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Abstract

In this paper, we are interested in the Dirichlet boundary value problem for a multi-
dimensional nonlocal conservation law with a multiplicative stochastic perturbation in a bounded
domain. Using the concept of measure-valued solutions and Kruzhkov’s semi-entropy formula-
tions, a result of existence and uniqueness of entropy solution is proved.

Keywords: Anomalous diffusion; It6’s formula; Stochastic Burgers equation; Conservation
laws.
AMS subject classifications (2010): 35K20, 60H15, 60H40.

1 Introduction

Partial differential equations with a nonlocal (i.e., fractional) Laplacian operator have attracted a lot
of attention recently. The usual Laplacian operator A may be thought as macroscopic manifestation
of Brownian motion, as known from the Fokker-Planck equation for a stochastic differential equation
driven by a Brownian motion (a Gaussian process), whereas the nonlocal Laplacian operator (—A)2
is associated with a ~y-stable Lévy motion (a non-Gaussian process) L}, v € (0,2). See [2, 17] for
a discussion about this microscopic-macroscopic relation.

Nonlocal Laplacian operator also appears in mathematical models for viscoelastic materials
(e.g., Kelvin-Voigt model), certain heat transfer processes in fractal and disordered media, and
fluid flows and acoustic propagation in porous media, see e.g. [9, 26, 27], just mention a few.
Interestingly, a nonlocal diffusion equation also arises in pricing derivative securities in financial
markets [9].

*corresponding author.



In this paper we aim to solve the following problem

du + ((=A)2u — div(f(u)))dt = h(u)dw, t >0, x€ D,
u(0,z) = up(x), x €D, (1.1)
ulpe = 0,

where 0 < v <1, D C R™ is a bounded domain, with a Lipschitz boundary if d > 2, Q@ = (0,T) x D,
T is positive number and w = {w;, F; : 0 < t < T} denotes a standard adapted one-dimensional
continuous Brownian motion with wy = 0, defined on the classical Wiener space Cy([0,T1).

It is well-known that equation (1.1) can be interpreted as Fokker-Planck equation with noise
perturbation associated to some stochastic differential equation in the sense of Mckean, see the
paper [20, 21]. In paper [22], the authors provided a numerical probabilistic scheme for the fractional
scalar conservation law (1.1).

It is well-known that the specific value of v € (0,2) plays a key role:

e 1 < < 2: In this case, (—A)"/? is the dominant term, so the equation (1.1) is a stochastic
equation of parabolic type. Thus the existence of the solution to (1.1) can be obtained by a fixed
point or contraction mapping argument [12, 30].

e v = 1: In this case, the two terms (—A)¥/2 and V - f(u) have the same order in equations
(1.1). Caffarelli-Figalli [10] considered the equations with square root operator (fA)%.

e 0 <y < 1: In this case, V- f(u) is the leading term, and we do not expect to have a regularity
theory for (1.1). So it is natural to think that (1.1) with 0 < < 1 could behave as the following
hyperbolic equation

du — div(f(u)))dt = h(u)dw (1.2)

in the bounded domain. That is to say, we must introduce the notion of entropy solution.
In the absence of noise (h = 0), equation (1.1) reduces to a deterministic partial differential
equation known as the nonlocal conservation law

duu(t,x) + (—A)u(t,x) + V- f(u(t,z)) =0, = €R% t>0, (1.3)

which has been extensively studied [1, 13, 14]. When « € (%, 1), equation (1.3) has been studied
by [5, 6, 7, 8, 28]. When « € (0, 3), Alibaud [1] defined an entropy solution to (1.3), and showed
the existence and uniqueness of a solution to (1.3) in L°°. Moreover, Silvestre [28] studied the
regularity of the solution of (1.3)

Let us recall some results about the stochastic conservation laws. H. Holden and N. H. Risebro
[19] proved the existence of a weak solution to the Cauchy problem with multiplicative noise by
using an operator splitting method. J. V. Kim [23] proposed a method of compensated compactness
to prove, via vanishing viscosity approximation, the existence of a stochastic weak entropy solution
to the Cauchy problem with additive noise. Vallet and Wittbold [29] extended the results of Kim
to the multi-dimensional Dirichlet problem with additive noise. Recently, Bauzet et al. [3] studied
the problem (1.2) in the whole space. And in another paper [4], they obtained the well-posedness
of (1.2) in a bounded domain. Lv et al. [25] consider the problem (1.1) in the whole space by using
the method of [18, 11].

A cautious remark The problems (1.1) and (1.2) in a bounded domain are more difficult
than those in the whole space. The reasons are the followings. Firstly, the definition of entropy
solution in a bounded domain, which makes the proof of uniqueness more difficult, is different from
that in the whole space (see Section 2 for details). Secondly, there is the effect of boundary, which
implies that we must find special test function to prove the uniqueness. We must compare any
weak entropy solution to a solution coming from the artificial viscosity. What is the most difficult



is that, unlike in the whole space, the definition of entropy solution in a bounded domain destroys
the symmetry of test function, but the operator (—A)% is a symmetric operator. And thus we need
more calculations in order to obtain Kato’s inequalities. In paper [4], the authors defined a special
test function and used the following Kato’s inequality

Auj'(u) < Aj(u) in D' for j(u) = (kT —u)t. (1.4)

In the present paper, we shall give a different test function which turns out to be easier to calculate.
And the Kato’s inequality (1.4) will not appear, see remark 3.1 for more details. Another difficulty
in this paper is the effect of nonlocal operator (fA)“// 2. Because it is defined in the whole space,
and so it will bring more trouble for the bounded domain. The biggest difference is the working
space, which is different from that in paper [4].

