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Highlight

• We proposed a featured based mesh adaptation for simulations of com-

pressible ows.

• Adaptivity is done locally by identifying holes and remesh those local

regions.

• Local adaptivity is robust and efficient for complex domains with curved

boundaries.

• Mesh adaptation improves solution resolutions, especially for strong

shocks.

• The adaptation process takes small percentage of run times for un-

steady simulations.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Feature-Based Mesh Adaptation for the

Unsteady High Speed Compressible Flows in

Complex Three-Dimensional Domains

Hoang-Huy Nguyena, Vinh-Tan Nguyena,∗, Matthew Pricea, Oubay Hassanb

aInstitute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis,
Singapore 138632

bCollege of Engineering, University of Wales, Swansea SA2 8PP, UK

Abstract

We propose an unstructured mesh adaptation approach for unsteady high

speed compressible Navier-Stokes applications involving blasts and explosions

with the presence of strong shock waves propagating in three dimensional

complex domains. The idea is to identify the locations of critical physics

locally and then re-mesh these regions based on solution derived metrics.

The approach ensures both geometry fidelity and mesh validity, especially

for areas near complex geometries, a task that is always a challenge in mesh

adaptation. The proposed adaptivity is applied for simulations of blast wave

propagations and compared with available data in literature. The results

show that the proposed method is fully robust and efficient for computational

fluid dynamics (CFD) problems in complex three-dimensional domains.

Keywords: mesh adaptation, feature-based, re-meshing, unstructured
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1. Introduction1

Modern CFD has the ability to explore problems that are more com-2

plex than ever before, partly because of more powerful computing resources.3

However, the recent evidence suggests that there is still significant unrelia-4

bility in the numerical predictions made by current CFD codes for the same5

problem. A strong relation between solution quality and mesh topology has6

been shown, further indicating that current mesh design practices are not7

sufficient [6]. Due to the fundamental impact of mesh on the approxima-8

tion of functions and PDE solutions, mesh adaptation was the focus of many9

researchers during the last two decades. There are four general approaches10

of mesh refinement methods. The first approach is p-adaptation, where the11

interpolation order is locally modified and does not require a new mesh to12

be generated.While p-adaptation can achieve excellent error convergence for13

smooth flows, difficulties arise near singularities or discontinuities. This con-14

trasts with the other popular adaptation method, h-adaptation, where the15

local element size is modified from the current mesh. When combined with16

unstructured and anisotropic mesh generation capabilities, h-adaptation can17

improve mesh efficiency in boundary layers, wakes, shocks, etc. However,18

the disadvantage of h-adaptation is that it could experience large jumps in19

mesh size and require mesh regeneration. This potentially reduces the effec-20

tiveness and robustness of the approach. A related method, r -adaptation,21

is a simpler variation of h-adaptation. Instead of generating a new mesh,22

r -adaptation moves node locations without changing the mesh topology to23

improve the solution accuracy. The final approach is hp-adaptation, where24
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adjustments in mesh size and interpolation order are combined. In this set-25

ting, h-adaptation is employed for non-smooth flow regions in the vicinity of26

singularities, and p-adaptation is used in smooth flow regions. Sometimes27

the choice of adaptation strategy in a particular element (h and/or p) is un-28

clear and criteria must be developed to aid that decision. It should be noted29

that for mesh refinement methods, it is difficult to guarantee the curvature30

of complex geometries. Refining and coarsening of regions near the domain31

boundaries usually generate problems [6].32

In an effort to improve the robustness and automation of mesh adapta-33

tion, this paper proposes an adaptive re-meshing method that can be used34

for variety of problems in CFD and removes the meshing bottleneck which35

is common to boundary-conforming methods. It should be noted that this36

method is feature driven adaptivity and is different to mesh adaptation in37

transient flows involving moving boundaries as were proposed by Löhner [10];38

Peraire et al. [15]; Löhner and Baum [11]; Morgan et al. [13]; Hassan et al.39

[8], etc. The present mesh adaptation is fundamentally different from goal-40

oriented approach used for unsteady flow simulations [2] in which optimal41

meshes are generated from a given output functional. Here an isotropic mesh42

adaptation based on solution features is proposed for unsteady simulations.43

Adopting isotropic mesh adaptation certainly makes the approach more ro-44

bust than anisotropic ones in which boundary recovery phase may fail in the45

process of adaptation. Another difference of the proposed approach is that it46

does not use strategies such as edge split, edge collapse, edge swap, face swap,47

point move, etc as were employed in mesh modifications. Instead, it defines48

the holes locally based on an feature-based indicator and re-meshes these re-49
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gions independently using surface and volume mesh generators. The surface50

