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Abstract 
 
Schmidt-hammer exposure-age dating (SHD) was applied to a variety of late Quaternary 

periglacial and paraglacial landforms composed of coarse rock debris on Muckish Mountain, 

northwest Ireland.  Landform ages were determined using a linear high-precision age-  

calibration curve, derived from young and old control surfaces of known age on the same 

rock type. The SHD ages represent maximum estimates of the time elapsed since the 

boulders stabilised and the landforms became inactive. Most ages are also minimum 

estimates for the start of landform development because older boulders are buried beneath 

the sampled surface boulders. Ages and 95% confidence intervals obtained for blockfield, 

boulder lobes and talus indicate these features were likely active during several of the early 

Holocene cold events evidenced in Greenland ice cores and North Atlantic sediment records. 

Activity ceased at different times ~9-7 ka BP. These landforms are the first indication of a 

geomorphological response to early Holocene cooling in the oceanic mountains of Ireland. 

Late Holocene ages, obtained for rock-slope failure run-out debris and debris cone boulders, 

overlap with shifts to cooler and/or wetter conditions, including the Little Ice Age. 

Geomorphological impacts associated with these changes in climate have not previously 

been recorded in the Irish uplands. The SHD results indicate that previously implied timings 

for the stabilisation of some accumulations of coarse rock debris on mountain slopes are in 

need of revision. 

 
Keywords: 

  
Schmidt-hammer exposure-age dating (SHD)  
Periglacial and paraglacial landforms 
Holocene climate variability 
Maritime periglacial environment 
Northwest Ireland 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

3 

1. Introduction 

Establishing the age of late Quaternary landforms is a critical aspect of landscape 

studies. By placing landforms on a secure chronological footing the timing of geomorphic 

processes can be constrained. In turn, this assists our understanding of the link between 

landform development and changes of climate. Of the wide range of techniques currently 

available for determination of landform age, radiocarbon dating (14C), optically stimulated 

luminescence (OSL) dating, and terrestrial cosmogenic nuclide surface exposure dating 

(TCND) are routinely used because of their broad temporal ranges; each method being 

applicable to a specific type of material.  However, these techniques are costly, especially so 

because multiple, rather than single, samples normally require analysis in order to obtain a 

reliable estimate of landform or event age.  In contrast, Schmidt-hammer exposure-age 

dating (SHD) has been developed as a high-precision method of absolute or calibrated-age 

dating and has several advantages over the techniques listed above namely: (1) it is a 

relatively inexpensive procedure; (2) it does not require laboratory facilities; and (3) it can 

generate large amounts of data based on the large sample sizes necessary for precise 

calibration equations and age estimates, within a short period of fieldwork. Furthermore, SHD 

ages have been shown to be largely consistent with ages derived from TCND (Winkler, 2009; 

Matthews and Winkler, 2011; Linge et al., in preparation).   

Initial applications of the Schmidt-hammer in geomorphology focussed on its ability to 

distinguish the relative age of landforms by relating the compressive strength of bedrock or 

boulders to the degree of surface weathering and therefore the surface exposure age 

(Matthews and Shakesby, 1984; Ballantyne, 1986; McCarroll, 1989). Some later studies 

have followed this approach (Clark and Wilson, 2004; Frauenfelder et al., 2005; Winkler, 

2005) while others have developed the technique into one of high-precision calibrated-age 

dating (Matthews and Owen, 2010; Shakesby et al., 2011; Matthews and Wilson, 2015; 

Matthews et al., 2015). Irrespective of the strategy adopted, the Schmidt-hammer has been 

used for landform age estimation in a wide variety of geomorphic contexts, for example: 

fluvial terraces (Stahl et al., 2013), flood sediments (McEwan and Matthews, 2013; Matthews 
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and McEwan, 2013), alluvial fans (White et al., 1998; McEwan et al., in prep), debris flows 

(Boelhouwers et al., 1999), glacial landforms (Evans et al., 1999; Aa and Sjåstad, 2000; 

Winkler, 2005, 2009, 2014; Shakesby et al., 2006; Matthews and Owen, 2010; Matthews and 

Winkler, 2011; Kłapyta, 2013; Ffoulkes and Harrison, 2014; Matthews et al., 2014; Tomkins 

et al., 2016), active and relict rock glaciers (Aoyama, 2005; Frauenfelder et al., 2005; 

Kellerer-Pirklbauer et al., 2008; Rode & Kellerer-Pirklbauer, 2012; Matthews et al., 2013), 

pronival ramparts (Matthews et al., 2011; Matthews and Wilson, 2015), patterned ground 

(Cook-Talbot, 1991; Winkler et al., 2016), blockstreams (Wilson et al., 2016), snow-

avalanche impact ramparts (Matthews et al., 2015), rock-slope failures (Nesje et al., 1994; 

Clark and Wilson, 2004; Aa et al., 2007; Wilson 2007, 2009a; Owen et al., 2010), chemically-

weathered bedrock surfaces (Owen et al., 2007), raised boulder-dominated shorelines 

(Sjöberg, 1990; Sjöberg and Broadbent, 1991; Shakesby et al., 2011), and shore platforms 

(Stephenson and Kirk, 2000; Knight and Burningham, 2011). 

