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Abstract 

The aim of this work was to study the culture performance of a dinoflagellate in a 

commercial photobioreactor. The results obtained during this long-term experiment allow to 

confirm that Amphidinium carterae is a promising dinoflagellate that can be exploited 

succesfully in closed systems, in semi-continuous mode in indoor and outdoor environments. 

The average results in an indoor 5 cm light-path 320 L photobioreactor were, in terms of 

specific growth rate (0.29 d
-1

), duplication time (3.1 d
-1

) and dry biomass productivity (78 mg 

L
-1

 d
-1

). Specific compounds production was found including ω3 and ω6 fatty acids and, 

pigments (Peridinin, β-caroten). These promising results, besides unique characteristics found 

during the exploitation period such as resistance to mechanical stress, self-control of 

contaminant organisms, and quick cells aggregation when the culture is not in turbulence 

conditions, makes A. carterae one of the new target species suitable for commercially 

exploitation on an industrial scale. 

 

Keywords 
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1. Introduction 

Microalgae biomass production is one of the fastest growing biotechnology fields in recent 

years (Lam and Lee, 2012; Wijffels et al., 2013). This rise in the knowledge gained of 

microalgae biomass production in various controlled systems is supported by the increased  

industrial use of the metabolites obtained from microalgae. These include: essential fatty 

acids such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid 

(AA), pigments (carotenoids, phycobiliproteins etc.), proteins, exopolysaccharides (EPS), and 

neutral lipids for biofuel production (Fuentes-Grünewald et al., 2015; Slade and Bauen, 2013; 

Vanthoor-Koopmans et al., 2013) All of these metabolites that can be extracted from 

microalgae biomass have a variety of applications from human and animal nutrition, 

pharmaceutical, cosmetic, and wound healing uses to use as a source of energy, amongst 

others. 

This fast growth in microalgal production biotechnology is due to the development and 

improvement of the systems used for controlled production, especially closed systems like 

photobioreactors (PBR) (Gallardo Rodríguez et al., 2010; García Camacho et al., 2011; 

Zijffers et al., 2008). Microalgae biomass production has been focused on well known strains, 

where it is known in detail their life cycle, biotic and abiotic parameters, productivity 

parameters, etc. Among the most well-known microalgae species currently produced in a 

higher scale are: Arthrospira maxima and Spirulina platensis (both providing proteins for 

human consumption), Haematoccocus pluvialis (pigments), Dunaniella salina (carotenoids), 

Nannochloropsis oculata (fatty acids including EPA) (Becker, 2007; Del Campo et al., 2007; 

Guerin et al., 2003; Olofsson et al., 2012). Recently emphasis has been put on the search for 

new microalgae species that allow the production of a wide range of metabolites with high 

economic value, and which can be exploited under a concept of “bio-factory”, utilizing many 

molecules that they produce intracellularly or those metabolites excreted to the medium as 
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possible. The high value metabolites are the first step in full utilisation of microalgal biomass. 

Once these compounds are extracted from the cell or medium, the remaining fraction in the 

biomass can used further for a cascading set of processes such as biofuel and bioenergy uses 

and the recovery of nutrients (e.g. phosphate and nitrogen) used that would be required for 

economic feasibility of microalgae production. Various approaches are being investigated 

towards an economically viable cultivation and production of microalgal biomass (Slade and 

Bauen, 2013; Vanthoor-Koopmans et al., 2013). For these aims the dinoflagellate group is of 

interest (Fuentes-Grünewald et al., 2013; Gallardo Rodríguez et al., 2012; García Camacho, 

2007) . In non-toxic dinoflagellates it is feasible to produce a wide range of molecules with 

high added value, such as: fatty acids, pigments, dimethylsulphide, polyhydroxyl, macrolides, 

among others compounds. There are also toxic dinoflagellates (Protoceratium reticulatum) 

that have been cultured for toxins production in controlled indoor systems. (Fuentes-

Grünewald et al., 2009; Gallardo Rodríguez et al., 2010; Gallardo Rodríguez et al., 2012; 

Huang et al., 2009; Kobayashi and Tsuda, 2004). 

