Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Environmental Science & Technology Letters

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa28399

Paper:

http://dx.doi.org/10.1021/acs.estlett.6b00150

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/
Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air

Kam W. Tang,*,† Daniel F. McGinnis,‡ Danny Ionescu,§ and Hans-Peter Grossart∥

†Department of Biosciences, Swansea University, Swansea SA2 8PP, U.K.
‡Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
§Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
∥Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany

ABSTRACT: Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air–water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback.

INTRODUCTION

As a powerful greenhouse gas, methane is projected to have 28 times the warming potential of CO₂ in the coming century. Constraining the global methane budget, however, has been difficult because of uncertainties in its sources and sinks. Methane sources can be broadly classified as biogenic, thermogenic, and pyrogenic. Among the biogenic sources, the prevailing paradigm is that microbial methanogenesis occurs strictly under anaerobic conditions. Consequently, studies of methane dynamics often focus on anoxic and hypoxic habitats. This paradigm has recently been questioned because of the findings that terrestrial fungi, plants, and other eukaryotes can produce significant amounts of methane under oxic conditions. This novel production may substantially contribute to the total atmospheric methane and may even further increase with global warming.

Bound by the prevailing paradigm, research on aquatic methane production has often ignored the upper oxic layers. For example, methane sampling in Lake Hallwil in Switzerland over the past decades had been limited to the hypolimnion, but recent measurements revealed a distinct methane peak in the oxic 7–9 m layer (D. F. McGinnis, unpublished data). A methane peak has also been recently observed in the surface waters of Lake Geneva (D. F. McGinnis, unpublished data). Likewise, decades of methane sampling in Lake Stechlin in Germany had been restricted to the sediment and bottom water, and the methane peak in the oxic metalimnion was not discovered until 2010. Nevertheless, many researchers have reported inexplicable oversaturation of dissolved methane in the upper oxic waters, a phenomenon known as the “methane paradox” because methane production and accumulation are not supposed to occur in well-oxygenated waters. Conventional explanations for this paradox include input from nearby anoxic sediments and shorelines and production within microoxic zones such as detritus and animals’ gut. Considering the new findings of methane formation in oxic environments on land, a revision to our fundamental understanding of the aquatic methane dynamics is needed.

DISCOVERY OF “OXIC METHANE PRODUCTION”

Keppler et al. first reported that terrestrial vegetation actively releases methane under oxic conditions, and the findings were intensely debated. Additional research further reported methane formation in oxic environments in a manner independent of methanogenic microbes. Those studies suggest that eukaryotic methane production involves methionine and other methylated precursors and is related to environmental stressors such as reactive oxygen species. Additionally, Angel et al. showed that desert soil methanogens actively produced methane under oxic condition by overexpressing oxygen-detoxifying genes. Others reported that
Review

Table 1. Some Examples of Studies Reporting Oversaturated Methane Concentrations in Oxic Seawaters

