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ERRATUM

Erratum: Quantifying spatial correlations of general quantum
dynamics (2015 New J. Phys. 17 062001)

Angel Rivas and Markus Miiller
Departamento de Fisica Teérica I, Universidad Complutense, E-28040 Madrid, Spain

E-mail: anrivas@ucm.es

On page 4, an error was made in the statement “Theorem 1’. The correct sentence is as follows:

Theorem 1. If for a map & the property 1 (£5> = 1 holds, such a map must be unitary Eg(-) =
Us(-)US, UsU{ = 1L

Due to a typesetting error, on page 9, line below equation (C5), commas were incorrectly inserted. The

. .. i 1 3
correct equation IS'<V2k = G / d k).

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Abstract

Understanding the role of correlations in quantum systems is both a fundamental challenge as well as
of high practical relevance for the control of multi-particle quantum systems. Whereas a lot of research
has been devoted to study the various types of correlations that can be present in the states of quantum
systems, in this work we introduce a general and rigorous method to quantify the amount of
correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we
introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore,
we benchmark our method by applying it to the paradigmatic case of two atoms weakly coupled to the
electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise
correlations in quantum computing architectures.

1. Introduction

Quantum systems can display a wide variety of dynamical behaviors, in particular depending on how the system
is affected by its coupling to the surrounding environment. One interesting feature which has attracted much
attention is the presence of memory effects (non-Markovianity) in the time evolution. These typically arise for
strong enough coupling between the system and its environment, or when the environment is structured, such
that the assumptions of the well-known weak-coupling limit [1-3] are no longer valid. Whereas memory effects
(or time correlations) can be present in any quantum system exposed to noise, another extremely relevant
feature, which we will focus on in this work, are correlations in the dynamics of different parts of multi-partite
quantum systems. Since different parties of a partition are commonly, though not always, identified with
different places in space, without loss of generality we will in the following refer to these correlations between
different subsystems of a larger system as spatial correlations.

Spatial correlations in the dynamics give rise to a wide plethora of interesting phenomena ranging from
super-radiance [4] and super-decoherence [5] to sub-radiance [6] and decoherence-free subspaces [7—11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of quantum processes,
such as e.g. quantum error correction [12—17], photosynthesis and excitation transfer [ 18-28], dissipative phase
transitions [29-33] and quantum metrology [34] has been and still is an active area of research.

Along the last few years, numerous works have aimed at quantifying up to which extent quantum dynamics
deviates from the Markovian behavior, see e.g. [35—43]. However, much less attention has been paid to develop
quantifiers of spatial correlations in the dynamics, although some works e.g. [44, 45] have addressed this issue
for some specific models. This may be partially due to the well-known fact that under many, though not all
practical circumstances, dynamical correlations can be detected by studying the time evolution of correlation
functions of properly chosen observables @, and O, acting respectively on the two parties A and B of interest.
For instance, in the context of quantum computing, sophisticated methods to witness the correlated character of
quantum dynamics, have been developed and implemented in the laboratory [45]. Indeed, any correlation
C(O4, Op) = (04 ® Op) — (O4){Op) detected during the time evolution of an initial product state,

p = p,4 ® pp, witnesses the correlated character of the dynamics. However, note that there exist highly
correlated dynamics, which cannot be realized by a combination of local processes, which do not generate any

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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such correlation, e.g. the swap process between two parties. Such dynamics can either act on internal degrees of
freedom, induced e.g. by the action of a swap gate acting on two qubits [46], or can correspond to (unwanted)
external dynamics, caused e.g. by correlated hopping of atoms in an optical lattice [47, 48] or crystal melting and
subsequent recooling dynamics in trapped-ion architectures [49].

Thus, it is of eminent importance to develop methods which allow us to detect the presence or absence of
spatial correlations in the dynamics, without a priori knowledge of the underlying microscopic dynamics, and
do not require us to resort to adequately chosen ‘test’ observables and initial ‘test’ quantum states. Such methods
should furthermore provide a rigorous ground to quantitatively compare the amount of spatial correlations in
different dynamical processes. These characteristics are essential for a ‘good’ correlation quantifier that can be
used to study spatial correlations in quantum dynamics from a fundamental point of view [50-52], to clarify
their role in physical processes [12—34], as well as to measure and quantify spatial correlations in the dynamics of
experimental quantum systems.