High-precision absolute SHD requires establishment of a reliable calibration equation 

derived from at least two control surfaces of known age and of the same rock type as the 

landforms to be dated (Matthews and Owen, 2010; Matthews and Winkler 2011; Matthews 

and Wilson, 2015). The method enables construction of 95% confidence intervals around the 

control surface ages and determination of SHD ages for the landforms under investigation. 

This approach has been applied to an assemblage of late Quaternary periglacial and 

paraglacial landforms composed of coarse rock debris on Muckish Mountain, northwest 

Ireland.  Previous studies in which high-precision absolute SHD was utilised have focussed 

on single-category landforms such as moraines (Matthews et al., 2014), pronival ramparts 

(Matthews and Wilson, 2015) and flood berms (Matthews and McEwan, 2013). In this paper 

we use SHD to assess the age of boulders incorporated into blockfield, boulder lobes, talus, 

rock-slope failure (RSF) run-out debris, and debris cone on a single rock type on an 

individual mountain in an oceanic/maritime periglacial environment. Given that different 

processes are involved in the production of these landforms the aims of the research were: 

(1) to determine when the debris accumulations and formative processes were last active, (2) 
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to consider landform ages in relation to patterns of climate change, and (3) to evaluate the 

precision of the method relative to TCND ages from the same rock type in the same area and 

therefore to contribute to assessments of the utility of SHD as a calibrated age-dating 

technique. 

 

2. Research location  

Muckish (Lat. 55°06’ N, Long 8°00’ W; 666 m above sea level (asl); Fig. 1) is part of a 

30 km-long southwest-to-northeast aligned tract of the Lower Dalradian Ards quartzite in 

County Donegal, northwest Ireland. It is steep on all sides except the west and has an 

extensive plateau above ~600 m asl. Ice from the granite-dominated mountains to the south 

was thought by Charlesworth (1924) to have crossed the summit of Muckish during the last 

(Midlandian) glaciation but granite erratics have not been reported from the plateau. 

Charlesworth also considered the angular quartzite debris on the plateau to be a product of 

frost activity following withdrawal of glacier ice.  Ballantyne et al. (2007) figured Muckish as 

one of several Donegal mountain tops that escaped glacial erosion during the Last Glacial 

Maximum (LGM) because ice-scoured bedrock was not seen above ~470 m asl, and the 

upper limit of erratics on neighbouring mountains is ~550 m asl (Wilson, 1993).  Based on 

evidence demonstrating that the last British-Irish Ice Sheet extended to the Atlantic shelf 

edge, ~90 km west of the Donegal coastline (O’Cofaigh et al., 2012), Ballantyne et al. (2013) 

proposed that during the LGM the summit of Muckish was likely covered by cold-based ice 

frozen to the underlying substrate. 

The mean annual temperature on the summit of Muckish, inferred from data at a site 

close to sea level using a lapse rate of 1 ºC / 100 m (Rohan, 1986), is 4.9 ºC and the mean 

annual minimum air temperature is 1.4 ºC. Mean monthly minimum values may be below 0 

ºC for six months of the year (November-April inclusive).  Monthly precipitation figures are 

not available but small-scale maps place Muckish within the 2000 mm annual isohyet 

(Rohan, 1986). These data indicate a maritime periglacial regime at the southern limit of the 

subpolar oceanic zone (Wilson and Sellier, 1995). 
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3. Debris Landforms 

Notwithstanding the issue of ice cover during the LGM, Muckish has several areas 

occupied by periglacial and paraglacial landforms composed of coarse rock debris about 

which there is negligible chronological information. These include blockfield, relict and active 

patterned ground, boulder lobes, debris cone, RSF run-out debris, and talus (Fig. 1), several 

of which indicate a formerly severe periglacial climatic regime with associated permafrost. 

A large arcuate debris ridge of 2.8 M m3 at the foot of the southwest-facing talus was 

interpreted by Wilson (1990a) as a relict rock glacier (Figs 1 and 2a).  This view has since 

been amended and the ridge is now considered a consequence of rock-slope failure (Wilson, 

2004). TCND (10Be ages) of surface boulders on the ridge (Fig. 2b) yielded weighted mean 

ages of 16 ka and 15 ka, depending on the production rate used for age calculation 

(Ballantyne et al., 2013). Boulders within and on the surface of this feature were used as 

young and old control surfaces (see below). 

The summit plateau is dominated by boulders; the largest clasts are concentrated in a 

zone around the highest point at the northeast extremity (Figs 1 and 2c).  Many of the 

boulders have a b axis exceeding 50 cm. Further west and south, boulder sizes decrease 

markedly and relict patterned ground with superimposed active forms is extensive (Wilson 

and Sellier, 1995).  