<table>
<thead>
<tr>
<th>Location</th>
<th>Observations</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western subtropical North Atlantic</td>
<td>CH4 oversaturation in the upper 300 m; maximum of 3.5 nM CH4 overlapping thermoline; physical transport could not explain observed CH4 peak</td>
<td>Scranton and Brewer23</td>
</tr>
<tr>
<td>North Atlantic from 35°S to 50°N</td>
<td>CH4 oversaturation in the upper 1000 m; maximum of ~4 nM CH4 concentration not correlated with chlorophyll or hydrogen</td>
<td>Conrad and Seiler24</td>
</tr>
<tr>
<td>Southern California Bight, United States</td>
<td>CH4 peak (~8 nM) overlapping thermoline and oxycline; almost no CH4 oxidation in the upper 100 m</td>
<td>Ward and Kilpatrick25</td>
</tr>
<tr>
<td>Western North Pacific</td>
<td>high CH4 (2.2–3.4 nM) within 0–200 m; CH4 poorly correlated with chlorophyll in upper 100 m</td>
<td>Watanabe et al.26</td>
</tr>
<tr>
<td>California coast, United States; VERTEX stations</td>
<td>maximum of 5.42 nM CH4 in upper 200 m; zooplankton guts and sinking particles were suggested as the source</td>
<td>Tilbrook and Karl27</td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>weakly developed CH4 maximum in the upper 50 m; more pronounced CH4 maximum (up to 8.5 nM) at 150–200 m coinciding with maximal NO3 and beam attenuation</td>
<td>Jayakumar et al.28</td>
</tr>
<tr>
<td>Monterey Bay, United States</td>
<td>CH4 accumulated at thermoline (100–200 m); CH4 bubbles from deep water were unlikely the source</td>
<td>Rieder et al.29</td>
</tr>
<tr>
<td>Western subarctic gyre of North Pacific</td>
<td>up to 12% CH4 oversaturation in the upper 100 m; sinking particles were suggested as the source</td>
<td>Sasakawa et al.30</td>
</tr>
<tr>
<td>Fram Strait</td>
<td>high CH4 (7–9 nM) overlapping high O2 (380–390 μmol L−1) in upper 20 m</td>
<td>Damm et al.31</td>
</tr>
<tr>
<td>Japan Sea</td>
<td>average 2.6 nM CH4 at surface; maximum of 14 nM at ~50 m; sediment CH4 was unlikely the source</td>
<td>Vreeshagina et al.32</td>
</tr>
<tr>
<td>Central Chile upwelling system</td>
<td>125–550% CH4 saturation at 0–30 m with >100% O2; CH4 oversaturation coincided with seasonal upwelling, high chlorophyll levels, and high DMSP levels</td>
<td>Flore-Leiva et al.33</td>
</tr>
<tr>
<td>ALOHA station</td>
<td>CH4 oversaturation down to 175 m; maximum of ~3.6 nM CH4 coincided with maximum of 226 μM O2</td>
<td>Del Valle and Karl34</td>
</tr>
</tbody>
</table>

Table 2. Some Examples of Studies Reporting Oversaturated Methane Concentrations in Oxic Lake Waters

<table>
<thead>
<tr>
<th>Location</th>
<th>Observations</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake 227, Canada</td>
<td>CH4 decreased from 282.5 μM at 9 m to ~0.5 μM at 7.5 m; both CH4 and oxidation remained low in surface layer</td>
<td>Rudd et al.35</td>
</tr>
<tr>
<td>Lake St. George, Canada</td>
<td>CH4 peak (~5 μM) at 6 m overlapping thermoline, NH4 and NO3 peaks; oxidation activity not detectable</td>
<td>Bedard and Knowles36</td>
</tr>
<tr>
<td>Lake Biwa, Japan</td>
<td>station A, maximum of ~175 nM CH4 coinciding with thermoline and ~250 μmol of O2 L−1; station B, maximum of 205 nM CH4 coinciding with thermoline and ~188 μmol of O2 L−1; river runoff, littoral and sublittoral sediments were suggested as the source</td>
<td>Murase et al.37</td>
</tr>
<tr>
<td>Lakes in southern Sweden</td>
<td>high CH4 (~140 μM) near sediment (11 m); no upper CH4 peak was observed; high CH4 oxidation activity below 5 m</td>
<td>Sundh et al.38</td>
</tr>
<tr>
<td>Lake Paul and Lake Peter, United States</td>
<td>CH4 was nearly zero at thermoline and oxygen peak at 5 m and then increased to 4 μM in the surface layer</td>
<td>Bastviken et al.39</td>
</tr>
<tr>
<td>10 boreal lakes in Finland</td>
<td>high CH4 (>1 μM) in surface layer with 60 to >100% O2 saturation in some of the lakes</td>
<td>Justinen et al.40</td>
</tr>
<tr>
<td>Saimin Lake, Canada</td>
<td>CH4 was low (0.02–0.1 μM) at thermoline depth (~20 m) and then increased to ~0.35 μM at the surface; CH4 bubbles from sediment could not explain high CH4 in surface water</td>
<td>Vagle et al.41</td>
</tr>
<tr>
<td>Lake Constance, Germany</td>
<td>high CH4 (1.5 μM) above thermoline; lateral transport from littoral zone was suggested as the source</td>
<td>Hofmann et al.42</td>
</tr>
<tr>
<td>Lake Stechlin, Germany</td>
<td>low CH4 (<0.2 μM) in hypolimnion; maximum of ~1.4 μM CH4 in metalimnion overlapping oxygen peak; methanotrophs absent in metalimnion; experiments confirmed active CH4 production in oxic water</td>
<td>Grossart et al.43</td>
</tr>
<tr>
<td>Lac Cromwell, Canada</td>
<td>high CH4 (0.10–0.53 μM) in mesosucers under oxic conditions (45.6–128.6% O2 saturation)</td>
<td>Bogard et al.44</td>
</tr>
<tr>
<td>Nine lakes in north-eastern Germany</td>
<td>CH4 positively correlated with O2 in surface waters; euphotic zone CH4 positively correlated with primary production; ebullition from sediment was unlikely the source</td>
<td>Tang et al.45</td>
</tr>
<tr>
<td>Lake Lugano, Switzerland</td>
<td>CH4 (up to 180 nM) in the upper oxic layer in stratification season; vertical profiles suggest excess CH4 from a near-surface source</td>
<td>Blees et al.46</td>
</tr>
</tbody>
</table>