Amphidinium carterae is one of the target dinoflagellate that can be exploited in closed 

controlled systems likes PBR, due basically to their resistance to changes in abiotic culture 

condition. Their production at laboratory scale has focused on understand the function of the 

photosynthetic apparatus in this microalgae group (Damjanović et al., 2000; Di Valentin et 

al., 2009) or as a producer of anti-cancer (amphidinolide) or anti-mycotic compounds (Huang 

et al., 2009; Kobayashi and Tsuda, 2004; Samarakoon et al., 2013). Nonetheless, despite 

being considered one of the easiest dinoflagellates for growing in controlled systems, their 

exploitation has been performed at laboratory scale and as a batch culture during short time 

periods (days) (Kitaya, 2008; Vazhappilly and Chen, 1998; Zimmermann Leigh, 2006). As 

far as we know, there is no basic information available of this dinoflagellate in terms of stable 
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long-term (> 8 months) culture production in commercial PBR’s, in order to determine the 

productive parameters achievable under controlled conditions. 

The aim of the present work is to give information regarding A. carterae production in 

controlled conditions, in a closed system (PBR), in a large scale (> 500 L), long-term culture 

(> 8 months) grown in a semi-continuous mode. 

 

2. Material & Methods 

2.1 Culture conditions 

The dinoflagellate Amphidinium carterae ACRN03 was originally isolated from the 

Mediterranean Sea in the Barcelona area and was kept in the algae bank of the Institut de 

Ciencies del Mar (ICM-CSIC), Barcelona, Spain. For this work A. carterae was grown in Bio 

Fuel Systems S.A. facilities located in Alicante, Spain. Several previous non-axenic A. 

carterae cultures were grown in small round flasks (6 L) in controlled temperature rooms (± 

20 °C), then, an inoculum was transferred first to an indoor airlift bubble column PBR with a 

10 cm light-path and a total working volume of 540 L, and comprising three columns 

connected to a central tube collector which mixed the culture prior to sampling. The same 

PBR design was used for other treatments. Later on, the cultures were transferred to an airlift 

bubble column PBR with a shorter light-path (5 cm) and with a working volume of 320 L. 

Cultures were also run in an airlift bubble column PBR in outdoor conditions with a light-

path of 5 cm, but with a small working volume (48 L). Detailed PBR configuration can be 

found in the following link: http://www.google.com/patents/US20110195493 

The semi-continuous culture was performed for a period of 234 days in total, starting on 

18/09/2012 and finishing on 17/05/2013. The cultures in indoor controlled conditions had 

light with a photoperiod of 18:6 (light:dark), an average light irradiance of 158± 22 µE m
2 
s

-1
, 

was measured at the external tube surface, using a Walz, ULM-500 ligth meter. An average 
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water temperature of 23.3± 2.2 °C and a pH of 7.7± 0.3 were recorded in indoor conditions. 

Non-axenic culture of A. carterae were grown using L1 medium (Guillard, 1995). The 

medium composition was: NaNO3, 880 µM; NaH2PO4·2H2O, 36.3 µM; Na2EDTA·2H2O, 

11.7 µM; FeCl3·6H2O, 11.7 µM; CuSO4·5H2O,0.01 µM; Na2MoO4·2H2O, 0.09 µM; 

ZnSO4·7H2O,0.08 µM; CoCl2·6H2O, 0.05 µM; MnCl2·4H2O, 0.9 µM; H2SeO3, 0.01 µM; 

NiSO4·6H2O, 0.01 µM; Na3VO4,0.01 µM; and K2CrO4, 0.001 µM. In order to run in nutrient 

depletion mode the culture was run without any nutrient addition between day 109 and 120. 

 

Outdoor cultures were inoculated in a small PBR (described previously), using strain from 

the 10 cm light-path PBR. The outdoor cultures were run in the industrial Bio Fuel Systems 

facilities in San Vicente del Raspeig (38° 22’ 32.05’’ N; 0° 32’ 47.54’’ W), Alicante, Spain. 

This outdoor culture was run for a period of 140 days, starting on 14/11/2012 and finishing 

on 04/04/2013. The average outdoor irradiance for Alicante in that period was 2.43 Kwh m
2
 

d
-1

. 