meshes are performed using advancing front algorithm and volume meshes51

are based on Delaunay triangulation. The proposed re-meshing process is52

fully automatic without users intervention in run-time manner provided that53

initial surface and volume mesh can be generated from input geometries. In54

addition, it can perform mesh adaptation robustly and effectively in simula-55

tion run-time for complex configurations, especially for domains with curved56

boundaries. The numerical examples show that the use of the proposed57

adaptation strategy in three dimensions offers a great potential in having58

low cost CFD simulations with high quality mesh, resulting in more accurate59

solutions.60

2. Problem Statement61

Considering unsteady inviscid compressible flows governed by the time-62

dependent, Euler equations on a three–dimensional Cartesian domain Ω ⊂63

R3, with surface ∂Ω, it can be expressed in integral form as64

∫

Ω

∂U

∂t
dx +

∫

∂Ω

F jnjdx = 0, (1)

where the conventional summation is employed and nj is the outward unit65

normal vector to ∂Ω. The unknown vector of the conservative variables,66

inviscid and viscous flux tensors are given by67

U =




ρ

ρu1

ρu2

ρu3

ρε




, F j =




ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

uj (ρε+ p)




. (2)
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Here ρ denotes the fluid density, ui the i’th component of the velocity vector68

and ε the specific total energy. Fluid is considered as perfect gas with ideal69

equation of state p = ρRT and ε = cvT + 1
2
ukuk where R is the real gas70

constant and cv = cp − R is the specific heat at constant volume. In this71

expression, cp is the specific heat at constant pressure. In this work, the ratio72

of the specific heats, γ = cp
cv

is set to γ = 1.4 for air at standard conditions.73

Flow unsteady conditions are solved by first discretization of the domain74

into a computational unstructured grid as a set of non overlapping tetrahedral75

elements. The governing equations are then solved on the discrete domain76

using second order cell based vertex centered finite volume approach with77

explicit time stepping scheme. For better capturing of flow features, solution78

based adaptivity is developed and employed to adjust computational grids.79

In subsequent sections, these techniques will be discussed in details.80

3. Unstructured Mesh Generation81

The computational domain Ω is subdivided into a set of non-overlapping82

tetrahedral elements using a unstructured mesh generation process. In this83

section, the methods for generating an unstructured grid are briefly summa-84

rized. In an unstructured mesh, the number of points and elements which are85

neighbours to an interior point is not kept constant throughout the domain.86

The mesh algorithm can handle arbitrary geometries in a fully automatic87

manner and provide control over the spatial mesh spacing throughout the88

domain. Therefore, the input data can be reduced to a geometric represen-89

tation of the domain based on computer-aided design (CAD) defined geome-90

tries. The geometrical definition (or domain boundaries) contains curve and91
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surface components. The curve components are the curvature continuous92

composite cubic splines. Surface components are represented by means of a93

rectangular network of points.94

3.1. Background mesh and source distribution95

Control over the mesh characteristics is obtained by the specification of96

a spatial distribution of mesh parameters. A background mesh as well as97

point, line and planar sources can be used to define the control function that98

specifies the distribution of the mesh spacings [17].99

The background mesh employed must cover the region to be discretized.100

In the generation of an initial mesh, the background mesh usually consist of101

a small number of elements. For instance, a background mesh consisting of a102

single element can be used to impose a linearly varying or a constant spacing103

through the computational domain.104

For complex geometries, the use of a distribution of sources ensures the105

desired mesh size at specific regions in the computational domain. In this106

approach, an isotropic spatial distribution of element size is specified as a107

function of the distance from the point of interest to a ’source’. The source108

may take the form of a point, a line or a triangle. The form adopted for the109

function is110

δ(x) =





δ1 if x ≤ xc

δ1e

∣∣ x−xc
D−xc

∣∣ log 2 if x ≥ xc
(3)

The quantities δ1, D, and xc denote user-specified values which can be111

customized to control the form of δ(x). The final spacing at a point in the112

domain is computed as the minimum of the background mesh and sources.113
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3.2. Surface triangulation114

The surface mesh generator utilises the concept of a generation front [12];115

[16]. At the start of the process the initial front consists of the sequence of116

straight line segments which connect consecutive boundary nodes. A side is117

selected from the front and a triangular element is generated. The front is a118

dynamic data structure which changes continuously. During the generation119

process, any straight line segment which is available to form an element side120

is termed active, whereas any segment which is no longer active is removed121

from the front. After a triangle has been generated, the front is updated and122

the generation proceeds until the front is empty.123

3.3. Delaunay mesh generator124

In this work, we employed the efficient Delaunay triangulation algorithm125

developed by Weatherill and Hassan [21] which is based on the in-circle crite-126