Microbes use methylated metabolites from phytoplankton to produce methane within oxic seawaters.23–27 Collectively, these findings show that methanogenesis extends beyond the traditionally perceived anoxic boundaries.

While the biochemical mechanisms behind this novel methane production remain largely unclear, the mere ability of organisms to do so forces us to re-examine the environmental dynamics of methane in aquatic ecosystems. For the purpose of this paper, we describe this as “oxic” methane production without inferring whether the biochemical pathway itself requires oxygen. We review the evidence, its importance for methane flux, and the implications for microbial ecology.

OBSERVATIONS IN AQUATIC SYSTEMS

Tables 1 and 2 list reports of oversaturated methane concentrations in oxic sea and lake waters. While not exhaustive, the lists clearly show that the methane paradox is widespread. The reported maximal concentrations are usually much higher in freshwater (high nanomolar to micromolar levels) than in seawater (low nanomolar levels), which is consistent with the fresh-marine “dilution curve” for dissolved methane.49 Globally, lakes cover ~3.7% of land40 or 0.9% of Earth, whereas oceans cover ~70% of Earth. Freshwater oxic methane peaks tend to be nearly 1000-fold higher than marine oxic methane peaks, whereas the average oxic methane layer thickness ratio in lakes to oceans is ~1:10. Simple extrapolation...
suggests that the total amount of oxic freshwater methane is roughly equal to that of oxic marine methane.

One challenge in studying oxic methane production is potential interference from nearby anoxic sources. Mesocosms allow the study of the wax and wane of oxic methane production in a more controlled manner and, depending on the mesocosm design, potentially free of influences from the littoral zone and sediment. The IGB LakeLab facility in Lake Stechlin consists of 24 mesocosms (each 9 m in diameter × ~20 m in depth). Observed methane oversaturation within the oxygen-rich mesocosm water indicated that oxic methane production was independent of input from the littoral zone (Table 3), consistent with an earlier report. Similar mesocosms did not become anoxic; hence, one can rule out seepage of methane from the anoxic bottom as an explanation for the observations. Similar oxic methane production was observed in smaller mesocosms installed in Lac Cromwell in Canada. Furthermore, all four of the monitored mesocosms developed oxygen–water–methane oversaturation despite their different phytoplankton compositions (based on pigments (Table 3)), suggesting that oxic methane production was not dependent on a specific phytoplankton taxon.

Lake Stechlin (maximum of 70 m) is home to one of the longest-running limnological monitoring programs (>65 years) in northeastern Germany. Methane production in the upper oxic layer has been repeatedly observed since 2010, coinciding with the phytoplankton growth season, and the methane concentration within the upper 25 m was linearly correlated with primary production. Positive correlations between oxygen–water–methane and chlorophyll concentrations in several seas and lakes have also been reported. Together, these observations suggest that oxic methane production is associated with primary production.

Methane can be rapidly oxidized by methanotrophs to CO₂ in the presence of oxygen, as often seen in the water layer overlaying the anoxic sediment. Using molecular markers, Grossart et al. detected the presence of methane oxidizers only below the thermocline but not within the oxic methane peak in Lake Stechlin. Murase and Sugimoto incubated Lake Biwa waters under different light intensities and reported lower oxidation rates in the light. Similar photoinhibition effects were also found in Lake Stechlin (Table 4). The absence or photoinhibition of methane oxidizers thereby allows for the accumulation of methane in the upper oxic water column.