Another remark is that in paper [24], the authors found that the classical Sobolev space H*(D)
is not suitable to describe the operator (—A)'Y/ 2 and they introduced the weighted Sobolev space
W, P(D), where p(z) = dist(z,0D). In fact, W, (D) is equivalent to

H*(RY) = {u e H*(RY), uw=0in R\ D}.

See [15, 16] for more details about the nonlocal operator.

There are two highlights in this paper. First, the problem (1.1) is entirely new, and there is
no result about the nonlocal operator in a bounded domain. The nonlocal operator will bring a
lot of trouble. Second, we define a different test function and use a different method to prove the
uniqueness. Even for equation (1.2), our method is easier than that in [4].

The rest of this paper is organized as follows. In section 2, we introduce the notion of stochastic
entropy solution for equation (1.1) and propose a result of existence of a measure-valued entropy
solution for (1.1) via a vanishing viscosity approximation. Section 3 is concerned with the proof of
the main result on the uniqueness of entropy solution. As a by-product, we deduce the existence
and uniqueness of the entropy solution of the Dirichlet problem for (1.1).

2 Entropy solution and existence of a measure-valued solution

In this section, we first present the definition of an entropy solution. To present our formulation
for (1.1), we recall the following results on the operator (—A)Y/2,

Lemma 2.1 ([14]) For v € (0,2), V¢ € S(R?) and Vr > 0

e = —cu [ oo
( ) ¢($) Cd(’)/) - |Z‘d+7 dz
T+ z)—¢(x) = Vo(x) -2
|z|<r |Z‘
di
where the constant Cy(7y) = A > 0 (only depends on d and o). Moreover, in the case

2ﬂ%+7r(1—g)
that v € (0,1), one can take r = 0 such that

¢z +2) — ¢(x)

PGz dz

(—A)"2¢(z) = —Cy(7)

Rd

and in the case that v € (1,2), one can take r = +o00 such that

¢z +2) — ¢(x) —Vo(z) - 2

|Z|d+7

(=A)"2¢(x) = —Ca(v) dz.

Rd



In this paper, we mainly focus on the case that v € (0,1) and so we let » = 0. For simplicity, we
would like to drop the constant Cy(y) in the integral representation by letting Cy(y) = 1. Thus,
we simply take the following formula for the nonlocal Laplacian (—A)7/2

¢(x +2) — ¢(x)

(—A)7/2¢(x) =— i dz (2.2)

Rd
and this integral representation will be taken in force throughout the rest of the paper.

For a given separable Banach space X, we denote by N2(0,T, X) the space of the predictable
X-valued processes. This space is the space L?((0,7) x Q, X) for the product measure dt ® dP
on Pr, the predictable o-field (i.e. the o-field generated by the sets {0} x Fp and the rectangles
(s,t] x A for any A € Fy).

Denote £T as the set of non-negative convex functions 1 in C?!(R), approximating the semi-
Kruzhkov entropies # — o such that n(z) = 0 if z < 0 and that there exists § > 0 such that
n'(z) = 1if z > §. Then 1’ has a compact support and n and " are Lipschitz-continuous functions.
&~ denotes the set {1 := n(—),n € £T}; and for the definition of the entropy inequality, one
denotes

AT ={(k,¢,n) e Rx DT (R x ET k< 0= ¢ € D([0,T] x D)},
A ={(k,¢,m), (—k,¢,7) € AT} and A= ATUA".

Then, for convenience, denote

sgnar(x) =1 if 2 >0 and 0 else; sgn, (v) = —sgnar(—x) sgng = sgnar + sgng ,
F(a,b) = sgno(a — b)[f(a) — FO); F*O(a,b) = sgng 7 (a—0)[f(a) - £,
and for any n € ETUE™, F'(a,b) = / n (o —b)f'(0)do.

b

For any function u of N2(0,T, L2(D)) N Hz (R%), any real k and any regular function 7, denote
dP-a. s. in Q by p, , the distribution in R+1 defined by

¢ = pini(¢) = /Q n(u — k)0 — F"(u, k)Vodardt + /Q ' (w — k)h(u)pdzdw(t)

+ / / 0 (u— k)“(t’ Tt 23 = WhT) - st
Q JrRa\{0} |24+

+% /Q R (u)n (u — k) pdadt + /D n(ug — k)¢(0)dz.

Remark 2.1 [t is easy to see that the integration

/ u(tax+z) _u(tax)
/Q/]Rd\{o} n'(u—k) EE dzpdxdt (2.3)

makes sense because u € H2 (R). In fact, due to (u, (—A)Zu) = HUHH%(W)’
yields the above integration makes sense. On the other hand, the definition of nonlocal operator
used here is different from that in [1].

the Holder inequality

Now, let us define the notion of entropy solution.

Definition 2.1 A function u € N2(0,T, L2(D) N H= (R?) is called an entropy solution of the
stochastic nonlocal conservation law (1.1) with the initial condition ug € L*(D) if

u e L0, T, L3(Q, L*(D) N H3 (RY)))



and
V(kf, ¢777) S A7 O S Mn,k(¢) dP — a.S.

Following the idea of [4], we need the following generalized notion of entropy solution. By the
result of uniqueness, we are able to deduce the existence of an entropy solution in the sense of
Definition 2.1.

Definition 2.2 A function
u e N2(0,T, L*((0,1); L*(D) N H (RY)) N L¥((0,T), L*( x (0,1); L*(D) N H (RY)))

is called a (Young) measure-valued entropy solution of the stochastic nonlocal conservation law (1.1)
with the initial condition ug € L?(D) N ﬁ%(Rd) if

we L®0,T,L*(Q,L2(D) N H

and
1
V(ka¢777) € Aa 0< / ,Uun,k(éls)da dP — a.s.
0

Throughout this paper, we assume that

Hy: f=(f1,--,fs) : R = R?is a Lipschitz-continuous function and f(0) = 0;
Hy : h:R — R is a Lipschitz-continuous function and h(0) = 0;

Hs : up € L2(D) N H= (RY).