It is the aim of this work to introduce a method to quantify the degree of correlation in general quantum
dynamics from a fundamental view point. Specifically,

(i) we propose a theoretical framework and formulate a general measure to assess the amount of spatial
correlations of quantum dynamics without resorting to any specific physical model. To this end, we adopt a
resource theory approach, and formulate a fundamental law that any faithful measure must satisfy.

(ii) Within this framework, we study the properties that a dynamics has to fulfill to be considered as maximally
correlated.

(iii) We apply our measure to the paradigmatic quantum-optical model of two two-level atoms radiating into
the electromagnetic vacuum. This case exemplifies the working principle of our measure and quantitatively
confirms the expectation that spatial dynamical correlations decay with increasing interatomic distance
and for long times.

(iv) Finally, we illustrate this formalism with a second example in the context of quantum computing, where
quantum error correction protocols rely on certain assumptions on (typically sufficiently small) noise
strengths and noise correlations. Specifically, we consider two qubits subject to local thermal baths that
suffer some residual interaction which induces a correlated noisy dynamics. Our method reveals the
remarkable fact that, under keeping the overall error probability for the two qubits constant, the degree of
spatial correlations decays very rapidly as the bath temperature increases. This suggests that, in some
situations, noise addition as e.g. by a moderate increase of the environmental temperature, can be beneficial
to tailor specific desired noise characteristics.

2. Measure of correlations for dynamics

2.1. Uncorrelated dynamics

Let us consider a bipartite quantum system S = AB undergoing some dynamics given by a completely positive
and trace preserving (CPT) map &g [without loss of generality we shall assume dim(H ) = dim(Hp) = d and
so ds == dim(Hs) = d?]. This dynamics is said to be uncorrelated with respect to the subsystems A and B ifit
canbe decomposed as s = €4 ® Ep, with CPT maps £, and £ acting on A and B, respectively. Otherwise it
is said to be correlated.

The central tool of our construction is the Choi—Jamiotkowski isomorphism [53, 54], which provides a one-
to-one map of a given quantum dynamics to an equivalent representation in the form of a quantum state in an
enlarged Hilbert space. This mapping allows us to use tools developed for the quantification of correlations in
quantum states for our purpose of quantifying correlations in quantum dynamics. Thus, consider a second d>
-dimensional bipartite system S’ = A’B’, and let |@gg' ) be the maximally entangled state between Sand S,

d? d
1 .. 1
|Bss) == D liidss == 2. ks & [kE)ap- (1)
d j=1 d k¢=1

Here, |j) denotes the state vector with 1 at the jth position and zero elsewhere (canonical basis). The Choi—
Jamiotkowki representation of some CPT map £ on S is given by the d*-dimensional state

ps’ = Es @ ls(|Pss ) (Dss'|), @

where Ig denotes the identity map acting on S’. The entire information about the dynamical process Es is
contained in this unique state.
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Figure 1. Schematics of the method. Left: the system Sis prepared in a maximally entangled state | @ss' ) with the auxiliary system S’
(this state is just a product of maximally entangled states between AA’ and BB’, see equation (1)). Middle: the system undergoes some
dynamics . Right: if and only if this process is correlated with respect to A and B, the total system SS’ becomes correlated with
respect to the bipartition AA’|BB’ and the degree of correlation can be measured by the normalized mutual information, equation (3).

2.2. Construction of the correlation measure
In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a resource theory
approach [55-62]. This is, we may consider correlated dynamics as a resource to perform whatever task that
cannot be implemented solely by (composing) uncorrelated evolutions £4 ® E. Then, suppose that the system
Sundergoes some dynamics given by the map Es, and consider the (left and right) composition of £ with some
uncorrelated maps £, ® Lpand R4 ® R p, so that the total dynamics is given by Es=(L 4 ® L) Es
(R4 ® Rp).Itisclear that any task that we can do with £§ by composition with uncorrelated maps can also be
achieved with &g by composition with uncorrelated maps. Hence, we assert that the amount of correlation in Es
isatleast aslarge asin £5. In other words, the amount of correlations of some dynamics does not increase under
composition with uncorrelated dynamics. This is the fundamental law of this resource theory, and any faithful
measure of correlations should satisfy it. For the sake of comparison, in the resource theory of entanglement,
entanglement is the resource, and the fundamental law is that entanglement cannot increase under application
oflocal operations and classical communication (LOCC) [55].