Boulder lobes occupy the west-facing slopes of Muckish between 600-550 m asl and 

500-350 m asl (Figs 1 and 2d).  Some lobes have merged laterally to create terraces with 

recessed frontal margins. Boulder b axes are generally within the range 30-50 cm and 

lobe/terrace fronts rise up to 5 m above the base of their frontal slopes. 

The southwest slopes below 500 m asl are diversified by a broad (450 m wide) 

rectilinear talus sheet below degraded cliffs (Wilson, 1990b), broad mounds of RSF run-out 

debris originating from a westward continuation of the same cliff-line, and a debris cone that 

issues from a deeply incised upland valley (Figs 1, 2e-h). The cone is one of the largest such 

features in the mountains of Ireland; it is 530 m in length, extends through a height range of 
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180 m and has a basal width of 200 m. The lower part of the cone stands at gradients of up 

to 33° for 30-40 m above which the general surface slope to the apex, at the mouth of the 

upland valley, is in the range ~15-20° (Sellier and Wilson, 1995). 

 

4. Methods and rationale 

Schmidt-hammer R-values were obtained from surface boulders on the different 

landforms using a mechanical ‘N-type’ Schmidt hammer (Proceq, 2006), the reliability of 

which was checked before and after use with the manufacturer’s test anvil (McCarroll, 1987, 

1994; Winkler and Matthews, 2014).  Mean R-values were derived from two impacts on each 

of 150 boulders at each control site and at eight locations on the landforms selected for 

investigation (Fig. 1). Boulder surfaces selected for SHD measurements were horizontal or 

near-horizontal, and corners, cracks, and lichen thalli were avoided (Matthews and Wilson, 

2015); data collection was done in dry conditions and by a single operator. 

The young control site comprised boulders exposed by quarrying of the large RSF 

debris ridge at the foot of the southwest-facing slopes (Figs 1 and 2a).  A quarry has existed 

here for at least 35 years but was substantially extended and deepened about 25 years ago 

and has since been worked intermittently. The sampled boulders came from locations 

excavated within the last 25 years and ~10-15 m below the ridge crest. An age of 20 years 

was assigned to this control site.  Boulders on the surface of the debris ridge near to its 

eastern end were used as the old control site (Figs 1, 2a).  Based on the 10Be weighted 

mean ages of 16 ka and 15 ka from boulders on this part of the ridge (Fig. 2b) an age of 15.5 

ka was assigned to the site. 

The landforms sampled for SHD are those described in section 3 (above) and as 

indicated on Fig. 1 and shown in Figs 2c-h. Single sites were selected for sampling on 

summit blockfield and talus accumulation; two sites were sampled at different elevations on 

each of the other landforms. 

The high-precision calibration equation was based on data for both the young and old 

control surfaces (Table 1).  The equations used to derive the age calibration equation, 
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including the calculation of 95% confidence intervals around predicted SHD ages, are as 

outlined by Matthews et al. (2014) and Matthews and Wilson (2015). The calibration equation 

is a standard linear regression equation of the form:  

 

y = a + bx 

 

where x is mean R-value and y is surface age in years. For two control points, the b 

coefficient (slope of the calibration curve) is defined by: 

 

b = (y1 – y2)/(x1 – x2)  

 

where x1 and x2 are the mean R-values of the older and younger control points, respectively, 

and y1 and y2 are their respective ages. The a coefficient (intercept age) is obtained by 

substitution in the calibration equation. 

 The 95% confidence interval for age, which represents the total error (Ct), combines 

the error of the calibration curve at the point associated with the sample surface being dated 

(Cc) with the sampling error residing in the sample itself (Cs): 

 

Ct = √(Cc
2 + Cs

2)  

 

The error of the calibration curve is calculated from the errors associated with the control 

points and their difference in age: 

 

Cc = Co – [(Co – Cy)(Rs – Ro)/(Ry – Ro)] 

 

where Co is the 95% confidence interval of the old control point in years, Cy is the confidence 

interval of the young control point in years, and Ro, Ry and Rs are the mean R-values of the 

old control point, the young control point and the sample surface, respectively. The sampling 
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error associated with the sample surface depends on the slope of the calibration curve (b), 

the sample size (n), Student’s t statistic and the standard deviation (s) of the R-values from 

the sample surface: 

 

Cs = b[ts/√(n-1)] 

 

 As with previous high-precision calibrated SHD studies in which two control surface of 

known age were used (Matthews and Owen, 2010; Matthews and Winkler 2011; Matthews 

and Wilson, 2015; Matthews et al., 2015) we have inferred a linear R-value–age relationship 

between the young and old control sites on Muckish. These earlier investigations were 

restricted to the Holocene timescale (<11.7 ka) and the adoption of a linear relationship is 

justified because: (1) weathering rates of hard crystalline rocks are slow and, in principle, 

near-linear on the Holocene timescale (e.g. Colman, 1981; Colman and Dethier, 1986); and 

(2) tests using several intermediate and firmly dated age-control points on granite surfaces 

(Shakesby et al., 2011) have demonstrated a linear trend on the Holocene timescale.  