Now we are ready to state out our main results.

Theorem 2.1 Under the assumptions Hy — Hs, there exists a unique measure-valued entropy
solution in the sense of Definition 2.2 and this solution is obtained by viscous approximation.

1t is the unique entropy solution in the sense of Definition 2.1.

If uy,uz are entropy solutions of (1.1) corresponding to initial data uig,uzo € L?(D)N FI%(]Rd),
respectively, then for any t > 0

]E/ (up —ug)tde < / (u10 — ugo) *d.
D D

The technique to prove the result of existence is based on the notion of narrow convergence of
Young measures. Since the operator (—A)"’/ 2 is a divergence operator, one can easily prove the
existence of Young measure-valued solution for (1.1) by using the method in [4]. Thus we leave the
details to readers. In fact, for any € > 0, there exists a unique weak solution u. of the stochastic
viscous parabolic equation:

t
O [u - / h(u)dw(s)} — eAu+ (=A) %y — div(f(u)) =0 (2.4)
0
associated with a regular initial condition ug.

Lemma 2.2 Under the assumptions Hy — Hs, there exists a unique solution u. of (2.4), sat-
1sfying

e u. € N2(0,T, H (D) n H'/*(R%) N C([0,T], L*(Q x D));

o Ifuf is bounded in C*(D) and ||ug|lc2 < |luol|z2, then there exists a positive constant C, which
does not depend on e, such that

||U6Hioo(o,T;L2(QxD)) + 8HUE||L2((0,T)xQ);H1(D) + Hu€HL2((()’T)><Q);]:]7/2(D) < C§

o V(k,p,n) €A, 0< pyi(o)— 6fQ 7' (ue — k)Vodadt dP — a.s.



It follows from Lemma 2.1 that u. is a bounded sequence in N2(0,T, L*(D) N H/2(R%)), and
so the associated sequence u. converges to (up to a subsequence still indexed in the same way) to
a Young measure denoted by u. Thanks to the a priori estimates and the compatibility of the Ito
integration with respect to the weak convergence in N2(0, T, L2(D) N HV/2(R%)), one gets that this
Young measure is a measure-valued entropy solution.

3 Uniqueness

In this section, we will prove the uniqueness of the stochastic entropy solution of (1.1). The proof
is divided into two steps. The first step is to establish the local Kato inequality and the second
step is to get the global Kato inequality.

3.1 Local Kato inequality

Lemma 3.1 Let u, @ be Young measure-valued entropy solutions to (1.1) with initial data
ug, g € L*(D), respectively, and assume that at least one of them is obtained by viscous approzi-
mation. Then, for any DT ([0,T] x D)-function ¢, one has that

0 < IE/ (a(t,z, B) — u(t, z, o))t Oppdadtdad
Qx(0,1)2

X
2

—E/ (u(t,x) — v(t,z))" (=A)2 ¢(t, x)drdtdadp
Q@x(0,1)2

—E/ Fr(a(t,z,B),u(t,z,a)) - Vodrdtdad —|—/ (tip — uo) T dz.
Qx(0,1)? D

The proof of Lemma 3.1 is similar to that in [25] (see section 3 for details in [25]). The
reason why there is no difference between the whole space and bounded domain for the local Kato
inequality is the definition of stochastic entropy solution. Looking at the Definitions 2.1 and 2.2,
we find if ¢ € DT([0,T] x D), then we need not assume k > 0. And thus we can use the same test
functions as in [25]. But for the following global Kato inequality, there will be different.

3.2 Global Kato inequality

Lemma 3.2 Let u, @ be Young measure-valued entropy solutions to (1.1) with initial data
ug, g € L*(D), respectively, and assume that at least one of them is obtained by viscous approzi-
mation. Then, for any D*([0,T] x RY)-function ¢, one has that

0 < IE/ (a(t,z, ) — u(t,z, B)) T Opdrdtdads
Qx(0,1)2
B[ (i) — uftn ) (<8)F6(t )dedidads
Q@x(0,1)2
—E/ Fr(a(t,z, a),u(t,z, B)) - Vodrdtdads +/ (i — up) Tp(0)dw.  (3.1)
Qx(0,1)2 D

It follows from the Definitions 2.1 and 2.2 that k must be positive. Hence we can not obtain
(3.1) directly. We will use the following fact that

(a—=b)"=(a-b")"+(-b—a")", Va, beR. (3.2)

In the sequel, without restriction, we assume that « is obtained by viscous approximation and
choose a partition of unity subordinate to a covering of D by balls B;, i = 1,--- ,k satisfying
BonoD =0 and, for i = 1,--- .k, B; C B} with B, N dD part of a Lipschitz graph. We let



e ¢ € D([0,T] x RY) with suppe(t,-) C B := B; for some i € {1,--- ,k};

e p, is a sequence of mollifiers in R with suppp, C [-2/n,0];

e p,, is a shifted sequence of mollifiers in R? such that y — p,,(x —y) € D(D) for all x € BN D.
We point out that p,, is chosen as in [4] and it follows that for m big enough, y — ¢(s,y)pm(z—y) €
D(D). Denote

T
Om(y) ::/me(:v—y)d:v and  op(s) ::/O pn(t — s)dt,

which are non-negative, non-decreasing sequences bounded by 1.
To simplify matters, denote p := (¢,z,a), ¢ := (s,y, ) and BL = pi(n5(ue(s,y)) — k), where
the definition of p; is the same as that of p,,. We divide the proof of Lemma 3.2 into three steps.
Steps 1: Estimate the first part of (3.2) on the right-side hand, that is, estimate (a — b™)™.
Since 4(p) is a Young measure-valued entropy solutions to (1.1), we have