rion [4]. This method, given a set of points and connectivity information for127

the boundary points, performs a triangulation of the points, automatically128

creates points in the interior of the domain and ensures that the bounding129

surface of the domain is contained in the triangulation.130

4. Unstructured Grid Compressible Flow Solver131

In this paper, we employed an explicit flow solver for compressible flows132

on unstructured grids [14] to discretize the governing equations (Eq. 1) on133

unstructured grids. The unstructured grid flow solver is constructed from an134

edge-based cell-centre finite volume approach with compact Harten-Lax-van135

Leer (HLLC) flux scheme. The HLLC scheme is appended by second or-136

der reconstruction of Riemann states thus obtaining second order accuracy.137
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As the flows develop strong shock waves, various slope limiters were imple-138

mented to stabilize solutions and overcome instabilities due to the high order139

approximation. Summary of the discretization scheme is summarized in the140

following sections.141

4.1. Edge-based Vertex-centre Finite Volume Spatial Discretization142

The discretisation of Eq. (1) is accomplished using a cell vertex finite143

volume procedure. The computational domain Ω is subdivided into a set144

of non-overlapping tetrahedral elements using a Delaunay mesh generation145

process with automatic point creation described in the previous section. To146

enable the implementation of a cell vertex finite volume solution approach, a147

median dual mesh is constructed by connecting edge midpoints, element cen-148

troids and face centroids such that only one node is present in each control149

volume. The edge coefficients for internal and boundary edges are calcu-150

lated for every edge using the dual mesh segment associated with the edge151

connecting point I and J as follows,152

CIJ
j ≡ nIJ

j =
∑

K∈ΓIJ

AΓK
I
n

ΓK
I

j (4)

DIJ
j =

∑

K∈ΓB
IJ

AΓK
I
n

ΓK
I

j . (5)

In the expression (4), AΓK
I

is the area of facet ΓK
I and n

ΓK
I

j is the outward153

unit normal vector of the facet from the viewpoint of node I. And ΓB
IJ is the154

set of dual mesh facets on the computational boundary touching the edge155

between nodes I and J .156

The contribution of the inviscid flux over the control volume surface for157
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node I is then computed as158

∫

∂ΩI

Fijnjdx ≈
∑

J∈ΛI

CIJ
j

2
F IJ +

∑

J∈ΛB
I

DIJ
j F I (6)

where ΛI denotes the set of nodes connected to node I by an edge and ΛB
I159

denotes the set of nodes connected to node I by an edge on the computational160

boundary. F IJ is the inviscid numerical flux in IJ direction obtained from161

solving local Riemann problems at the facets of node I’s control volume.162

There are a number of ways for computation of numerical fluxes, in this163

work, for high speed compressible flow the compact Harten-Lax-van Leer164

(HLLC) flux scheme [14] is employed. The HLLC scheme is appended by165

second order reconstruction of Riemann states thus obtaining second order166

accuracy. As the flows develop strong shock waves, various slope limiters167

were implemented to stabilize solutions and overcome instabilities due to the168

high order approximation.169

4.2. Time Discretization170

When the terms in Eq. (1) is approximated by the above finite volume

discretization scheme, the final form of discrete equations is written as

dUh(t)

dt
= Rh(Uh, t), (7)

where Uh is the discrete solution vector and Rh is the residual vector repre-

senting FV discretization of the inviscid fluxes,

Rh(Uh, t) =
∑

J∈ΛI

CIJF IJ +
∑

J∈ΓB
I

DIJF I (8)

The time derivative term is discretized using finite difference at time

step n and the residual term is evaluated from solutions at time step n and
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possibly previous time steps. In this work, the following explicit Kth order

Runge-Kutta time discretization can be used for solving Eq. (7)

W
n(i)
h =

i−1∑

l=0

αilW
n(l)
h + βil∆t

nRh(U
n(l)
h ), i = 1, ..., K (9)

where W
n(0)
h = W n

h and W n+1
h = W

n(K)
h . The coefficients are required to171

satisfy some conditions such that the scheme is satisfied to be total variation172

diminishing (TVD). A class of TVD Runge-Kutta schemes is presented by173

[19] and proven to be suitable for solving the hyperbolic conservation laws174

with stable spatial discretization.175

5. Local Mesh Adaptation176

In solving (unsteady) problems involving high-speed compressible flows,177

the location of critical physics is often not known ahead of time. These local-178

ized regions will generally move through the computational domain and may179

sweep across large areas. The mesh will thus need to be adapted to allow180

for accurate tracking of high-gradient features in the solution. However, it is181