All PBR’s were continuously aerated with a mixture of compressed atmospheric air and CO2 

with an average carbon dioxide of 2.5% vol/vol. The air/CO2 flow rate was fixed at 6.25 L 

min
-1

. For the study fresh filtered seawater (35 IU salinity) was used, having been previously 

treated with sodium hypochlorite (4 ppm) in order to avoid any contamination. Before the 

initial inoculation and during successive harvests (app. 30% of the total PBR volume by each 

harvest was chosen due to down stream process reasons) and inoculations (filled up with 

fresh pre-treated seawater), the pre-treated sea water was neutralized using 1mL sodium 

thiosulphate (Na2S2O3·5H2O) per 1 L of sea water to be treated. The main biotic and abiotic 

parameters were recorded on a daily basis (week days), at the beginning of the day (09:00) 

for the duration of the experiment. 

 



  

6 

 

2.2 Cultures parameters 

In order to do all the biotic and abiotic measurements during the experiment, a sample was 

taken from the PBR’s and the following parameters were recorded immediatly. As the three 

bubble columns were linked and functioned as one system, a single sample was taken at each 

time point for all experiments. 

2.2.1 Temperature and pH 

Both parameters were recorded using a CRISON pH-meter model Basic 20+. 

2.2.2 Absorbance (720 nm) 

To determine the culture growth optical density measured as absorbance was used as a proxi 

of the dry weight biomass. Previously, a full absorbance scan was conducted in order to 

determine the specific wavelength where no interference with A. carterae pigments was 

recorded. The chosen absorbance was 720 nm, and was recorded using a Fisher Scientific 

Spectrophotometer model Genesys 20. 

2.2.3 Dry weight (DW) 

Different volumes (10, 20 or 40 mL) depending on the cell concentration in the culture, were 

filtered using a Whatman GF/F filter (0.7 µm, 47 mm diameter). The filters were preweighed 

using an analytical scale (Gram Precision ST 220S, 0.0001 g). After sample filtration, the 

filtered sample was washed three time with distilled water (25 mL) each time, in order to 

discharge any salt in the sample. Subsequently, the filters were dried in an oven (Nahita 

Drying 631/6) at 80°C for 24 hours. Finally, the dried filters (in duplicate) were weighed and 

the difference from the preweighed filter was recorded as dry weight. 

2.2.4 Growth rate (µ) and Duplication time (DT) 

The specific growth rate (µ), was estimated during the exponential phase of the culture. µ  can 

be calculated as the slope of the linear regression or by the following equation: 

µ = Ln (N2/N1)/(t2 – t1)                 (Equation 1) 
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Where LN is the natural logarithm, N1 and N2 are the measured absorbance at 720 nm at the 

initial time (t1) and the final time (t2). 

The duplication time (DT) was defined as the time (days) that the culture needs to double 

their cell concentration, and was calculated by the following equation: 

DT = LN(2)/ µ  (Equation 2) 

Where LN is the natural logarithm and µ is the specific growth rate obtained from equation 1. 

2.2.5 Biomass productivity 

The theoretical biomass productivity in the A. carterae semi-continuous culture was 

determined as the product between the specific growth rate (µ) obtained from equation 1 and 

the dry weight (DW). The real productivity was calculated as the difference in terms of DW 

between the sample day and the previous day. Both results are expressed in g L
-1

 d
-1

. The 

theoretical productivity is only applicable to cultivation under similar conditions to those 

reported here. 

2.3 Fatty acids analysis 

Fatty acid methyl esters (FAMEs) were prepared by acid catalyzed direct transesterification 

and analyzed by gas chromatography as previously described by Fuentes-Grünewald et al. 

(2012). 

2.4 Pigments analysis 

30 mg of wet biomass was weighed in an amber vial and add 3370 µL of methanol added. 

The sample was agitated via vortexing for 15 min. After agitation the vial was incubated in 

darkness at 4°C for 1 hour, with one agitation by vortexer after 30 min. Subsequently the 

sample was centrifuged (10000 RPM for 5 min). 1 mL of the methanolic extract was taken 
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and was filtered through a PTFE 0.22 µm filter. Finally, the sample was injected in a HPLC 

(Agilent, model 1260 Infinity). The identification and quantification of the pigment 

concentration were conducted by comparison of their retention time, and integrating the areas 

under the curves with known pigments used as standards. It is likely than less than 100% of 

the pigments will be extracted using this method. 