0 < B[ [ [ wlio@) =090 )0l ~ v)doBlakiyds
+1E/Q/R/Q/Ol 15(@(p) — K)o (s,9)epn(t — 5)pm(x — y)dpBjdkdyds
=[] FI((5), KV (@ — )l — 9)05,y)dpBlidyds
+E /Q /R /Q /0 1 ns(a(p) — k) /| - f‘“’””'j'g ; a(t’m)dngpnpmdpégdkdyds
+E /Q /R /Q /O 1 15 ((p) — k) A S a(t’xJTZ'Tc)l - a(t7w)d2¢pnpmdpl§f€dkdyds

1 ~
4B /Q / /Q [ ) 00) = K)o = 9ot~ )65, dpBlddyds

1
+E /Q /R /Q /0 15(6(p) — k)h(a(p))dapm(z — y)pu(t — $)é(s,y)dadw (t) Bl dkdyds
= L+DL+ -+



On the other hand, if one denotes flfg = pi(k — u(p)), since u. is a viscous solution, the It6
formula gives

E/Q/R/D%(k—ns(US(y)))¢(0,y)pn(t)pm(:c—y)dy/oljlgdkdp
—i—]E/Q/R/Q%(k’—US(UE(Say)))as¢(s,y)pn(t—s)pm(m—y)dyds/ol Al dkdp
HE/Q/R/QU&(kUs(ua(say)))(ﬁ(s,y)aspn(ts)pm(xy)dyds/ol.%%dkdp
_E]E/Q/R/ans(k—ns(us(s,y)))ng(ug(s,y))Aqu(s,y)qs(s,y)pn(t—8)pm(x—y)dyds
X/Olflﬁcdkdp

A e e

1
X (8, 9)pn(t — 8)pm(x — y)dyds/o Al dkdp

E /Q /R /Q FIt=n5CH0) (4 (5, ), k) Vb5, 3)p(t — 8)pm(x — y)dyds /O lAgdkdp
_]E/ // F"““‘"“'““”(%(Sﬂ)»k)dﬁ(s,y)pn(t—S)Vypm(:c—y)dyds/o Al dkdp
+= E/ // { n;(ue(s,y))) (77fg(ug(s,y)))2 —U:;(k—ng(ua(s,y)))ng(ue(&y))}
< e (5.9)) 05, 0) = = ) | " Adkdp

- /Q /R /Q 05 (k = n5(uc(s,9)ns(ue (s, 9))h(uc(s,9)) (s, y)pn(t — 5)dyduw(s)

1
<pm(a—y) | Aldidp
0
= Ji+Jo+--+Jo.

First, note that suppp, C [—2/n, 0], we have p,(t) =0, t € [0,T] and thus J; = 0. In paper [4],
the authors obtained the followings:

Il _>l,6,g,a,m,n E/ (fl,o — Uy )+¢(O y)dy7

Jo 165 .emn / / / (t,z, ) +(t,as,ﬁ)fr@tgb(t,x)alozdﬁdp.

10,058,



By changing variable method, we have Is + J3 = 0, see pp 2517 of [4] for details. Now, we consider
the J4.

Ji = —<E / / / (k= 152t (5, ) 1= (5, 1) Ayt (5, )5, )t — ) p( — )y
x/ AL dkdp
0
= e [ [t =gt ) = s = ) (et ) (9P

= g5, ) 5, P ] 0 )t = )l = s | Ay

IN

1
ek /Q /R /Q Ayns(k —nz(uc(s,9)))0(s,y)pn(t — s)pm(z — y)dyds /O AL dkdp
+EE/Q /R /Q 15 (k — 15 (u(5,9))115 (ue (5, 9)) [Vue *¢(5,9) pu(t — 8)pm (& — y)dyds

1
X / Al dkdp
0
=: Jy + Jso.

We first look at Jyo. We remark that y — &(s,y)pm(z — y) have compact support and that
y — us(s,y) € H? (D). Thus we have {u. = 0, a.e.} C {Vu. = 0, a.e.}. By using the facts

loc
lim 0§ (z) = do(x) and 7} is bounded, we get lim Jyo = 0.
5—0 5—0

Now, we consider Jy;. By Green formula, we have

Jn = —EE/ // Vins(k —ns(ue(s,9))) - [Vo(s,y)pm(z — y) + ¢(s,9) Vypm(z — y)]
X pu(t — s)dyds / AL dkdp
0
= dE/Q /R /Q ns(k = n5(us(5,9))) [A(s, y) pm(x — y) + 2V (8, ) Vypm(r — y)
1
+0(5.9) Apnla =) pult = )iy | Ay

For simplicity, denote
T = A¢(8,4)pm(x — y) + 2V (5, y)Vom(z — y) + ¢(s,y) Apm(z — y).
Note that 7§ > 0, ns(x) = 0if 2 < 0 and nj(z) = 1 if > J, we get
ns(x +n5(y)) < |z +n5(y)| < |zl +lyl, Yo,y eR.