As our old control point is ~4 ka prior to the start of the Holocene use of a linear 

relationship may be questioned. However, a linear calibrated-age curve extending to ~15 ka 

has been suggested by Engel (2007) for granite surfaces in the Czech Republic, and 

Sánchez et al. (2009) indicated that R-values continue to decline in a linear manner on 

granite surfaces up to ~70 ka in northwest Spain.  Furthermore, field data demonstrating low 

rates of post-glacial weathering for hard crystalline rocks rich in quartz/quartzite are available 

for arctic-alpine areas of Scandinavia (Andre, 1996, 2002; Nicholson, 2008). Similar rates 

had been previously recorded in cool temperate areas of Canada (Clément et al., 1967) and 

southern Sweden (Rundberg, 1970) suggesting that the weathering of such rocks proceeds 

at comparable rates in both mid- and high latitude environments. In addition, Tomkins et al. 

(2016) illustrate a linear trend for the weathering of granite surfaces over the post-LGM - 

Lateglacial timescale (~23-12 ka) in Great Britain.  Given the relatively brief time that has 

elapsed since withdrawal of LGM ice from Ireland and considering the associated switching 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

10 

between arctic and cool temperate climate states within this period, we consider use of a 

linear R-value–age relationship for the Muckish quartzite control sites to be appropriate.     

 

5. Results 

5.1 Control sites and the calibration curve 

 Schmidt hammer R-values for the young and old control sites are summarised in 

Table 1 and frequency distributions are shown in Fig. 3. These data indicate an R-value 

difference of 20.4 between boulders recently exposed by quarrying operations from deep 

within the RSF debris ridge (~20 years; mean R-value 65.6) and the boulders on the surface 

of the ridge (~15.5 ka; mean R-value 45.2). The range of values for the young site (28) is 

smaller than for the old control site (48) indicating relatively clustered and dispersed 

frequency distributions respectively. Furthermore, while the near-symmetrical frequency 

distribution for the old control site is interpreted as reflecting a single population of boulders, 

the young control site is slightly negatively skewed suggesting the possibility that a small 

sub-population of boulders that are more weathered and therefore older than the majority. 

These boulders may have resided near to or on the surface of the debris ridge prior to 

quarrying and have been brought to their present location by that activity. The high-precision 

calibration curve and equation of y = 49798.824 - 758.82353x shown in Fig. 4 was derived 

from these data.   

 

5.2 Debris landforms and the SHD ages 

 Schmidt hammer R-values for the debris landforms selected for study are given in 

Table 2 and frequency distributions are presented in Fig. 5. The blockfield, boulder lobe and 

talus samples have mean R-values in the range 52.1 to 54.2. These values are numerically 

closer to the mean R-value of the old control site than the young site. In contrast, the RSF 

run-out debris and debris cone have mean R-values in the range 63.2 to 65.3 and are 

numerically closer to the mean R-value of the young control site than the old site. This is 

mirrored by the shape of the respective frequency distributions. All the distributions display a 
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degree of negative skewness, and this is more prominent for the blockfield, talus and boulder 

lobe samples. A mixed population of boulders is therefore indicated with a small but 

substantial proportion of boulders being more weathered and hence older than the majority.  

Negative skewness is less pronounced for the RSF run-out debris and debris cone samples 

suggesting that older boulders have made only minor contributions to these datasets. The 

implications of these admixtures are considered below. 

 The SHD exposure ages for the debris landforms, based on their mean R-values, 

were determined from the calibration equation in Fig. 4. These ages and their 95% 

confidence intervals (Ct), together with the error components used to determine the 

confidence intervals – i.e. the sampling error associated with each landform sample (Cs) and 

the error in the calibration curve (Cc) – are listed in Table 3. Landform ages range from 

10.3±1.3 ka to 0.25±0.93 ka and two distinct age clusters are apparent. Cluster 1 comprising 

blockfield, boulder lobes and talus is early Holocene in age (10.3±1.3 - 8.7±1.6 ka), and 

cluster 2, late Holocene in age (1.8±1.0 - 0.25±0.9 ka), comprises the RSF run-out debris 

and the debris cone. Within each age cluster the 95% confidence intervals of the landform 

ages overlap, so the ages cannot be regarded as statistically different from one another at 

the 5% significance level.  