not recommended to re-mesh the whole computational domain. This is not182

only computationally expensive but may also result in reduced accuracy, due183

to the inherent numerical diffusion that occurs when interpolating data from184

old grid to new grid. Frey and Alauzet [7] used mesh modification to gener-185

ate an adapted mesh to capture the transient phenomena. In their approach,186

the ingredients to achieve this goal typically include mesh enrichment, mesh187

coarsening and local mesh optimization procedures. The local mesh modifi-188

cations operators are: edge flipping, edge collapsing, edge splitting and node189

removal, node repositioning and degree relaxation.190
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The adaptive re-meshing strategy presented in this paper is to re-mesh the191

regions where the current mesh resolution is not sufficient to capture steep192

gradients in localized portions of the flow. In this approach, we will re-mesh193

edges, surfaces, volumes locally based on spacings derived from solutions194

using surface and volume mesh generators. The localized regions are defined195

as small as possible to cover the area of fast changing solution but still ensure196

the smoothness between the adapted and the remaining regions. At the same197

time, it is also important to preserve the global geometrical definition of198

the domain boundaries, especially with curved surfaces. The mesh will be199

refined or coarsened dependent on the fast changing or uniform flow features200

detected.201

5.1. Feature-Based Adaptivity202

In pioneering work on error-based mesh adaptivity [10, 17], the mesh size203

spatial distribution is computed from second derivatives of solutions under204

the principle of equidistribiution of errors. Those Hessian-based approaches205

aim at controlling errors across the whole domain ignoring time discretization206

error in unsteady simulations. In this work, a new mesh size distribution207

function is defined based on the solution gradient and compared with the208

current mesh size thus creating local regions for remeshing. The proposed209

mesh size distribution also takes into account the mesh transition in time.210

The numerical solution u such as density, pressure, etc at the current time211

will be used to predict the desired element size for the new mesh.212

12
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5.1.1. Solution-based size function213

In practical implementation of the present method, a minimum spacing214

δmin and a maximum spacing δmax are specified to control the distribution215

of the mesh in the computational domain. To define a metric for the new216

mesh, we employed Gaussian distribution based on the prescribed minimum,217

maximum (δmin, δmax) mesh sizes and the solution gradient |∇u|P . The size218

function at node P is defined as follows:219

δP = δmin + (δmax − δmin)e−
(|∇u|P−|∇u|min)2

2c2 (10)

The new mesh size of the local regions to be re-meshed will fall into the range220

of [δmin, δmax]. The parameter c, controlling the width of the Gaussian distri-221

bution, defines the regions surrounding the high solution gradient where fine222

meshes are needed (refining). On the other hand, areas where the solution223

gradient is small will be re-meshed with δmax (coarsening). At each node, the224

minimum value between the new mesh size and the global mesh size defined225

by the background mesh and sources is used for mesh adaptation.226

5.1.2. Re-meshing criteria227

As the optimal nodal spacing is determined from given solutions, the mesh228

will be adapted in the areas where there is a significant difference between the229

desired spacing and current mesh spacing. An indicator is defined to identify230

the regions where the mesh needs to be changed. From the new mesh spacing231

calculated at each node of the current mesh based on the above size function232

(Eq. 10), the percentage change between the current mesh spacing and the233

new one is defined at each node as234

13
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εP =
|δP − δ̄P |

δ̄P
(11)

where δP and δ̄P are the new and current mesh spacing at node P , respec-235

tively. The computed mesh spacing can be smaller or larger than the current236

mesh spacing; thus requiring either refining or coarsening of the local re-237

gions. Nodes in regions where percentage change is greater than a certain238

threshold (εP ≥ εd) will be deleted. Those deleted nodes and its surrounding239

neighbours collectively form local holes to be re-meshed. The current mesh240

is then modified with the objective of meeting the new distribution of mesh241

characteristics as closely as possible.242

Fig. 1 shows an example of mesh adaptation procedure for a problem of243

explosion in a box. A charge is initialized as a region of high pressure inside244

the box. New mesh spacing can be derived from solution gradient Fig. 1(a)245

using the size function Eq. (10). The new and current mesh spacing are246

displayed in Fig. 1(b) and 1(c). This resulted in the percentage change247

between the spacings that was used to determine the local holes. It can be248

seen that the local area to be deleted (red regions in Fig. 1(d)) is well within249

the area of high gradient solutions.250

5.2. Re-meshing algorithm251

5.2.1. Hole identification and deletion252

This process starts from the current unstructured mesh. Nodes which are253

identified by the re-meshing criteria are marked for deletion. The surrounding254

nodes that connected to marked nodes are also marked for deletion to create255

a smooth transient growth in mesh spacing between the re-meshed regions256

14
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and the remaining parts of the domain. Finding these surrounding nodes can257

be done in several rounds to ensure smooth transition of mesh distribution.258

From our experience, 2 to 3 rounds of identifying deleted nodes results in259

a good transition of the mesh spacing. Provided the list of deleted nodes,260

all elements connected to those nodes also need to be marked for deletion.261

The marked elements are then removed from the original mesh and stored to262

act as reference background grids for later interpolation of solutions from old263

mesh to new adapted mesh. The deleted elements are grouped into ’holes’.264

As seen in Fig. 1(d), the red areas define the holes with εd = 30% as the265

percentage change threshold. Subsequently, these holes are re-meshed with266

the new nodal spacings which involves the following processes such as: local267

edge discretization, local surface discretization and local volume regeneration.268