Then, by Holder inequality, we have

lim Jy = EE/ / / ns((p) — 15 (ue)) T pu(t — s)dydsdp
[—o00

= /0 ) Tlonte —yasap+e2 | [ ] el T pult — s)dydsdp
=[] o)\t — $)dydsdp
+=C(T, Q)R ( /Q |u£dyds)l/2 /Q /0 1 ( /Q |J|2dyds)l/2pn<t—s>dp, (3.3)

IN

IN
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where C(T, Q) is a positive constant, which depends on T" and Q.
It follows from Lemma 2.2 that

l[uell Lo 07522 (2% D)) < €,

where C' does not depend on €. Thus, letting e — 0 in (3.3) and using the assumptions on the
functions ¢, p, and py,, we have

€

Combining the above results, we have lim lim lilm Jg <0.
6 g

Remark 3.1 It is remarked that we do not use the local Kato inequality (1.4). In paper [4],
the authors take the test function as

lb?,g(x) = ns(k — n5(z)) + ns(—2),

which is different from that in this paper. It is easy to see that our proof is easier.
In paper [4], the authors introduce the term ns(—x) in order to estimate Jy. They first took the

limit of n, 1, 9, 0, and then by using (1.4) got that
sgng (@7 (p) — ue) Ala™ (p) — ue] < Ala™(p) — ue] ™

Finally, they used integration by part to obtain the desired result. Meanwhile, one can find our
discussions in this paper is easier to read.

Noting that n” > 0, we have

na) ~n®) = AG)a=b)+ 3" €)a 1)
> 7/(b)(a—1b), &€ (min{a,b}, max{a,b}).

By using the above inequality, we get
L w(t,r + z,a) —u(t, z, « ~
= E/ // / 15 (0() _k)/ ( c)lJm ( )dZ¢Pnpmde§€dkdyds
@/RJQJ0 R4\ {0} 2|
1 L B - U - ~
IE//// / ns(a(t, z + 2, a) kc)z+ ns(a(t, z, @) k)dzqﬁpnpmdedekdyds
QJRJQ Jo JRA{0} |24y
o rT+z—y)— T — -
- E/ / / / na(@(p) = k) / oo ) = om(E =) 42, dpB dbdyds
Q/RJQ /O Re\{0} 2]
1
U m(T —y+2 — PmP(S, Yy + 2z -
@/R/QJO R4\(0} E

1
+E//// 775(12(17)*k)ﬂmﬂn(*A)Wz(b(s’y)dplgfﬂdkdyds
QJRJQJO
= Iy1 + Lo,

IN

where in the above derivation py, := ppm(z — y), ¢ := ¢(s,y) and we have used the facts a|pe = 0
and

/v(—A)’Y/zuda::/ u(—A)"udz.
Rd

R4
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Clearly,

lmlinnggsl42<// / i, B) T (=A)Po(t, x)dtdzdodp.

We first note that by the assumptions on p,, and ¢, I4; makes sense.

l};}fﬁ’ehl = //// (a(p (u(t,y,8)))

/ do(r —y+2)¢p —do(x —y)o(t,y + 2)
R4\ {0} |Z|d+7

// / / —nz(u(t,z + 2, 8))) — ns(a(p) — nz(u(t, =, §)))
RI\{0} |z|d
x¢(t,x + z)dzdBdp.

dzdBdpdy

IN

Thanks to the properties of 7s, 5, we know that the above integration is well-posed. By the
assumptions of ¢, suppo(t,-) C B := B; for some i € {1,---,k}, there exists a constant ¢; > 0
which does not depend on ¢ such that |¢(x + z) — ¢(z)| < c1]z|. When |z| > 1, it is easy to prove
the above integration makes sense. We only consider the case 0 < |z| < 1. Obviously,

/ ns(u(p) —nz(ult,z + z, B))) — ns(alp) — nz(u(t, z, B)))
<Jal<t

|Z‘d+'y

otz + 2)dz

[u(t, o+ 2, B0 + 2) - $(a)l

< C(la(p)| + |u(t,x7ﬂ)|)/

0<|z|<1 | 2|d+
+o(t, x) /< L ns(a(p) — ng(ult, + 2, ,ﬁ’i)ﬁ; ns(a(p) — ns(u(t,z, B))) .

The first integration is well-posedness because u,u € LP, Vp > 2. Moreover, the first integration is
uniform bounded for §,9 > 0. By Taylor expansion, we have

/ ns(a(p) — nz(ult,z + z,B8))) — ns(a(p) — nz(u(t, z, B))) "
<Jz|<1

< |Z|d+7
= njap) - my(ult. . Ay (ult. B) (~A) Fult, . 9
u X z — U X 2
" /O s [0l = (€)= 13l — (o)) = AR A g,
i(p) — stz ) u(t. . ) [(~A) Fut. ., B)

~ / |u(t,x+z,5)—u(t,x,ﬁ)|2
+) / ) 5@ e) e dz.

where € = Qu(t,z + z,8) + (1 — O)u(t,z + z), 0 < § < 1. Since u € H2 (R%), the above integration
is uniform bounded for 6,6 > 0. That is to say, the following integration makes sense

y, & (alp) —u (1, + 2. 8)) " — (alp) —u* (1,2, B))*
IE/Q/O /0 /]Rd\{o} |24+ o(t,z + z)dzdfBdp.

For J5, we have

) A N R G T ey s Zrelnily,

1
X9(5,)pu(t — 8)pm(® — y)dyds /0 Ay dkdp

IN

1 1
lmnsie TE /Q /0 /O sgng (a(p) — u (t,x, B))sgng (u(t, =, B))¢(—A) 2 udBdp.



Due to u € ﬁ%(Rd), the above integration makes sense.
Following [4], we have I5 + J7 = 0 and

J6 =\ mnose —E // / F*(a t(t,z, B))Ved(t, x)dodBdp.

Is+Js = —JE//// h? (i — k)pm(z — y)pn(t — 5)6(s, y)dpBj.dkdyds

e[ ] {775 (k — n5(ue(s.9))) (ngwa(s,y)))Q

1 = (=5, )))mf (uc (s y))} B (ue(5,9))6 (5, ) palt = 5)

1
X pom (@ — y)dyds / AL dkdp

in SE / /| / h(a (e, ) o (& — ) (0, y)dyp

= E/ // { — 05 (uc(t, y))) (ng(ue(t,y)))2

i ((p) = g (ue (b))} (e (b)) } B2 (e, 9)6(E, ) (@ = y)dydp.