In this spirit, we introduce a measure of correlations for dynamics via the (normalized) quantum mutual
information of the Choi—Jamiotkowski state pSCI, equation (2),

I{rs)
4log d

- 41;g [5(p ) + (0 ) = 5(o) ] 3)

I(&s):=

with S( - ) := =Tr[( - )log( - )]the von Neumann entropy evaluated for the reduced density operators
/)SC] luar = TrBBr(pSC]) and pSC] lgp’ = TrAAr(pSC] ), and pSC]; see figure 1. The quantity I (€s) is a faithful
measure of how correlated the dynamics given by & is, as it satisfies the following properties:

(i) I(&s) = 0 if and only if & is uncorrelated, £ = €4 ® Ep. This follows from the fact that the Choi—
Jamiotkowski state of an uncorrelated map is a product state with respect to the bipartition AA’|BB’, see
appendix A.

(ii) I(&s) € [0, 1].Itisclear that I (£g) > 0, moreover it reaches its maximum value when S (pscl ) is minimal
and S ( pSC] [ AA/) +S ( pSC] | BB’) is maximal. Both conditions meet when pscI is a maximally entangled state

with respect to the bipartition AA’| BB, leading to I (pSCI) = 2 log d*.
(iii) The fundamental law is satisfied,

I(Es) 2I[(LA® Lp)Es(RA® Rp)], (4)

where the equality is reached for uncorrelated unitaries £4( - ) = Uy (- )UJL, Lp( - ) = Up( - ) UL,
RA(-)=Vu() VX, and Rpg(-) = V(") Vg. This result follows from the monotonicity of the
quantum mutual information under local CPT maps (which in turn follows from the monotonicity of
quantum relative entropy [63]) and the fact that for any matrix A, A ® lg |Pss') = I ® A' |Psg) where
the superscript ‘t’ denotes the transposition in the Schmidt basis of the maximally entangled state | Dgg ).

2.3. Maximally correlated dynamics
Before computing I for some cases it is worth studying which dynamics achieve the maximum value I, = 1.
From the resource theory point of view, these dynamics can be considered as maximally correlated since they
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cannot be constructed from other maps by composition with uncorrelated maps (because of equation (4)). We
have the following results:

Theorem 1. If for a map Es the property I (Es) holds, such a map must be unitary Es( - ) = Us( - )UST, Us USJr =1

Proof. As aforementioned, the maximum value, I (€5) = 1,isreached ifand only if ,oscI is a maximally
entangled state with respect to the bipartition AA’|BB’, |¥{44")|(8s"))- Then

Es ® Lo (|Dss ) (D |) = [Hany ) Hany s (5)

is a pure state. Therefore £ must be unitary as the Choi—Jamiotkowski state is pure if and only if it represents a
unitary map. O

Despite the connection with maximally entangled states, the set of maximally correlated operations
¢ := {Us; I (Us) = 1}, can not be so straightforwardly characterized as it may seem. Note that not all maximally
entangled states |¥#a4')| (8p) ) are valid Choi—Jamiotkowski states. In appendix B we provide a detailed proof of
the next theorem.

Theorem 2. A unitary map Us € € ifand only if it fulfills the equation

(ki |Us| mj)(nj |US| £i) = Sk Sy (6)
L]

Examples of maximally correlated dynamics are the swap operation exchanging the states of the two parties A
and B, Us = Uy p, and thus also any unitary of the form of (Uy ® Up) Usw.3 (V4 ® Vi). However, not every
Us € € falls into this class. For example, the unitary operation of two qubits U = [21) (12| + i(]11)(21]
+[12) (11]+]22)(22]) belongs to € and it cannot be writtenas (Uy ® Up) Us.3(Va ® Vp), since that would
imply vanishing I (U{ U4, 3) whereas I (UiUa3) = 1/2 # 0. Interestingly, operations able to create highly
correlated states such as the two-qubit controlled-NOT gate [46] as well as the two-qubit dynamical maps
describing the dissipative generation of Bell states [64, 65] achieve a correlation value of 1/2 and thus do not
correspond to maximally correlated dynamics. Note that whereas a controlled-NOT gate creates for
appropriately chosen two-qubit initial states maximally entangled states, there are other states which are left
completely uncorrelated under its action. The measure I captures—completely independently of initial states
and of whether possibly created correlations are quantum or classical—the fact that correlated dynamics cannot
be realized by purelylocal dynamics.