5.2.2. Local curve and surface re-meshing269

Each hole is bordered by a collection of faces in three dimensions which270

defined the outer hull of the hole to be re-meshed. In some cases, the faces271

are not located on the domain boundaries Fig. 2(a) and only require a local272

volume adaptation for these holes. On the other hand, there are holes with273

faces residing on the geometrical surface components Fig. 2(b). The collec-274

tion of these faces will define local geometrical surfaces which are needed to275

re-meshed as part of the adaptation process. New generated faces of the local276

surfaces and the remaining faces of the hole will be used as initial fronts for277

the local volume re-meshing.278

The local regions to be triangulated on surface components are defined279

by the closed loops of oriented curves Fig. 3. In addition, these loops may280

contain local curves which are on the global curve components and also need281

15
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local re-meshing. Due to the randomness in forming the holes, the config-282

uration of local surfaces can be complex. Therefore, special treatments are283

needed to enhance the local boundary definition of the surfaces to be dis-284

cretized so that these local areas are more manageable by the surface mesh285

generator.286

For the local boundary surface re-meshing, it is important to preserve the287

curvature of the curves and surfaces of the boundaries. Therefore, during the288

re-meshing processes, it is necessary to refer to the global boundary definition289

to ensure that the new generated nodes are placed on the true geometrical290

curve and surface definition. Fig. 4(a) and Fig. 4(b) show an example of291

local curves and surfaces re-mesh for the explosion in urban areas. The292

initial mesh used is depicted in Fig. 4(a). At the beginning, a fine mesh was293

used at the source of explosion. As the explosion sweeps through the nearby294

building structures, the mesh will be adapted to the change in solutions.295

The adapted mesh at a certain time of the simulation is shown in Fig. 4(b).296

As we can see in the figure, local curves and surfaces are re-meshed with297

the new mesh size accordingly but still preserve the curvature of the domain298

boundaries.299

5.2.3. Local volume re-meshing300

The collection of faces (triangles) in three dimensions including new gen-301

erated faces obtained from local surface re-mesh and surrounding each hole302

is now regarded as an initial front for the Delaunay triangulation algorithm.303

A local background mesh is constructed based on the deleted tetrahedral el-304

ements of each hole. The volume mesh generator, using the above Delaunay305

triangulation scheme 3.3 fills the holes by constructing new elements accord-306

16
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ing to the required distribution of mesh parameters provided by the local307

background mesh.308

5.2.4. Solution interpolation309

There exist various techniques for solution interpolation between differ-

ent meshes from a classical linear interpolation to conservative interpolation

using cut-cell approach [1] or supermesh [5]. The conservative interpolation

ensures mass conservation but introduces extra computational cost to the

procedure. Moreover it was shown in [1] that benefits of conservative ap-

proach is small compared to cost for simulations of blasts and explosions.

In this work the classical linear interpolation approach was adopted. When

a new point P from the adapted mesh is introduced to the previous back-

ground mesh, a searching process is carried out to identify the element κi in

the old mesh that contains the new point. The alternative digital tree [3] is

used to accelerate this searching process. The solution u(P ) is then linearly

interpolated to the new point P from the nodal values of that element.

u(P ) =

nk∑

j=1

bj(P )u(Pj), (12)

where nk is the number of vertices Pj of element κi and bj is the barycentric310

coordinate of P with respect to the element κi.311

5.2.5. Local mesh adaptation procedure312

In summary, the local mesh adaptation process will include the following313

steps:314

1. Derive solution-based mesh size315
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• New nodal spacing is derived from current solution with respect316

to a ’key’ variable (pressure, density, velocity, etc) (Eq. 10).317

• Compare with the global spacing to get the final desired mesh size.318

2. Identify holes319

• Compute percentage change between new and current nodal spac-320

ings (Eq. 11).321

• Use re-meshing criteria to mark regions where the mesh should be322

changed.323

• Group deleted elements into holes and build a list of remaining324

nodes.325

3. For each hole, do re-meshing locally326

• Identify the boundary faces of the hole.327

• From the boundary faces, if there are no local edges located as328

part of the global geometrical definition curves, go to step 3b to329

do local surface triangulation.330

(a) Re-mesh curves on domain boundaries331

• Construct local line sources by using the original curve seg-332

ments with new spacings.333

• Discretize the local curves.334

• Update the list of nodes and proceed to surface re-meshing.335

(b) Local surface re-meshing336

• The local surface components of the hole boundaries are ex-337

tracted from the list of deleted elements.338
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• If there are no faces located on the domain boundaries, go to339