Since a(t fo pi(k — a(t, z, 7))dris predictable and if one denotes

8(s) /D 0 — 15 (ue))n(ue)h ()5, ) pa(t — 5)dly,

we have

[at) [ soruts)] =B [a) [ seius] <& [ato [ saue] <o

where we used the fact that

Bla) [ ' Bsytuls)| == (e [ Tﬂ(s)dw(sﬂft} ~5a() [ tﬁ(s)dw(sﬁ .

Then, by the same type of arguments with p;(nz(us(s — 2,9)) — k), we deduce
It Jy = / / / / P))depm( — y)pult — $)8(s, y)dudw(t)Bydkdyds
=, /Q / /Q s (k — g (e () e, ) e (3 )5, )t — )y (s)
X pm (T — y /lflldkdp

_ / / / / (1))dapm(x = y)pn(t — 5)8(s, y)dwduw (1)

X [pz(ng(us(& Y)) — k) — pi(nz(ue(s — %y)) — k)| dkdyds.

12



As du, = [eAue — (—A)2u, + divf(u)]dt + h(ue)dw = Acdt + h(us)dw, we get

pins(ue(5,9)) — K) — iCrs(ue(s = 2,9) ~ F)

- /( D nsue(o,9) — B (ue(o,9)) Aclo, y)do

s—%)‘*‘
+ /( L p1(n5(uc(o,y)) = k)nfs(uc(o,y))h(uc(o, y))dw(o)

s ) | . ,,
T3 /(SZV {Pl (n3(uc(o,y)) — k) (Wg(us(m y))) + p1(n5(ue(o, ) — k)3 (ue (o, y))}
Xhz(ua(U, y))do

- % {/<f_%)+ P75 (0e(0,9) — K ue(,)) A<l )

+ /(52)+ p1(nz(uc(0,y)) — k)nfs(ue (o, y)h(ue(o, y))dw(o)
1 s I / ? /!

3 /(s—%)+ {Pl(ns(ue(a, y)) — k) (ng(ua(a, y))) + pi(n5(uco,y)) — k)nf (ue(o, y))}

xh*(ue (o, y))do} .

Noting that fQ A%(0,y)dody < oo, similar to that in [4], we have

hmsuphmI5 + Jg+ Ig + Jg < 0.
55 bn

Combining all the estimates then yields
0 < E[ ()~ u'(tw.5) Ouodpds
Qx(0,1)?
B[ () = (e, ) (A 0(t,0)dpa?
Qx(0,1)2
*JE/ sgng (i(p) — u™(t, 2, @))[f(alp)) — f(u™(t,z, B))] - Vodpds
Qx(0,1)?

+ / (0 — )" $(0)dz + £(6),
D

/ / / /Rd\{o} B Bl)z)dw (i) — (2 2

X ¢(t, x + z)dzdBdp

E / / / sgng (@(p) — (¢, . B))sgnif (u(t, z, 8))¢(—A) 3uddyp.

where

13

Steps 2: Estimate the second part of (3.2) on the right-side hand, that is, estimate (—b—a~)™.
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In this step, the proof is similar to that in [4]. Note that the test function ¢p,,p, vanishes on
the boundary. By denoting again BY, := p1(n5(ue(s,y)) — k), one has

0 < E / [ [ itiala) = 0060020~ )pnly — ) daBlkdyds
R / / / / 5 (D) — )OO, ) pr(t — 5)pmly — @) dpBldidyds
SINN / i5((p) — K)(t, 2)04pu(t — 5)pun(y — 2)dpBhdkayds
“E / / / / 5 (i(p), k)Vad(t 2)pm(y — )pn(t — )dpBldkdyds
=[] /0 F((p), K)oy — 2)pu(t — )0 (1. 2)dpBydidyds
E / / / / () — k) /R " w’xTZT),;,W’x)dwpnpmdpéidkdyds

+= ]E//// B2 (a(p))if" ((p) — k) pm(y — ) pn(t — 8)d(t, z)dpB.dkdyds

" /Q /R /Q /0 ii5(@(p) — k)((p))dopm(y — 2)pn(t — $)6(t, x)dwdw(t) Bl dkdyds
= L+DL+ -+

Moreover, the entropy formulation, with & = 0 and any regular non-negative ¢, yields

0 < [ ml-ino0ds +E / / {m )06 — F(i,0)V + (@) (~u)6 | dp

+E / / n(— ) (— A2 dp,

where we used the convex of the function 7.
Since lim ns(z) = ™, lim nf(x) = dp(z) and h(0) = 0, we have
0—0 6—0

o</u0¢ d:c—HE// =0 — FO (0,0)V 4 0~ (—A)'Y%}dp.
Denote
£(g) = /D 5 ¢(0)de + E /Q /0 1 (=016 — PO (1,06 + i~ (~A)/26] dp

Clearly, £ is linear and non-negative over D([0,T) x R%). Since 0 < ¢b,,, < ¢pmi1 < ¢, we conclude
that £(¢0,,) has a limit in [0, c0) when m — oco. Thus

Jim L(¢0n) = / o (0 dx—i—E// 4~ Oppdp — ]E//F() (41,0)Vedp

— lim E// dF) " (4,0)V6 dp+E// A2 pdp
m—ro0

' . m (T + 2) — O ()
—l—n}gnooE/ / /Rd\{o} E o(t,x + z)dzdp

=: I~1++16




15

On the other hand, denoting again A= pi(k—1a), since u. is a viscous solution, the It formula
applied to [, ns(n5(ue) — k)pn(t — $)pm(y — ) (t, x)dyds yields