 

6. Discussion 

Each of the SHD age determinations represents an estimate of the average age of 

boulders at the surface of their respective landforms. With one exception (i.e. the debris cone 

upper site) the landforms show no evidence of current activity and assuming there has not 

been any post-depositional disturbance, the SHD ages are maximum estimates of the time 

elapsed since the boulders stabilised and the landforms became inactive. For several 

landforms older boulders are buried beneath the sampled surface boulders, in these cases 

the SHD ages can also be considered as minimum estimates for the start of landform 

development. 
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6.1 Implications of the early Holocene SHD ages  

It is inferred that the blockfield and boulder lobes were active as the upper slopes of 

Muckish emerged from beneath ice of the last glaciation ~19-16 ka (Clark et al., 2009; 

Ballantyne et al., 2013). However, the blockfield is likely to be older, having survived under 

cold-based ice of the LGM, as demonstrated for mountain-top blockfields elsewhere in 

Ireland (Ballantyne and Stone, 2015), Scotland (Fabel et al., 2012) and Norway (Fjellanger et 

al., 2006; Juliussen and Humlum, 2007; Goehring et al., 2008). Irrespective of when the 

Muckish blockfield first developed it is likely to have been active following ice withdrawal 

because a severe periglacial (permafrost) climate prevailed (Wilson, in press). Also, a 

periglacial climate on Muckish during part of the Lateglacial Interstadial (14.7-12.9 ka BP) 

cannot be excluded, and the Younger Dryas Stadial (12.9-11.7 ka BP) was again 

characterised by permafrost (Wilson, in press).  

Stabilisation of the blockfield and boulder lobes occurred in the early Holocene (Table 

3).  The SHD 95% confidence limits determined for these landforms overlap with two or more 

of the five short intervals of climatic deterioration (cooling) at around 11.4, 10.9, 10.2, 9.3 and 

8.2 ka BP (Figure 6) that are evidenced by ice-rafted debris in North Atlantic sediment cores 

and/or the δ18O record of the NGRIP ice core (Bond et al., 1997; Vinther et al., 2006). This 

suggests that the coarse debris accumulations may have been intermittently active 

throughout the early Holocene. Although the geomorphological impact of early Holocene cold 

events in the uplands of Ireland is not yet known, evidence from elsewhere in northwestern 

Europe indicates that sea surface temperature and mean annual air temperature fell by >2 

°C during the 9.3 and 8.2 ka BP events (Klitgaard-Kristensen et al., 1998; Marshall et al., 

2007) and this is likely to have been the driver of landscape change.  For example, enhanced 

soil erosion coincident with the 8.2 ka BP event has been documented in Sweden (Zillén and 

Snowball, 2009; Snowball et al., 2010), Denmark (Hede et al., 2010), and northwest England 

(Vincent et al., 2011); woodland perturbation and an increase in the representation of cold 

tolerant trees such as Betula and Pinus at the expense of thermophilous taxa Corylus and 

Quercus have been recorded during the same event in Ireland (Ghilardi and O’Connell, 
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2013; Holmes et al., 2016) and Denmark (Hede et al., 2010); and from western Scotland 

pollen evidence indicates the expansion of grassland, and the analysis of 14C dated ‘activity 

events’ suggested a dramatic collapse in the Mesolithic population, both at 8.2 ka BP (Wicks 

and Mithen, 2014). Given these diverse correlations with the 8.2 ka BP event it is not 

unreasonable to infer that earlier cold phases also had significant landscape impacts, 

including on high ground in Ireland. Our SHD ages for the blockfield and boulder lobes 

suggest reactivation of the mountain-top detritus was a likely consequence of these short-

lived cold excursions and represent the first indication from the Irish uplands of a 

geomorphological response to early Holocene cooling events. Reactivation of these features 

explains their negatively-skewed R-value frequency distributions (Fig. 5). Some older, more 

weathered boulders appear to have been ‘recycled’ as a result of renewed cooling, with frost 

heave, boulder overturning and downslope movement accounting for the range of R-values.    

Some support for a causal link between early Holocene cold events and activity of the 

debris accumulations may be provided by the SHD age and 95% confidence limits for the 

talus (Table 3; Fig. 6). The confidence limits overlap with the most recent of the cold events 

at 9.3 and 8.2 ka BP, and this association is open to one of two possible interpretations: (1) 

talus accumulation was restricted to these two cold phases; or (2) talus accumulation 

occurred in all cold phases but earlier talus was partly buried by later talus. Thus, some old 

boulders were sampled and these explain the negatively-skewed frequency distribution (Fig. 

5). Of these interpretations, the second is preferred because boulder lobes, active in earlier 

cold episodes, require sufficiently intense freeze-thaw cycles in order for frost creep and 

gelifluction to move them downslope (Ballantyne and Harris, 1994; van Steijn et al., 1995).  

Such freeze-thaw action is also likely to have caused numerous rockfalls from the cliff above 

the talus. However, talus may also accumulate as a consequence of paraglacial stress-

release and fracture propagation in rock-slopes and/or palaeoseismicity associated with 

glacio-isostatic crustal uplift following local deglaciation (Ballantyne, 2002; Sass, 2006; 

Wilson, 2009b, in press). Therefore, it may be best to regard talus as a composite debris 
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accumulation of periglacial-paraglacial derivation (Wilson, 2009b). Regardless of the 

processes, significant talus accumulation on Muckish had effectively ceased by 7 ka BP.   