step 3c to do the volume adaptation.340

• Define the surface regions to be re-meshed based on the closed341

loops of oriented curves. Each local surface may contain sev-342

eral regions.343

• Start advancing front triangulation for each region and per-344

form mesh enhancements.345

• Update the list of nodes and export the new surface mesh for346

volume generation.347

(c) Generate local volume mesh for each hole348

• Construct a local background mesh by using the deleted ele-349

ments of the hole with the new spacings.350

• Using the new generated faces as boundaries (if any), the re-351

mainder of the hole is re-meshed using the isotropic Delaunay352

triangulation with the local background mesh defined above.353

• Add the local new meshes to the global mesh.354

4. Interpolate values of the unknowns for all the newly generated nodes.355

5.2.6. Efficiency356

For mesh adaptation, re-meshing the whole computational domain is not357

favourable. It is necessary to obtain better accuracy but at a lower com-358

putational expense. In this approach, adaptation will be performed only at359

regions surrounding the critical physics areas. The re-meshed regions should360

be as small as possible but still ensure the smooth transition in mesh size361

between the remaining region and the holes. The parameter c in Eq. (10) con-362
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trolling the width of the Gaussian distribution function will define the local363

regions covering the high gradient features where fine meshes are needed. In364

addition, imposing the current spacing at the boundary of the holes instead365

of using the new spacing will help to create the smooth transition between366

the holes and the remaining parts.367

6. Numerical Examples368

6.1. Explosion in cylinder369

In this section, simulations of an explosion in a cylinder were carried370

out to demonstrate the effectiveness of the proposed local mesh adaptation371

scheme. The problem involves simulations of the flow field when a charge372

is placed at the centre of one end of the circular cylinder of radius of 5 me-373

ters and 20 meters in length. The equivalence of 100kg TNT charge was374

initialized using a spherical burst model. As the charge is activated, a high-375

pressure field will move toward the cylinder walls generating reflected waves376

and interacting with each other to propagate downstream to the other end377

of the cylinder. The air inside the cylinder is modelled as compressible and378

initially set at atmospheric condition (101325Pa). Here, we employed the379

explicit flow solver as described in section 4 coupled with the proposed mesh380

adaptation to simulate the explosion in the cylinder. As the flows develop381

strong shock waves, the local extremum diminishing (LED) limiter was used382

to stabilize solutions and overcome instabilities due to the high order approx-383

imation. Using the proposed approach, it is possible to observe the solution384

of transient flows using adaptive re-mesh methods.385

First, simulations without mesh adaptation were performed to set as386
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benchmarks for comparisons. The mesh were clustered at the centre of one387

end where the charge is placed to better representing the explosion. Two set388

of meshes were generated for simulations including a coarser mesh of 780K389

elements (with minimum mesh size of 0.03 m at the charge location, 0.35390

m for the rest of the cylinder) as seen in Fig. 5(a) and a reasonably finer391

mesh of 16 million tetrahedral elements with 0.03 m as mesh size Fig. 5(b).392

Flows were simulated using first order (HLLC1) and second order (HLLC2)393

scheme. In mesh adaptation process, we started with the coarser mesh (780K394

elements) clustered at the charge location to capture the explosive initializa-395

tion. The adaptation parameters have been set to: εd = 0.3, δmin = 0.03m,396

δmax = 0.35m. The explosive wave is advanced toward the wall of the cylin-397

der. At a certain adaptation frequency, the mesh is adapted based on the398

pressure solution to better follow the wave propagation in this case. Fig. 6399

shows the resulting meshes together with the pressure solutions at various400

times in the simulation. It can be seen that the mesh adaptation can capture401

the local high-gradient features in the solution and regenerate the mesh lo-402

cally. The elements whose size and shape do not meet the requirement of the403

new solution distribution are identified and the mesh is adapted according404

to the new solution-derived mesh size. In addition, local mesh adaptation405

shows advantages in re-meshing efficiency. As can be seen in Fig. 6, adapta-406

tion is only performed at one end of the cylinder where large gradients are407

observed. In these figures, the local holes to be remeshed follow the criti-408

cal flow as they move from the centre toward the cylinder wall. The mesh409

are reasonably large at regions with uniform flow and sufficient small at the410

critical areas.411
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The results using different simulation strategies including mesh adapta-412