2.5 Elemental analysis 

50 mL of culture sample was centrifuged at 10000 RPM for 5 min, the supernatant was 

discarded and the tube was re-filled with distilled water for washing purposes to remove 

excess salt and centrifuged twice. Subsequently the sample was placed in an oven (Nahita 

Drying 631/6) at 80°C for overnight. The day after, the sample (between 0.4 to 1.2 mg) was 

placed in a pre-weighed aluminium paper, then the sample was injected into an elemental 

analyser, CHN EuroEA. Acetanilide (C= 71.09%; N=10.36%; H= 6.71%) was used for the 

calibration curve. 

2.6 Contamination Monitoring Program 

A contamination monitoring program (CMP) was performed on a weekly basis, with the 

culture samples taken every Wednesday. The CMP gave a general overview of the culture in 

terms of contamination levels. The method includes a qualitative scale where 0 = clean (no 

contaminant organisms); 1 = rare (1< x < 10 organisms in one transect); 2 = scarce (11< x < 

50 organisms in one transect); 3 = abundant (51< x <100 organisms in one transect); 4 = very 

abundant (> 100 organisms in one transect). The organisms were divided into three groups: 

competitors (photosynthetic organisms), predators,  and cell consortia (agreggates). To 

conduct the identification of the contaminant species an inverted microscope (Olympus, 

model CKX41) was used, along with a Sedgewick-Rafter chamber, that took 1 mL of live 
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sample and was diluted, normally 1:10 (depending on the cell concentration). Two transects 

were conducted for each sample.  

2.7 Statistical analysis 

Data analysis was conducted using the R software, using a two factor analysis of variance 

allowing us to assess the differences between each treatment. When a significant difference 

was found, a post hoc Tukey test was used.  The interaction between factors was not 

assessed.  

3. Results and discussion 

3.1 Culture conditions 

3.1.1 Growth and biomass production 

A. carterae cultures in the 540 L PBR indoor controlled conditions started in semi-continuous 

exploitation mode at day 53 (full exponential phase), and was subsequently harvested (30% 

of the volume) and inoculated (using pre-treated seawater) every 7 days on average. An 

immediate acclimation period was observed when the cultures were transferred from 6 L 

round flasks to the indoor PBR, due to the cultures having been transferred during 

exponential phase and in similar abiotic condition such as light, temperature and pH (Figure 

1a). The outdoor cultures showed a longer acclimation period of 6 days on average to start 

growing and reached full stable growth 44 days after the first inoculation (Figure 1b). This 

longer acclimation period can be explained by the temperature amplitude (discussed later) 

and the higher light irradiation founded in outdoor conditions in the Alicante area (2.43 Kwh 

m
2
 d

-1
).  

Regarding the growth measured as optical density (720 nm), it showed no significant 

statistical difference (p=0.204) among the PBR’s depending on the light-path. The maximum 
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average absorbance value reached in small scale 6 L round flasks was 0.667±0.3. In relation 

exclusively to the PBR’s, the maximum absorbance value reached by the indoor 10 cm light-

path PBR was 0.690 with an average of 0.459±0.1. In contrast the PBR with a shorter light-

path (5 cm) indoor had an average absorbance of 0.781±0.1, a 170% higher than the 10 cm 

light-path indoor PBR.  

Regarding the outdoor PBR with a 5 cm light-path, the absorbance peak recorded was 0.747 

and the average value was 0.323±0.1. The maximum absorbance value was higher than the 

10 cm indoor PBR but, considerably lower than the same light-path reactor in indoor 

conditions (Figure 1a & 1b). 

The absorbance values recorded in the PBR’s  in indoor and outdoor conditions coincide with 

the growth rate (µ), biomass productivity and duplication time (DT) that is shown in table 1. 

The growth rate, biomass productivity and the duplication time are higher in the 5 cm light-

path PBR than the 10 cm light-path PBR. These parameters improved when the culture was 

transferred to the 5 cm light-path PBR starting at day 170, a higher growth rate (> 152%), 

higher productivity (>159%) and an average of 1 day less in terms of DT were obtained in 

this PBR (Figure 1a and table 1). The highest absorbance value recorded in the 5 cm light-

path PBR in indoor condition coincides with the highest cell concentration recorded (4.4x10
6
 

cell mL
-1

)  and the maximum biomass production (0.496 g L
-1

) reached by A. carterae during 

the whole experiment. 