If the findings reported above could be confirmed at other mountain sites in Ireland it 

would indicate that coarse debris landforms of these types did not finally stabilise at the end 

of the Younger Dryas cold period as previously implied (Quinn, 1987; Coxon, 1988). Rather, 

they continued to be intermittently active over the first ~4-5 ka of the Holocene, as suggested 

by Wilson (in press), and represent some of the geomorphological signatures of these short 

cold events.  

 

6.2 Implications of the late Holocene SHD ages  

Boulders of the RSF run-out debris and the debris cone yielded SHD ages from the 

late Holocene (Table 3, Fig. 6).  The statistically indistinguishable ages from the upper and 

lower areas of the RSF debris are interpreted as indicating its emplacement in a single sub-

cataclasmic rock-avalanche style event (sensu Jarman, 2006), rather than incremental 

deposition over a protracted period as characterised the accumulation of the adjacent talus. 

In turn this implies that the ages are close approximations to the time of failure, with a best 

estimate of ~1.58±1.0 ka derived from a simple average of the two ages and their confidence 

limits. The low-amplitude surface morphology of the run-out debris, compared with the 

rectilinear form of the neighbouring talus (Figs 2e-f), and the fact that the run-out debris is 

thin (<5 m thickness) and has over-ridden pre-existing talus is consistent with this 

interpretation. The slightly negatively skewed R-value frequency distributions (Fig. 5) may 

reflect inclusion in the samples of boulder surfaces that previously formed the cliff face 

and/or boulders incorporated from impact on and mixing with underlying talus. Boulders from 

both situations would be more weathered and of greater age than the timing of failure. 

The RSF run-out debris differs considerably in its morphology, topographic position 

and age from those RSFs on the quartzite mountains of Donegal described by Wilson 

(2004), and subjected to TCND dating by Ballantyne et al. (2013), including the arcuate ridge 

of quarried RSF debris used here for the SHD control surfaces. These large-scale RSFs 
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returned 10Be ages from 17.7±0.9 ka to 11.7±0.5 ka and were considered as paraglacial 

responses to deglaciation. The SHD age of the RSF run-out debris may indicate a millennial-

scale delayed response to paraglacial stress-release, as recorded by Ballantyne et al. (2014) 

for a small number of RSFs in the Highlands of Scotland, or a transient triggering event 

whose impact was intensified because of paraglacial rockwall weakening.  

A possible trigger for rock-slope failure was climatic deterioration at 2.7, 1.5 and/or 

0.5 ka BP.  Multiproxy palaeohydrological records from ombrotrophic bogs in the north of 

Ireland demonstrate rapid and major shifts to cooler and/or wetter conditions at those times 

(Swindles et al., 2007, 2013; Plunkett and Swindles, 2008), and are consistent with evidence 

for wet shifts at around the same times in mires in northern England, Scotland and parts of 

mainland Europe (see Swindles et al., 2007, 2013). Increases in precipitation would likely 

lead to a build-up of higher than normal joint-water pressures in the fractured rock of the RSF 

source area. Shifts to increased wetness have been proposed to explain the temporal 

clustering of RSFs in different parts of the European Alps at various times by Prager et al. 

(2008) and Borgatti and Soldati (2010), including at around 2.7 and 1.5 ka BP, and by 

Zerathe et al. (2014) in association with the wet shift at 4.2 ka BP. Given that the averaged 

SHD age and 95% confidence limit for the run-out debris overlaps with three cool and/or wet 

shifts (Fig. 6) the possibility that failure was triggered by excess joint-water pressure is not 

easily dismissed. It is interesting to note that the RSF has no apparent association with the 

climatic deteriorations at 5.2 and 4.2 ka BP, suggesting possible long-term progressive 

weakening of the rockwall as a pre-requisite for climate-triggered failure late in the Holocene.  

The debris cone is envisaged as a product of high-magnitude low-frequency fluvial 

and debris flow events from the upland valley and from reworking of the upper part of the 

cone as it developed. As such the SHD ages are minimum ages for cone initiation. It is not 

unreasonable to infer that cone development began during or shortly after deglaciation given 

its extent and estimated basal thickness of ~20 m.  

The SHD ages and 95% confidence limits for the debris cone overlap with one or 

more of the three late Holocene cool and/or wet shifts (Fig. 6).  Erosive events in the 
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catchment probably increased in frequency and intensity during the wet shifts. Although the 

age from the lower part of the cone surface (~1.7±1.1 ka) indicates this area may have been 

stable for up to a maximum of 2.8 ka, the debris could have been emplaced as late as 0.6 ka. 

However, locally there is a peat cover (Fig. 2g) to 0.4 m thickness which suggests an earlier 

rather than later age within the 95% range. 