E /Q /R /D 155 (u§(y)) — k)o(t, ) p () pm(y — x)dy /0 AL dkdp

+péélﬁwm%@mymwmm@%@—mmw—wwwéi%%@

B /Q /R /Q V(5. ) [Vy6(t, 2)pm(y — ) + Vypm(y — 2)6(L )] pult o)
xns(n5(ue(s,y)) — k)ns(ue(s, y))dyds /0 1 A dkdp

_gIE/Q/R/Q [né’(ng(ua(s,y))—k) (ng(ua(s,y)))z+ng(n5(us(s’y))_k)ng(ue(s’y))}
*|[Vyue (s, 9) 6 (t, @) pm (y — 2)pn(t — 5)dyds /01 Al dkdp

E /Q /R /Q F050-R) (4, (5, ), k) Vo (y — 2)pn(t = )t 2)dyds /0 ' Adkdp
R e =
Xﬂ@@%ﬁ—Smm@—xﬂwkleWMm

w58 [ {rbtnstoetss ) =) (o) mth =gt (0,00}

xh*(ue(s,9) 9, 2) pu(t — 8)pm(y — x)dyds /0 A dkdp
+ [ [ b)) — B 5,95, 9) 2t — )t
Xpm(y — x)/o AL dkdp

S Dttt s

Due to that the support suppp, C [—%, 0], pn(t) =0 for ¢t € [0,T], and thus J; = 0. By the known
results of [4], we have

10505¢,

I — I 65 .emn /// (t, 2, B) — a(p)] T OypdpdB — E// U~ Orpdp;

I~ Ty =550 m —E /Q /O /0 sgnd [u* (t,2, B) — A (u (1,2, B)
_f(a(p))}vx(b(tv ZL‘)dpdﬁ

*E///f Vi é(t, x)dp;

BT B = 000,y — [ i o0y

I5—|—J5—I~4:0.



16

By changing variable, we get I3 + Jo = 0 (see [4] for details). Noting that V,¢(t,z) = 0, we get
J3 = fle/ // 15 (15 (ue(s,9)) — k)ns(ue(s,y)) Vyue(s,y) Vypm(y — )
X (t,2)pn(t — s)dyds /0 AL dkedp
- —sE/Q/R/vané(nS(ua(say)) —k)Vypm(y—x)cﬁ(t,x)pn(t—S)dde/Ol«flLdkdp
-  ¢E /Q /R /Q s (M5 (us=(s,9)) — k)Aypm(y — 2)o(t, 2) pu(t — s)dyds /0 1 Al.dkdp

1
inss EE /Q /D /0 (uZ (t, ) — a(p)) " Aypm(y — 2)¢(t, x)dydp

< [ [ I8t ot
+6C’E/OT (/D ug(t,x)dac); </D </D Aypm(y — x)dy) 2) : dt
—e 0.

Noting that 7', n” > 0, we have J;y < 0. By Lemma 2.2, we know that fQ (0,y)dody < oo,
similar to that in [4], one can prove

I7 + J7 + 18 + JS %l,(s,s,&mvn 0

Now, we consider the terms Is, Jg, I5 and Ig.

' . w(t,x + 2) —a(t,x N
I = -E / / / / 15(k —a(p)) / ( zﬂ : )dZ¢Pandef€dkdyds
R\ {0} |2|
/ / / / / Ao Ul 522/ S U(p))d'z@’npmdpl;fcdkdyds
Rd\{O} |2|

= E/// /Rd/ m(k—a(p))/w\{o} pm(y_m_zwgfijz)_pm¢(t’x)dz

X pu(t — 8)dadxdtB, dkdyds

_ / / / /Rd / /R » Py —|j|;j>-pm¢<t,x+z>dz

X pu(t — s)dadzdtBt dkdyds

+E/ // /Rd/ n5(k — a(p))pn(t — 8)pm(y — 2)(—A) 2 pdadzdt Bl dkdyds

= g1 + Igo.

IN

Note that y — pm(z —y) € D(D), we have

Io2 _>l666mn / / / t CE,ﬁ - u( )]+(—A)7/2¢(t,l‘)dpdﬁ,

30505,

which implies

I I5 —>l(5§5mn / / / t T ﬁ _u( ))+ U_](—A)7/2¢(t,$)dpd6.
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Similar to the discussion about the Iy; and J; in first step, the following limits exist and the
resulting integrations make sense

T 1
o P B Pm*ﬂm(y*$+z)
Is1 = ]E/ // /Rd/ /Rd\{o} ns(k —a(t,z — 2z, ) 2] dz

X(t, ) pn(t — s)dadrdtB dkdyds

N //// ot D) [(ut (b2, B) — itz + 2, 0))*
ene Rd\{O}

—(u(tz+28) —at,z + 2, Oé))*]/I»'Zl‘l”clzdﬁdp;

) + Z) 9 UE(S7 y)
J, = / // ue(s —k Us (S / Ue(5,y dz
6 15 (15 (e (s,y)) — k)s(us(s,y)) o) EGE

X (t, ) pn(t — $)pm(y — x)dde/ Al dkdp
0

s B[ [ [ s e 8) - s )

x(t, ) (—A) 2 u(t, z, B)dBdp.