Let us point out that in some resource theories, such as bi-partite entanglement, the maximal element can
generate any other element by applying the operations which fulfill its fundamental law, e.g. LOCC. This is not
the case here, i.e. maximally correlated evolutions cannot generate any arbitrary dynamics by composition with
uncorrelated operations. Indeed, if £§** were able to generate any other dynamics, in particular it would be able
to generate any unitary evolution Us, (L4 ® L5)EF™ (R4 @ Rp)(-) = Us(-) UST . However, this would
implythat £, ® L, £ and (R4 ® Rp)are unitary evolutions as well, so that (Uy ® Ug)Ug™
(VA ® V) = Us,with ET™ () = UM (. ) U™ T Since I (Eg) is invariant under the composition of
uncorrelated unitaries, this result would imply that for any correlated unitary Us, I (Us) would take the same
value [T (U§™™)], and this is not true as can be easily checked.

3. Applications

3.1. Two-level atoms in the electromagnetic vacuum

To illustrate the behavior of I (€s), consider the paradigmatic example of two identical two-level atoms with
transition frequency @ interacting with the vacuum of the electromagnetic radiation field (see appendix C).
Under a series of standard approximations, the dynamics of the reduced density matrix of the atoms py is
described by the master equation
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Figure 2. Maximum value of [ as a function of the distance r for two two-level atoms radiating in the electromagnetic vacuum. As
expected, the amount of correlations in the dynamics decreases with . In the inset, I is represented as a function of time for different
distances rbetween atoms (@ = |d|/2 = 1, @ = 0, see appendix C).

d
% =L(p) = —i%[af + o4, Ps]
+ Z ajk(ak_psaf— %{afak_, ps}), (7)
jok=1,2

where o7 is the Pauli z-matrix for the jth atom, and 6;" = (crj_)Jr = |e) j(g|the electronic raising and lowering
operators, describing transitions between the exited |e) ; and ground |g) ; states. The coefficients a;; depend on
the spatial separation r between the atoms. In the limit of r > 1/w they reduce to a  ~ y,6 , whereas for

r < 1/w they take the form a ;. ~ y,. Here y, is the decay rate of the individual transition between |e) and |g). In
the first regime the two-level atoms interact effectively with independent environments, while in the second, the
transitions are collective and lead to the Dicke model of super-radiance [4].

To quantitatively assess this behavior of uncorrelated/correlated dynamics as a function of r, we compute the
measure of correlations I, equation (3) (see appendix C for details). The results are shown in figure 2. Despite
the fact that the value of I depends on time (the dynamical map is £ = e'£), I decreases as rincreases, as
expected. Furthermore, the value of T approaches zero for tlarge enough (see inset plot), except in the limiting
case r=0, because for r # 0 the dynamics becomes uncorrelated in the asymptotic limit, lim,,ef =E® &,
where £ (- ) = K; (- )K" + K, ( - )KJ with Kraus operators K; = ( (1) 8 ) and K, = ( 8 (1) ); however for
r=0, lim,_, e~ isa correlated map. Thus, we obtain perfect agreement between the rigorous measure of
correlations I and the physically expected behavior of two distant atoms undergoing independent noise.

3.2. Spatial noise correlations in quantum computing

Fault-tolerant quantum computing is predicted to be achievable provided that detrimental noise is sufficiently
weak and not too strongly correlated [66]. However, even if noise correlations decay sufficiently fast in space,
associated (provable) bounds for the accuracy threshold values can decrease by several orders of magnitude as
compared to uncorrelated noise [ 14]. Thus, it is of both fundamental and practical importance [45] to be able to
detect, quantify and possibly reduce without a priori knowledge of the underlying microscopic dynamics the
amount of correlated noise. Here, we exemplify how the proposed measure can be employed in this context by
applying it to a simple, though paradigmatic model system of two representative qubits from a larger qubit
register. We assume that the qubits are exposed to local thermal (bosonic) baths, such as realized e.g. by coupling
distant atomic qubits to the surrounding electromagnetic radiation field, and that they interact via a weak ZZ-
coupling, which could be caused, e.g., by undesired residual dipolar or van-der-Waals type interactions between
the atoms. The ‘error’ dynamics of this system is described by the master equation




I0P Publishing NewJ. Phys. 17 (2015) 062001

P Fast Track Communications

— Perror

error
error

error

cocooo
coookr
& &

0.05

error

Figure 3. Amount of spatial correlations I along the T line corresponding to constant error probability Py = 0.1. We see the rapid
decreasing of T as Tincreases (J = 1and y, = 4/3 in units of ). The inset shows t~Tisolines for various values of the error probability
P.iror, which increases with both tand T.