The SHD age (0.25±0.9 ka) for boulders from the upper part of the cone 

encompasses the cooler/wetter period known as the Little Ice Age. This young age is 

consistent with the morphological ‘freshness’ of the debris lobes and sheets that dominate 

this area (Fig. 2h) and also with the whiter surface colours of the boulders compared to the 

grey boulders at the lower site; the implication is that the paler boulders are less weathered 

because they were deposited more recently. (A similar colour contrast also applies between 

the young and old control site boulders.). As with the early Holocene cold events, the full 

range of Little Ice Age geomorphological responses in the uplands of Ireland has not yet 

been established, but the SHD evidence from Muckish indicates that debris cone 

aggradation was one such impact.   

The slight negative skewness of the debris cone R-value frequency distributions (Fig. 

5) indicates a minor component of older boulders in the samples.  These are likely to be 

boulders that had previous residence time in the upland valley and/or on the upper part of the 

cone before being transferred to the lower zone.  

   

6.3 Comparison of SHD with TCND ages 

 Several studies have combined SHD and TCND in order to determine the accuracy 

and precision of the former method in landform dating (Sánchez et al. 2009; Winkler, 2009, 

2014; Matthews and Winkler, 2011; Linge et al. in press; Tomkins et al. 2016). Although no 

consensus has yet been reached it has been concluded that SHD is a valuable 

complementary technique to TCND over a timescale that encompasses deglaciation 

following the LGM and the Holocene. TCND yields numerical ages for landforms and 

provides age control points for SHD calibration curves. It has been concluded that SHD could 
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be used in the selection of surfaces for TCND as it would enable greater objectivity with 

respect to decision making over choice of sample sites (Winkler, 2009). This in turn could 

reduce the number of TCND samples required and therefore overall project costs.  

For the same early Holocene moraines in southern Norway, Matthews and Winkler 

(2011) found that SHD results were statistically indistinguishable from, but more precise 

than, TCND ages. Elsewhere in southern Norway, Linge et al. (in press) have shown that 

SHD and TCND results for early Holocene relict rock glaciers are also statistically 

indistinguishable. In northwest England, Tomkins et al. (2016) have established that TCND 

and SHD ages for retreat of the last ice sheet are of comparable accuracy and precision.    

At Muckish, a similar direct comparison is not possible because none of the 

landforms assessed for SHD have been dated using TCND (except for the old control site). 

However, Ballantyne et al. (2013) applied TCND to a further seven RSFs (total of 21 

boulders) on mountains adjacent to Muckish and on the same rock type. Individual boulders 

returned ages between 18.3±2.1 and 8.8±0.9 ka (external uncertainty ±2σ range). The ages 

of the four youngest boulders (11.9±1.2 – 8.8±0.9 ka: external uncertainty ±2σ range) 

overlap with the SHD results from the blockfield, boulder lobes and talus, but have a ±2σ 

range that is between 0 and 0.67 ka less than the four Muckish samples. In this instance, 

therefore, the TCND results appear to have a greater precision for landforms of the same 

general age. However, it is not clear whether, in a statistical sense, the TCND 2σ range is 

directly equivalent to the SHD 95% confidence interval. If this can be determined, then the 

precision associated with each technique could be better assessed. 

 

7. Conclusions 

SHD applied to an assemblage of late Quaternary periglacial and paraglacial 

landforms composed of coarse rock debris on Muckish Mountain, northwest Ireland, has 

revealed early Holocene stabilisation ages for blockfield, boulder lobes and talus, and a late 

Holocene age for RSF run-out debris and debris cone boulders. Age estimates for blockfield, 

boulder lobes and talus overlap with two or more of the five short intervals of marked cooling 
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that characterised the early Holocene, inferring that the debris was active at some of those 

times. Using 95% confidence intervals the summit blockfield stabilised and had become relict 

by ~8 ka BP, the boulder lobes had stabilised prior to the 8.2 ka BP event, and talus 

accumulation had ceased by ~7 ka BP. It had previously been implied that these types of 

landforms on Irish mountains had stabilised at the end of the Younger Dryas Stadial. The 

SHD results are the first indication that these early Holocene cold phases had a significant 

geomorphological impact in the uplands. 

SHD results from RSF run-out debris imply emplacement in a single sub-cataclasmic 

rock-avalanche type event and indicate it to be considerably younger than other RSF debris 

accumulations on Muckish and adjacent mountains, which are attributed to paraglacial-

related factors. The age overlaps with phases of climatic cooling and/or increased wetness in 

the late Holocene. Wet shifts have been proposed to explain temporal clusters of RSFs in 

other mountain areas and therefore a climate-trigger for the Muckish failure cannot be 

ignored. 

Debris cone boulders, also of late Holocene age, accumulated through fluvial and 

debris flow events and are the most recent additions to the cone at their respective locations. 

The SHD results also overlap with shifts to cooler/wetter conditions and, again, are the first 

indication that mountain slopes in Ireland were impacted by these climate changes. Although 

the upper part of the cone remains intermittently active, the extent and thickness of the 

debris implies a lengthy period of aggradation.  

