higher values with respect to numerical data reported previously in

the literature, are still unable to explain the large relative viscosities observed

experimentally.520

Similar to previous calculations, modest shear-thickening (less than 10 %

over three orders of magnitudes in the shear rate) is also observed which is re-

lated to anisotropy of the particle radial distribution function (RDF) and pres-

ence of reversible hydrodynamic aggregates increasing in size with increasingly

applied shear rates, consistently with our previous two-dimensional results for525

non-frictional systems where small continuous shear-thickening was observed in
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the case of weak confinement [66]. On the other hand, the strong discontinuous

shear-thickening observed in some experiments appears not to be explained in

terms of hydrodynamically-bound clusters only. This is also in agreement with

experimental observations for colloidal systems in the Brownian-less limit -large530

Peclet numbers- [38, 40] but still in disagreement with the opposite weak shear-

thinning reported in several non-colloidal suspensions [33, 34, 35, 9] for which

a conclusive explanation is still missing. The results presented in this work -

which are based on an alternative route to extract suspension viscosity via over-

all wall force measurement - confirm previous simulations data and indicate that535

the physics contained in a simple Newtonian-based lubrication interaction is not

sufficient to describe the shear-thinning phenomenon in non-colloidal systems.

Incorporation of interparticle friction forces can provide a mechanism to in-

crease the suspension viscosity, however there are some issues when applied to

the specific problem of non-colloidal systems: (1) friction forces enhance shear-540

thickening and/or produce discontinuous shear-thickening [45, 46, 31] which

is opposite to the shear-thinning observed in [33, 34, 35, 9]; (2) effect of the

roughness in frictional models still does not match the experimental systems

[48], i.e. unrealistic excessive roughness must be considered to obtain similar

viscosity values. A similar argumentation holds also in the colloidal case where545

direct measurements of the friction at surfaces show extremely low coefficients

compared to those assumed in simulations [44]. (3) Both quantitative (viscos-

ity magnitudes) and qualitative (shear-thinning) deviations between simulation

results and experimental data in non-colloidal systems appear already in the

moderately dense case -i.e. for φ ≤ 0.4 - significantly below the jamming transi-550

tion, where the system reaches frustration and frictional contacts are expected

to dominate the dynamics. Further numerical analysis is therefore urgently

required to clarify these discrepancies. In particular, we are currently investi-

gating effects of weak non-Newtonian behaviour of the matrix, poly-dispersivity

as well as confinement effects on the rheological behaviour reported in this work555

and results will be presented soon.
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