%zﬁ(Ps) = ~i[ 2(of + o) + Joi o, s
+ Z Y (7 + 1)(6]'_p50-j+ - %{6;—61_’ PS})
j=1,2
+ 27’0’_’<"7P50j__%{"f_”;’p5})’ )
j=1,2

where @ is the energy difference between the qubit states, J the strength of the residual Hamiltonian coupling, y,
is again the decay rate between upper and lower energy level of each individual qubitand 7 = [exp (w/T) — 1]
is mean number of bosons with frequency @ in the two local baths of temperature T (assumed to be equal).
Weassume J and y, to be out of our control and aim at studying the spatial correlations of the errors induced
by the interplay of the residual ZZ-coupling and the baths as a function of the bath temperature T'and elapsed
time t, which in the present context might be interpreted as the time for executing one round of quantum error
correction [66, 67]. Since the overall probability that some error occurs on the two qubits will increase under
increasing tand T, we need to fix it for a fair assessment of the correlation of the dynamics. A natural way to do
this is by defining the error probability in terms of how close the dynamical map induced by equation (8)
(excluding the term %’ (6 + 065 ),as thisis not considered a source of error) is to the identity map (the case of no

errors). Particularly, we can use the fidelity between both Choi-Jamiotkowski states, pSCI for the ‘error’ map and

|@ss: ) for the identity map, Pyor = 1 — /(D | pscI | @ss) . Figure 3 shows the value of amount of dynamical

correlations as measured by I alonga t~Tline on which the error probability is constant (B0, = 0.1, green line
in the inset plot). The numerical data shows, despite this fixing of the overall error rate, that as the temperature
increases the correlatedness of errors decreases very rapidly. This remarkable result suggests that by increasing
the effective, surrounding temperature one can strongly decrease the non-local character of the noise at the
expense of a slightly higher error rate per fixed time t, or constant error rates if the time ¢ for an error correction
round can be reduced. Thus, the proposed quantifier might prove useful to meet and certify in a given physical
architecture the noise levels and noise correlation characteristics which are required to reach the regime where
fault-tolerant scalable quantum computing becomes feasible in practice.

4. Conclusion

In this work, we have formulated a general measure for the spatial correlations of quantum dynamics without
restriction to any specific model. To that aim we have adopted a resource theory approach and obtained a
fundamental law that any faithful quantifier of spatial correlation must satisfy. We have characterized the
maximally correlated dynamics, and applied our measure to the paradigmatic example of two atoms radiating in
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the electromagnetic field, where spatial correlations are naturally related to the separation between atoms.
Furthermore, we have illustrated the applicability of the measure in the context of quantum computing, where it
can be employed to quantify and potentially control spatial noise correlations without a priori knowledge of the
underlying dynamics.

Beyond the scope of this work it will be interesting from a fundamental point of view to study how many
independent (up to local unitaries) maximally correlated dynamics there are, and how to deal with the case of
multi-partite or infinite dimensional systems. From a practical point of view, it is also interesting to develop
efficient methods to estimate the proposed measure, in particular in high-dimensional quantum systems, e.g. by
the construction of witnesses or bounds, in analogy to entanglement estimators [68] that have been developed
based on the resource theory of entanglement. In this regard, it is our hope that the present results provide a
useful tool to study rigorously the role of spatial correlations in a variety of physical processes, including noise
assisted transport, quantum computing and dissipative phase transitions.
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Appendix A. Choi-Jamiotkowski state of uncorrelated maps

First of all, let Up., 4~ be the commutation matrix (or unitary swap operation) [69, 70] between Hilbert
subspaces Hg and H 4. of the total Hilbert space H, ® Hz @ Hy ® Hp:

Upoa (M1 ® M, ® M3 ® M4) U (A1)
=M Q@ M; @ M, @ M,. (A2)

where M1, M,, M; and M, are operators acting on the respective Hilbert subspaces in the decomposition
Hy ® Hp ® Hy ® Hp. Thisis, M, acts on H 4, M, on Hp:, and M, and M act on Hy and H 4 on the left-
hand side and on H 4- and H on the right-hand side of the equality respectively. Note that Ug., o Ug - = l and
then UB<—>A’ = Ug(_,Ar.