Table 3. Methane Measurements in Four Mesocosms within the LakeLab in September 2012

<table>
<thead>
<tr>
<th>dominant phytoplankton</th>
<th>surface CH₄ (µM)</th>
<th>maximal CH₄ (µM)</th>
<th>DO (mg L⁻¹)</th>
<th>depth (m)</th>
<th>minimal CH₄ (µM)</th>
<th>DO (mg L⁻¹)</th>
<th>depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>green algae</td>
<td>0.11</td>
<td>0.11</td>
<td>11.6</td>
<td>3</td>
<td>0.05</td>
<td>8.7</td>
<td>13</td>
</tr>
<tr>
<td>cryptophytes and cyanobacteria</td>
<td>0.11</td>
<td>0.12</td>
<td>11.6</td>
<td>3</td>
<td>0.03</td>
<td>8.7</td>
<td>13</td>
</tr>
<tr>
<td>green algae and diatoms</td>
<td>0.10</td>
<td>0.12</td>
<td>6.9</td>
<td>15</td>
<td>0.06</td>
<td>8.0</td>
<td>12</td>
</tr>
<tr>
<td>green algae</td>
<td>0.23</td>
<td>0.23</td>
<td>9.13</td>
<td>0</td>
<td>0.13</td>
<td>8.3</td>
<td>6</td>
</tr>
</tbody>
</table>

“The mesocosms were ~20 m deep with a thermocline at ~8 m and were dominated by different phytoplankton based on pigment data. Surface methane concentration, maximal and minimal methane concentrations, and the corresponding dissolved oxygen (DO) and depths are listed. Pigments were measured by BBE (Kiel) probe. The temperature and oxygen level were measured by a WTW (Weilheim) submersible probe. CH₄ of discrete depth water samples was measured by the standard headspace displacement method.”

Table 4. Methane Oxidation Rates under Light and Dark Conditions

<table>
<thead>
<tr>
<th>location</th>
<th>methane oxidation rate (nmol L⁻¹ day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Biwa (thermocline)</td>
<td>0.33/2.67</td>
</tr>
<tr>
<td>Lake Biwa (hypolimnion)</td>
<td>26/55</td>
</tr>
<tr>
<td>Lake Stechlin</td>
<td>89/103</td>
</tr>
</tbody>
</table>

Values for Lake Biwa are calculated for the first 3 days from panels B and C of Figure 2 of ref 52.

\[
F_I = k(C_w - C_{sat})
\]

In the case of anoxic bottom methane production in deep stratified lakes, the thermocline acts as a barrier that (1) physically limits the upward flux from bottom water and (2) allows methanotrophs to oxidize methane within the oxic zone subsequently fortifying that barrier. Hence, significant exposure of dissolved methane to the atmosphere is limited to periods of deep convective mixing or complete lake turnover. However, even in the latter case, there is still uncertainty about how much methane will reach the atmosphere and how much is oxidized. With the methane source located in the upper oxic layer instead of the bottom (Figure 1), methane needs to be transported over only a much shorter distance to reach the water–air interface. Additionally, shallow water mixing (convection), which often occurs diurnally, both exposes higher methane concentrations to the air–water interface and enhances k. These fluxes would be particularly important during periods of colder weather and higher winds during the stratified season and would be further elevated by microbubbles. These additional mechanisms for releasing methane from the surface are not considered in conventional Fickian diffusion (k) calculations.

Bastviken et al. estimated that freshwaters contribute 103.3 Tg of CH₄ year⁻¹ to the atmosphere. Of this, they attribute 9.5% to diffusive fluxes with an average of 0.51 mmol m⁻² day⁻¹ covering Arctic to tropical lakes (n = 397). The data, however, rarely included night-time measurements when convection was strongest, and there has been very limited seasonal study. Most diffusive fluxes for their budget estimate relied on parameterizations for k based on wind speed, which tend to underestimate surface diffusive fluxes, particularly during convective mixing due to surface cooling that strongly drives k values or microbubble flux enhancement. Convection-driven k can increase the flux as much as 5 times over the wind parametrization.