tion approach are shown in Figure 7. In this figure, the numerical results of413

pressure probed at the corner of the cylinder are compared with the available414

empirical data [9]. The empirical data is derived from a hemispherical TNT415

surface burst and the pressure data is presented for a case of reflected shock416

on a flat surface at 5 meters away from the charge. The peak pressure from417

empirical data is 4.1×106 Pa. While the finer mesh apparently provides bet-418

ter resolutions to solution, the second order scheme, HLLC2, improves the419

solution further. It can be observed from Figure 7(a) that HLLC2 performs420

better on both pressure profile and peak pressure. The numerical results of421

mesh adaptation starting from a coarse grid are also shown in Figure 7(a). By422

using mesh adaptation, HLLC1 scheme can give better results at 2.1×106 Pa423

peak which is the same as the fine mesh result using HLLC1 solver. The peak424

in mesh adaptation with HLLC2 scheme increase significantly to 4.1×106 Pa425

and almost close to the empirical data. In addition, with mesh adaptation,426

not only does the value of the peak get higher and closer to the empirical,427

but the arrival time, the time pressure pulse reaches its maximum also shifts428

toward to the empirical peak. The efficiency of the proposed mesh adap-429

tation approach can be illustrated by comparing the CPU time of various430

simulations as shown in Figure 7(b) for the same simulation. Run times of431

coarse mesh (780K elements) with adaptation are compared with run times432

used to run fine mesh (16M elements) without mesh adaptation. The times433

used to run the fine mesh with HLLC1 and HLLC2 solvers are 18 hours and434

97.5 hours, respectively, with a single CPU (Intel Xeon 2.67 GHz). By em-435

ploying mesh adaptation, run times with HLLC1 and HLLC2 solvers are 11436

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

hours and 39 hours, respectively, resulting in about 40% and 60% reduction437

in CPU time. Therefore, mesh adaptation does help to reduce the time in438

producing accurate numerical results. It also noted that the adaptation time439

is just a small percentage of the total run time. In case of HLLC1 scheme,440

the adaptation time is about 30% of the total run time. However, in case of441

HLLC2 scheme, it can be seen that the solver time is much more than the442

adaptation time due to the fact that HLLC2 solver is more expensive while443

the adaptation time remains the same.444

For a comparison with experimental data, a similar simulation setup was445

also carried out for a blast in a cylindrical tube [18]. The test consists of a 24446

m long steel tube with a 1.5 m diameter. A spherical charge of 500 g Swedish447

plastic explosive (Sprangdeg m46) was detonated at 1.0m from the open end.448

Pressures are measured at gauges 11m and 20m from the charge along the449

length of the tube. Numerical simulations were carried out to test the accu-450

racy and efficiency of mesh adaptation process. A comparison of the test data451

and simulation is shown in Figure 8 between experimental data, simulation452

results on uniform mesh and adaptive mesh based on pressure. Experimen-453

tal data has been operated on with a low-pass filter. The uniform mesh had454

an element size of 3cm near the charge location (for initialization) and 5cm455

elsewhere for a total of 2.12 million tetrahedral elements. The initial mesh456

for the adaptive runs had an element size of 3cm near the charge and 15cm457

elsewhere with 0.64 million tetrahedral elements. The minimum and maxi-458

mum element size controls for adaptivity were 3 cm and 15 cm respectively.459

The simulations were run on 4 CPUs of a workstation with 32 Gb of RAM.460

It can be seen that numerical simulations agree well with experimental data461
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for both shock peak pressure and arrival time. However, the simulations do462

not predict the negative pressure dip after the shock which is observed in the463

experiments [18]. Mesh adaptive simulations based on pressure and density464

provided nearly identical pressure history as shown in Figure 8. As shown465

in Figure 9(b) density-based adaptivity requires more elements to capture466

the density gradients at the contact interface behind the shock.. It can be467

seen that compared to uniform mesh, mesh adaptivity reduces number of el-468

ements in the domain while maintaining sufficient mesh resolution in critical469

flow regions for accurate shock capturing. Figure 9(a) shows a comparison of470

CPU time for different simulations. It is clearly seen that the mesh adaptive471

simulations result in large reduction of run-time compared to running on a472

uniform mesh while rendering the same accuracy. Density based adaptation473

required longer run time compared to pressure based counter part due to474

larger mesh generated using density as the refinement feature. For applica-475

tions of blast and explosion, it is found that pressure based adaptation is the476