Now, it turns out that the evolution given by some dynamical map £ is uncorrelated with respect to the
subsystems Aand B, & = €4 ® £, ifand onlyifits Choi-Jamiotkowski state py” = £ @ Ls/(| s ) (Dss'])
is

ps) = UBHA’(/)EI ® PBCI)UBHAs (A3)

where pACI and pBCI are the Choi—Jamiotkowski states of the maps £ 4 and £, respectively.
Indeed, if & = €4 ® Ep, we have (omitting for the sake of clarity the subindexes in the basis expansion of
| Dss7) ):

d
ps = Es @ Ls(|Pss) (D |) = % 3 Es(ke)(mn)) @ [ke)(mn|
k,¢,m,n=1
d
=% Z Ex(lk)y(m|) ® E(I€)(n|) ® |kC)(mn], (A4)
k,¢,m,n=1

then

d
UsenpdUsew ==z 30 E0(0mD) @ 1K) (] @ Ex(1£)(n]) @ 1) n]

k,¢,m,n=1

d d
:é Z Ex @ N([kky (mm|) ® é Z Es ® 1(|££) (nn))

k,m=1 Zn=1
=py ®py- (A5)

Conversely, if equation (A3) holds, then the dynamics has to be uncorrelated because the correspondence
between Choi-Jamiotkowski states and dynamical maps is one-to-one.

7
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From equation (A3) itis straightforward to conclude that I (€s) = 0 ifand onlyif s is uncorrelated,
because the von Neumann entropy of the Choi-Jamilkowski state factorizes S (pSC] )=

S [ Upear (p/? ® plfl) UBHAr]=S (,ofI ® pBCJ)=S (pfl)+8 (pBCI) ifand only if £ is uncorrelated.

Appendix B. Proof of theorem 2

As commented in section 2.3, Us € € if
‘SU(AA’)|(BB’)> =Us ® J1| ¢ss'>, (B1)

where | 44| (85’)) is a maximally entangled state with respect to the bipartition AA’|BB’. Note that if

|44 (8B")) is a maximally entangled state with respect to the bipartition AA’|BB’, U, a’ |#Haa')|(88)) Willbe a
maximally entangled state state with respect to the bipartition AB |A'B’ = S| §'. Since any maximally entangled
state with respect to the bipartition S |S’ can be written as Us ® Us' |®ss' ) for some local unitaries Us and U/,
we can write

Uponr |'P(AA')|(BB')> =Us ® Uy |Dss'). (B2)

Because of equations (B1) and (B2) we conclude that Us € € if and only if there exist unitaries Us and U’ such
that

Us @ g |Pss) = Upeon' (Us ® Us') | Dssr). (B3)

Next, we prove the following
Lemma. A unitary map Us € € ifand only if there exists some other unitary Vsuch that the matrix elements
of Ug can be written as

(k¢ |Us| mn) = (km |V | ¢n). (B4)

Proof.If Us € €, then by taking inner product with respect to the basis element |k£mn) in equation (B3) we
obtain:

<kf |Us| mn)= d(kmz,”n |Us ® Us' |¢55'>
= (km| UsUg |¢n)y = (km| V |¢n), (B5)

for V = Us Ustr. Here we have used that A ® lg |@ss') = Is @ A" |Dgs ) where the superscript t” denotes the
transposition in the Schmidt basis of the maximally entangled state | @gs ), which has been taken to be the
canonical basis here.

Conversely, assume that there exists a unitary Vsatisfying (B4). As V can always be decomposed as the
product of two unitaries, V = V{ V5, by setting Us = V; and Ust/ = V}, the same algebra as in equation (B5) leads
us to rewrite equation (B4) as

(ktmn| Us @ Ig |Pss') = (kfmn| Upen Us ® Us' |Dss). (B6)

Since |k¢mn) are elements of a basis we conclude that equation (B3) holds. |

With these results, the theorem 2 is easy to prove.