The near-surface oxic methane sources combined with more realistic estimates for transport will increase the estimated
contribution to the global budget. As an illustrative example, fluxes from Lake Stechlin ranged from 0.95 mmol m$^{-2}$ day$^{-1}$ in July 2014 (average surface CH$_4$ of 0.28 μmol L$^{-1}$, wind speed of 1.9 m s$^{-1}$ (our unpublished data)) to 2.7 mmol m$^{-2}$ day$^{-1}$ in August 2013 (average surface CH$_4$ of 0.37 μmol L$^{-1}$, wind speed of 4.2 m s$^{-1}$). These values are 1.9−5.3 times higher than the estimates of Bastviken et al., suggesting that diffusive emissions from lakes, particularly due to the oxic methane peak, could be doubled (∼18.5 Tg year$^{-1}$) or even higher.

IMPLICATIONS FOR AQUATIC MICROBIAL ECOLOGY

How microbes produce methane under oxic conditions is unclear. We consider two possibilities. (1) They use conventional biochemical pathways but are also equipped with ways to counteract the effects of oxygen. (2) They use biochemical pathways that do not involve oxygen-sensitive enzymes as described for the conventional pathways.

In the conventional pathways, the carbon-borne precursor molecules act as electron acceptors in a series of redox reactions releasing methane as the end product. Although this process is supposedly widespread in the oxygen-free ancient ocean, it is wasteful because the energy-rich methane is lost. With the advent of oxygenic photosynthesis, oxygen becomes the preferred electron acceptor as more energy can be generated. This “switch” from a fully anaerobic metabolism to an exclusively aerobic metabolism requires major changes in the cell’s genetic blueprint and biochemical machinery and leads to an evolutionary divergence of aerobes from their anaerobic ancestors. Anaerobic organisms became marginalized over time to the remaining anoxic fringe habitats in lakes and oceans. However, some ancestral anaerobes, without committing themselves to whole-sale changes, may have developed ways to neutralize the negative effects of oxygen and continue to occupy the vast but increasingly oxygenated environment. Many oxygen-tolerant microorganisms have the antioxidant enzyme catalase, which can be encoded by a single gene. This strategy appears to be employed by desert soil methanogens.

Alternatively, microbes may use pathways not affected by oxygen (Figure 2). Karl et al. suggest that microbes in the

Figure 1. Comparison of two scenarios of methane dynamics in a stratified water column. (a) Traditional scenario in which methane is produced in the anoxic sediments, transported upward by diffusion and ebullition, and rapidly consumed by methane oxidation in the hypolimnion, resulting in no or little methane outflux from the system. (b) Alternative scenario in which oxic methane production occurs in the surface layer. Convective mixing, microbubble detrainment, and diffusion in the euplumion result in higher methane outflux from the system. Downward diffusion also fuels methane oxidation in the hypolimnion. Thermocline is indicated by the dashed line.

Figure 2. Known and hypothetical methanogenesis pathways. EC numbers for catalyzing enzymes marked in green are found in genome annotation of nonmethanogenic organisms, including bacteria (i.e., non-Archaea; based on KEGG taxonomy and PATRIC). Precursor compounds reported for oxic methane production are marked in blue (authors’ unpublished data marked with an asterisk). Pathways known to require anoxic environments are grouped in black frames. Known and hypothesized pathways that occur under oxic conditions are grouped within solid and dashed red frames, respectively. See the text for details.
equatorial Pacific break down methylphosphonate (MPn) and release methane as a byproduct. The process requires enzymatic cleavage of the C–P bond and is not sensitive to oxygen. The operon for the C–P lyase enzyme PhnJ responsible for breaking the C–P bond is widespread across the bacterial domain. Accordingly, this reaction can be catalyzed by numerous phosphorus-scavenging microorganisms and supports the notion that MPn is a main phosphorus source for microbes in oligotrophic waters. While biological phosphonate production is common within the bacterial domain, currently only one methylphosphonate synthase (mpnS) has been identified originating from the marine Thaumarchaeota. These organisms are abundant in the ocean, although they have been reported in some freshwater lakes, as well. Another probable source in freshwater are the Actinobacteria, which produce a large diversity of phosphonate compounds. The large abundance of freshwater Actinobacteria coupled with known C–P lyase activity of cyanobacteria may explain the correlation between oxic methane formation and cyanobacteria bloom in Lake Stechlin. Damm et al. suggest that Arctic microbes metabolize dimethylsulfo-niopropionate (DMSP) (requiring enzymatic cleavage of the C–S bond) for energy production and release methane as a byproduct, which would require a final step of methyl reduction. However, the methyl reductase Mrn gene complex has not been found in any nonmethanogenic genome and has no known structural homologue in Bacteria. To allow the process to occur in oxic water, Damm et al. theorize that DMSP-utilizing bacteria maintain an anoxic cytoplasm through respiration, although empirical evidence is still missing.