most efficient strategy for both accuracy and efficiency.477

6.2. Explosion in urban area478

Another example will demonstrate the capability of the proposed mesh479

adaptation on a large scale area with complicated geometrical features. The480

problem concerns an explosion of an equivalence of 2000kg TNT charge in481

an urban area Figure 10 as was described in [20]. The metric is defined482

based on the pressure gradient. The adaptation parameters have been set483

to: εd = 0.3, δmin = 0.5 m, δmax = 2.0 m for a computational domain size of484

160m×130m×50m. By varying the parameter c in Eq. (10), one can control485

the refining areas around the regions with critical physics. In this example,486
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we set c = 0.04 to define the width of the Gaussian distribution. Adapted487

meshes are presented in Figure 11. As shock waves propagate through the488

domain, they are focused more in the street channels between the buildings;489

thus requiring mesh adaptation on geometrical surface definition. Figure 12490

shows comparison of pressure history measured at two different locations in491

a similar scaled city set-up as shown in [18]. It can be seen that the transient492

phenomena are well captured by the proposed mesh adaptation procedure as493

compared to experimental data. Simulations with mesh adaptation provide494

similar results with uniform mesh while it takes much less time (about 10495

times less) to run the simulations. It highlights the benefits and predictive496

capability of the local mesh adaptation process in simulating explosion in497

areas with complex geometries.498

7. Conclusions499

This paper has presented a mesh adaptation approach to track the critical500

features in unsteady compressible Navier-Stokes flows. It is capable of gener-501

ating suitable meshes for problems in which the development of the solution502

is not known before hand. The approach shows a robust, reliable and effi-503

cient algorithm to cater for local mesh adaptation based on solution output504

at any time. The adaptation procedures combine local curve, surface and505

volume re-meshing allowing the quality of the solution to be enhanced. In506

addition, the boundary geometries of the computational domain are always507

preserved in the adaptation process. Since, mesh adaptation is only per-508

formed at small local areas covering the critical solutions features, the time509

to do the re-meshing becomes reasonably small compared to the numerical510
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simulation time. The approach provides a powerful tool for mesh adaptation511

for domains of complex geometry. Future works will focus on the scalable512

parallelization, local anisotropic mesh adaptation and mesh adaptation in513

fluid structure interactions.514
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(a) Solution gradient (b) Mesh size derived from solution

(c) Current characteristic mesh size (d) Deleted hole (red area)

Figure 1: Adaptation process for the problem of explosion in box. The new nodal spacing

(b) is determined from given solutions (a) and compared with current mesh spacing (c).

The difference between new and current mesh spacing is computed to determine element

to be deleted. Those deleted elements will then form local deleted regions or holes (d) for

re-meshing.
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(a) Hole completely inside the domain (b) Hole with faces on boundaries

Figure 2: Local holes to be re-meshed in the cases of hole not intersecting with domain

surfaces (a) and hole with faces residing on the geometrical surface component (b)

Figure 3: A hole with local curves and surfaces located on boundary components of the

domain (explosion in urban area).
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(a) Initial mesh (b) Re-mesh local edges, surfaces

Figure 4: Example of explosion in urban area. The initial mesh (a) shows mesh clustering

at the charge area, while the adapted mesh (b) follows the wave propagation.

(a) Coarse mesh (b) Fine mesh

Figure 5: Initial meshes used for explosion in cylinder: (a) a coarse mesh of 780K elements

and (b) fine mesh of 16 millions tetrahedral elements.
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Figure 6: Local mesh adaptation at different simulation times.
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Figure 7: (a) Comparison of pressure histoty at the corner of the cylinder between

different approaches. It can be observed that second order scheme provides higher peak

and better pressure profile than first order scheme. HLLC1 and HLLC2 scheme with local

mesh adaptation (MA) significantly improve the solution in peak pressure and pressure

profile. (b) Mesh adaptation using first and second order HLLC scheme provide more

accurate prediction with much less running time as compared with the same numerical

scheme on fine mesh. Mesh adaptation process takes about less than 10% in simulations

using HLLC2.
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Figure 8: Comparison of pressure history at (a) gauge #1 and (b) gauge #2 at 11m and

20m along the length of the tube.
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Figure 9: Comprison of (a) run time and (b) mesh size between different simulations

using uniform mesh, adaptivity based on pressure and density.

Figure 10: Isopressure surfaces at times t = 8 ms, 21 ms, 40 ms and 60 ms showing the

development of the explosion in the city area.
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Figure 11: Adapted volume meshes and cutting plane through the domain at times t = 8

ms, 21 ms, 40 ms and 60 ms. The mesh is refined at high gradient pressure and coarsened

at regions with small gradient. Refinement is applied to geometrical surfaces where mesh

sizes on the building surfaces are adjusted following the wave propagation.
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Figure 12: Pressure history and comparison between numerical simulations and experi-

ment data for blast in a scaled city [18]. Pressure is probed at two different location along

the street channel.
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