Proof of theorem 2. Note that for any unitary Us, equation (B4) is satisfied for some matrix V. Thus, what we
have to prove is that such a matrix Vis unitary if and only if U fulfills the equation

D (ki| Us |mj)(nj| U{ |£i) = Sk Sms (B7)
ij

and this follows after a straightforward algebraic computation. ]

Appendix C. Two two-level atoms coupled to the radiation field

The free Hamiltonian of the atoms is

Hs = %(012+022), (C1)
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where 67 is the Pauli z-matrix for the jth atom. In addition, the environmental free Hamiltonian is given by
Hp =Y Y wxaf(k)a,(k), (C2)
k =12

where k and 4 stand for the wave vector and the two polarization degrees of freedom, respectively. We have
taken natural units 7 = ¢ = 1. The dispersion relation in the free space is w = |k|, and the field operators

a j (k) and a, (k) describe the creation and annihilation of photons with wave vector k and polarization vector
e,. Thesefulfillk - e; = Oand e, - ey = 5, ;.
The atom-field interaction is described in dipole approximation by the Hamiltonian

He=- Y [o7d-E(r) + ofd - E(r)] (C3)
j=1,2

Here, d is the dipole matrix element of the atomic transition, T denotes the position of the jth atom, and

o = (6;)" = |e)j(g|forits exited |e); and ground |g) states. Furthermore, the electric field operator is given by
(Gaussian units)

E(r)=i) z’gj)" e, (k) (a; (k)™ — af (ly k), (C4)
k,A

where V denotes the quantization volume. In the Markovian weak coupling limit [1] the master equation for the
atoms takes the form:

d
% = L(ps) = ~i2[ o + oF, ps]
+ Y ap(oipsof = Hotor, n})s (C5)
ij=1,2

where, after taking the continuum limit (%,Z o = ﬁ, f , &, k) and performing the integrals, the coefficients
aji. are given by (section 3.7.5 of [1])

aje = 1] dy (i) + Bo((cos 03¢)y (x50 | (C6)
here y, = %aﬁ |d|*,and j; (x) and j, (x) are spherical Bessel functions [71],
i 1
g () = 22, jz(x)=(%——)sinx—izcosx, (C7)
x> x x
and
B (cos 6) = %(3 cos’ 0 — 1) (C8)
is a Legendre polynomial, with
2
d-(rj—n)
Xjk=w |rj —r|, and cosz(ejk) = g (C9)

L.
|dP|r; - n|

Notice that if the distance between atoms r = |r; — 1|, is much larger than the wavelength associated with
. .. . 4
the atomic transition r > 1/, we have a ;. ~ y,8;; and only the diagonal terms y, = —w® |d|* are relevant.
j 09ij 0= 3

Then, the master equation describes two-level atoms interacting with independent environments, and there are
no correlations in the emission of photons by the first and the second atom. In the opposite case, when r < 1/,
every matrix element approaches the same value a;; = y,, in the master equation the atomic transitions can be

approximately described by the collective jump operators J, = o* + 677, and the pair of atoms becomes
equivalent to a four-level system with Hamiltonian w], = 5 (6 + o5 ) at the mean position (r; — r,)/2

interacting with the electromagnetic vacuum. This emission of photons in a collective way known as super-
radiance is effectively described in terms of collective angular momentum operators in the Dicke model [4].

Evaluation of the correlation measure. In order to numerically compute I for this dynamics, we consider a
maximally entangled state | @gs ) between two sets S and S’ of two qubits. Namely, S is the set of the two physical
qubits, i.e. the two two-level atoms 1 and 2, and S’ is made up of two auxiliary qubits 1’ and 2" as sketched in
figure 1. Next, the part S of the maximally entangled state | g ) (Psg| is evolved according to the master
equation (C5) while keeping the part S’ constant, to obtain pSC] (t). This can be done, for instance, by

9
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pSCI f)

numerically integrating the master equation =L®I1 [pscI () ], with the initial condition

pSCI (0) = |¥s' ) {¥ss |, where L is for the present example specified in equation (C5). Tracing out the qubits 2
and 2’ of pscI (t)yields pscJ (t) 1, and similarly tracing out qubits 1 and 1’ yields pSC] (t) |2 Finally, this allows

one to compute the von Neumann entropies of pscI ®) hr» pSCI (£) |y and pscI (t) to calculate I (t) according to
equation (3).
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