From an energetic standpoint, discarding methane as a byproduct is hardly favorable; nevertheless, the implication of the earlier work is that oxic methane production could be driven by microbes equipped with C–P lyase or C–S lyase, which are common among heterotrophic microbes capable of metabolizing C-1 compounds. A comparative genomics analysis shows that the majority of enzymes in the various methanogenic pathways are present in nonmethanogenic organisms, including Bacteria (Figure 2). This along with the presence of several C1 carriers (tetrahydrofolate and tetrahydrodethanopterin) among Bacteria allows us to speculate that upon demethylation of C-1 compounds, the methyl group bound to a C-1 carrier or an unknown Coenzyme-M homologue is reduced to methane by cellular reductases, for which the methyl reductase function has not been identified (Figure 2). Alternative sources of reducing power potentially include (1) electron bifurcation that has been described for anaerobic methanogenesis but not yet for oxic methane production and (2) reducing power dumping by photosystems (in cyanobacteria) or proteorhodopsin (in Bacteria), especially under nutrient limitation.

There is emerging evidence that some microalgal species may directly produce methane by demethylation, completely bypassing the involvement of heterotrophic microbes. Organosulfur compounds such as methionine, dimethyl sulfoxide, and DMSP are commonly produced by algae. It has been reported that, under ambient atmospheric conditions, several organosulfur compounds can be chemically converted to methane. If similar processes are confirmed in algae, methane production in oxic waters would be much more pervasive than previously imagined.

IMPLICATIONS FOR CLIMATE AND FUTURE RESEARCH DIRECTIONS

Blooms of cyanobacteria are on the rise due to eutrophication and climate change. Given that strong oxic methane production has been associated with blooms of cyanobacteria, this could result in a positive greenhouse feedback. Meanwhile, the fate of the oxic methane source is influenced by the stratification pattern and surface mixing events, but these processes may not be fully captured by climate models, especially for small lakes.

Methane has long been the focus in ecological and climate research, but the current view of its global dynamics is biased by the conventional exclusion of oxic habitats and processes. In light of the new findings discussed here, it is necessary to revisit the century-old understanding of aquatic microbial methane production and address several urgent research areas. (1) More research is needed on the precise biochemical pathway(s) behind oxic methane production, and the use of stable isotopes and tracers can shed light on the different precursor compounds and pathways. (2) Further investigation of the fate of this novel methane source, including water-to-air exchange and internal consumption via methanotrophy, is warranted. (3) Isolation and cultivation of the responsible organisms will be needed for detailed physiological studies. (4) It is necessary to revisit the global methane budget by including oxic methane sources and the role they may play in the future climate.

AUTHOR INFORMATION

Corresponding Author

*E-mail: k.w.tang@swansea.ac.uk. Phone: +44 01792606269.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Mina Bizic-Ionescu for providing methane data from the LakeLab mesocosms in Lake Stechlin and Dominic Vachon for helping with graphic for the table of contents. K.W.T. was supported by a Humboldt Fellowship for Experienced Researchers (Germany). D.I. and H.-P.G. were supported by a grant from the German Science Foundation (AquaMeth Project GR1540/21-1). Prof. F. Keppeler provided valuable comments on an earlier draft.

REFERENCES

Emissions from Terrestrial Plants under Aerobic Conditions.

1994 Microbes in the Sea Methanogenesis in Oxic Waters and Oxidation in Anoxic Waters. In

Methane Production by Saprotrophic Fungi.