Compared with TCND results from RSF boulders on adjacent mountains, the SHD 

ages are of similar but slightly lower precision, which reinforces the usefulness of SHD as a 

complementary approach to exposure-age dating of rock surfaces. 
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Figure captions: 
 
Fig. 1. Muckish Mountain, northwest Ireland, showing locations of the periglacial and 
paraglacial landforms selected for SHD. 
 
 
Fig. 2. Views of the debris landforms on Muckish at which SHD was conducted. (a) The 
quarried debris of the RSF deposit (middle distance). The location of the young control site, 
within the quarried debris, is indicated by the red marker lower left; the old control site, on the 
flanks of the debris ridge, is indicated by the red marker upper right. (b) Surface boulders at 
the old control site on proximal slope of the RSF deposit. (c) Summit blockfield sampling 
location. (d) Boulder lobe at the upper sampling location on the west-facing slopes of 
Muckish. (e) Part of the talus slope above the RSF shown in photo a; SHD was conducted on 
boulders near the base of the talus. (f) RSF run-out debris adjacent to the talus shown in 
photo e; the red markers indicate the upper and lower sampling locations. (g) Debris cone 
adjacent to the RSF shown in photo f; the red markers indicate the upper and lower sampling 
locations. (h) Upper sampling location at the apex of the debris cone shown in photo g.    
 
 
Fig. 3. Frequency distributions of Schmidt-hammer R-values for the young and old control 
sites. N=150 and the class interval is 2 units. 
 
 
Fig. 4. High-precision calibration curve and equation based on Schmidt-hammer data for 
young and old control sites. 
 
 
Fig. 5. Frequency distributions of Schmidt-hammer R-values for the debris landforms. N=150 
and the class interval is 2 units.  
 
 
Fig. 6. Plot of NGRIP ice-core δ O18 data (from Vinther et al., 2006), intervals of well 
documented Holocene climatic deterioration in the northeast Atlantic region (vertical grey 
bands – cold events in early Holocene, cool and/or wet events in mid and late Holocene) 
from Bond et al. (1997) and Vinther et al. (2006), and SHD ages with 95% confidence limits 
for the coarse debris landforms on Muckish. Landform codes are given on Figure 1; u: upper 
site, l: lower site. 
 
 
Tables: 
 
Table 1. Schmidt-hammer R-values and associated statistics for the control sites. Mean R-
values are based on the means of two impacts on each of 150 boulders; confidence intervals 
use n=150 boulders. 
 
Table 2. Schmidt-hammer R-values and associated statistics for the sampled landforms. 
Mean R-values are based on the means of two impacts on each of 150 boulders; confidence 
intervals use n=150 boulders. 
 
Table 3. Schmidt-hammer exposure-ages for the sampled landforms. Each SHD age has a 
95% confidence interval (Ct) derived from the sampling error of the landform sample (Cs) and 
the error associated with the calibration curve (Cc). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
 
 

 
 
Table 1. Schmidt-hammer R-values for the control sites. 
Control site Age (years) Mean R-value Standard  Standard Confidence 

  (n=150) deviation error interval (95%) 

Young  ~20 65.6 5.17 0.42 0.83 

      

Old  ~15,500 45.2 9.92 0.81 1.60 
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Table 2. Schmidt-hammer R-values for the sampled landforms. 
Sample Mean R-value Standard  Standard Confidence 

 (n=150) deviation error interval (95%) 

Blockfield 53.4 11.36 0.93 1.83 

Boulder lobes (u) 52.8 9.95 0.82 1.62 

Boulder lobes (l) 52.1 10.53 0.86 1.70 

Talus 54.2 12.53 1.03 2.04 

Rock-slope failure (u) 63.9 6.54 0.54 1.06 

Rock-slope failure (l) 63.2 7.28 0.60 1.18 

Debris cone (u) 65.3 5.52 0.45 0.89 

Debris cone (l) 64.3 6.51 0.53 1.05 

 
u: upper site 
l: lower site 

 

 
 

 
Table 3. Schmidt-hammer exposure-ages (SHD) for the sampled landform. Each SHD age has a 95% 
confidence interval (Ct) derived from the sampling error of the landform sample (Cs) and the error 
associated with the calibration curve (Cc). 
Landform SHD age  Ct  Cs  Cc  

 (years) (years) (years) (years) 

Blockfield 9278 ±1408 1388.7 234.9 

Boulder lobes (u) 9733 ±1248 1229.3 217.7 

Boulder lobes (l) 10,264 ±1305 1290 197.6 

Talus 8671 ±1569 1548 257.8 

Rock-slope failure (u) 1310 ±966 804.4 535.6 

Rock-slope failure (l) 1841 ±1033 895.4 515.6 

Debris cone (u) 248 ±929 675.4 638.4 

Debris cone (l) 1689 ±1056 796.8 692.8 

 
u: upper site 
l: lower site 