Denote
Z:= lim_ (Ig1 + Jg).

l,n,m,d,0,

Then, combining all the above estimates, we get

0 < B [ [t — o) ~ g lo(0.0)ds
+E / / / (b2, B) — a(p))F — 4] (A" 20(t, z)dadBdtdz
—HE// / tm ,B) —a(p )) — 4 |0pdpd s
E / / / sgn [u* (2, 8) — a(p))[f(u* (8,2, 8)) — F(a(p))]Vo(t, 2)dpdd
—IE// / J(=i7)V ot 2)dp + i (£(60,,) — T + ).
Denote L(¢0,,) := (L£(¢0m) — Ig), we have

A@mé(wm) = /Dﬂ0¢(0)dx+E/ /1ﬂ_8t¢dp—E//1F(')(ﬁ,O)V(bdp

~ lim E// dFY) " (4,0)V6 dp+]E// A2 gdp.

By using the fact that (a™ —b)T — b~ = (a — b")™, we get
0 < / (w0 — 5§) 6(0. )+ Him[£(90,) +7]
D
+IE/ (a(t,z,a) — u(t,z, B)) T Oppdadtdad
Qx(0,1)
£ [ (iltn,0) — ult,z 5) (~A)°6(t,)dadrdad?
Qx(0,1)

E / sgnd [a(p) — u(t,z, BY][f (a(p)) — f(u(t,z, B)|Vad(t, z)dpdB.
Qx%(0,1)2
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Note that —& and —u are measure-valued entropy solution of dv = (div f(v) — (—=A)/2v)dt+h(v)dw
with f(z) = —f(—x), h(z) = —h(—x) and initial data —ip and —ug, respectively, where u is
obtained by the viscous approximation u.. Consequently, replacing @ by —u and v by —u in above

inequality, we get the following estimate

0 < /( ug — g ) (0, z)dz + lim[L C(0,) + I

+]E// / u(t,z, B) — a4~ (p)) " (—A)2¢(t, 2)dadBdtdx

+E// / u(t,z, 8) — i~ (p))* Bybdpd

E / / / sgng [—u(t,z, ) — &~ O)][f (u(t, 2, ) — f(~a~@)Vad(t, z)dpdp,

////Rd\{o} o(t,z) (v (t, 2, B) +a(t,x + z,a))t

“(tx+ 2, B) +alt,x + z,0)) /|2 TV dzdBdp
=) / / / sgnit (u™ (1,2, 8) + (p))sgn (ult, , 3))
xo(t, x)(=A)2u(t, z, B)dBdp.
Step 3: by using (3.2) and the identity
—sgnd (b~ a)[f(b) — f(a)] = —sgnd (b — a")F(B) — f(a®)] + sgng (—a —b)[f(a) = F(~b7)]
we obtain that

0 < / (tig — uo) T (0)dx + E/ (a(t, =, o) — u(t,x, B)) " Oppdrdtdadp
D Qx(0,1

where

_E / (it 7, 0) — ut, 2, B))* (—A)(t, o) dwdtdad
Qx(01)?

-E / sgng [a(p) — ult, z, B (a(p)) — f(ult,z, B)IVuo(t, x)dpdps
Qx(0,1)2
+Hm(L(¢0m) + Z()] + L(9).

Now, let ¢ € DT([0,T) x B), then ¢ = 0,,¢+(1—6,,)¢ and 0,,¢ € D+ ([0, T) x D) for n sufficiently
large. Then applying the local Kato inequality with 6,¢ and the global one with (1 — 6,,)¢, yields

0 < / (it — o) 6(0)dz + E / (i(t, 2, 0) — ult,z, B))* Orddadidads
D Qx(0,1)2

B [ (a(t.0)  ult,w, 6) (D) 0{t,)doddads
Qx(0,1)?
B[ sgnf (o) - ultn, W) @() - S(ut 2 B)IVa0(t,2)dpd3
+1im L(A(1 = 0,)0m) + [T+ L]((1 = 0,)9).
As £, £ and T are linear operators and 0,0,, = 0, if m is large, one gets that

lim £(¢(1 — 0n)0m) = lim £(¢0,) — lim £(¢6,)
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and lim lim £(¢(1 — 6,,)6,,) = 0 = lim[Z + £]((1 — 6,,)$). Thus the global Kato inequality holds for

any ¢ € DF([0,T] x B), and by using a partition of unity, it holds for any ¢ € D*([0,T] x R9).
This completes the proof. [
Proof of Uniqueness Similar to Lemma 3.2, one can get that

0 < / (up — 1) T #(0)dz + E/ (u(t, =, B) — a(t, =, a)) " Oppdrdtdadp
D Qx(0,1)2
E / (ult,z, ) — t, z, ) (~ A)* (¢, 2)dedtdadB
Qx(0,1)2

—E/ sgng [u(t,z, B) — a(p)][f (u(t, z, B)) — f(a(p))]Vad(t, x)dpdp.
Qx(0,1)2
Combining Lemma 3.2, we have

0 < / [tio — up|p(0)dz: —|—IE/ la(t, z, o) — u(t, z, B)| Oy pdrdtdadf
D Qx(0,1)?
“E [ Jalts,a) - ulta, H)l(-A)(t 0)dudtdads
Q@x(0,1)2

—E/ sgnli(p) — u(t, =, B)I[f (a(p)) — f(u(t, 2, §)IVad(t, x)dpdB. — (3.4)
Qx(0,1)?

For each n € N, define

1 if |z <n,
dn(z) = ¢ 2(1 — %) if n <z| <2n,
0 if || > 2n.
For each h > 0 and t > 0, define
1 if s <t
Yp(s) =4 1— 52 if t<s<t-+h,
0 if s>t+h.

Then, by standard approximation, truncation and mollification argument, (3.4) holds with

o(t, x) = Yn(s)K(t, ) * ¢u(-)(2),
where K stands for the Green function on D with Dirichlet boundary condition. Similar to the

proof of theorem 3.1 in [25], one can get the desired results. This completes the proof. [
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