In respect of biomass productivity, it is clear that the average and the maximum 

productivities achieved during the experiment were those recorded in the 5 cm light-path 

indoor PBR starting at day 170, with the productivity peaking at day 181 with a value of 125 

mg L-1 day-1 (Figure 2). 

When the average results in terms of biotic parameters for the indoor condition PBR against 

outdoor condition PBR were compared, the statistical ANOVA analysis showed a significant 
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impact of both factors (light-path and indoor-outdoor condition) on productivity, with 

significant differences between the values in each treatment (light path: p=0.03; indoor- 

outdoor condition: p=0.01).  The outdoor PBR showed -31% lower biomass productivity,  

-39% in growth rate and on average took 2.28 days more to double their biomass. 

Independently of the light-path in the reactors, the outdoor PBR had lower biotic values. The 

main biotic parameter in microalgae cultures (µ) was considerably higher in the indoor PBR 

with the same light-path, reaching 2.2 time more growth in controlled conditions. (Table 1). 

For those culture (in indoor and outdoor conditions) that grew with a wider light-path (10 

cm), their growth rates were similar to those obtained by Zimmermann 2006, although the 

cell concentration obtained during our experiment were one order of magnitude higher than 

the Zimmermann work. When it was compare the difference in terms of growth rate and the 

main biotic parameters such as biomass productivity, cell concentration and dry weight 

between the two light-path PBRs that have been studied, is clear that a shorter light-path (5 

cm) significantly improves these biotic parameters (Figure 1a and table 1). In fact, the growth 

rate obtained by different authors (Ho et al., 2003; Kitaya, 2008) are coincident with those 

obtained in the present work, however, it was obtained a higher cell concentration (one order 

of magnitudes) than the work of Franklin & Berges 2004, or even two fold magnitudes more 

than the Kitaya’s works. These improvements in the biotic parameters can be explained by 

the higher light availability in the shorter light-path PBR used in our experiment, or by the 

efficiency on the light absorption of the peridinin-chlorophyll-protein (PCP) light-harvesting 

complex exhibit by dinoflagellates like A. carterae where energy transfer efficiencies up to 

95% have been found, implying a greater capacity to receive and process this light energy 

(Damjanović et al., 2000; Polívka et al., 2006). 
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3.1.2 Abiotic parameters 

Concerning the main abiotic parameters measured during the trial, the temperature recorded 

in indoor controlled conditions had an average of 23.3±2.1°C with a peak of 29.4°C and a 

minimum of 18.4°C. Although the temperature was controlled in the indoor PBR, a seasonal 

fluctuation was observed, with lower temperatures recorded between day 68 to 172 of 

culture, coinciding with the winter season in the northern hemisphere (Figure 1c).  

In the case of the outdoor PBR, the average temperature recorded was 22.5±4.2°C with a 

peak of 30.0°C and a minimum of 11.0°C, showing a higher amplitude temperature and 

fluctuation among days, these differences and temperature fluctuations can be explained by 

no temperature control in the outdoor PBR, the cloud cover, and the natural difference 

between night and day in outdoor conditions in the Alicante area. 

Concerning pH, this abiotic parameter showed a similar evolution in both cultures conditions, 

independent of the light-path in the PBR. The pH in indoor controlled conditions was 7.7±0.3 

with a maximum of 8.65 and a minimum of 6.97. The outdoor PBR showed a slightly lower 

average pH 7.27±0.4, with a peak of 9.05 and a minimum of 6.63 (figure 1d). Both cultures 

showed the lowest pH value at the beginning of the day and no carbonate precipitation was 

found inside the PBR when higher pH values (> pH 8.5) were recorded.  

These A. carterae abiotic cultures conditions were similar results found to Kitaya et al., 2008, 

Samarakoon et al., 2013 and Zimmermann 2006 in terms of optimal temperature, finding that 

the best temperature for growing conditions should be between 20°C to 25°C. However, it is 

noted like other dinoflagellates a temperature amplitude higher than 10°C lengthens the lag 

phase or conditioning time of the cultures, especially in those exposed to outdoor conditions 

(Fuentes-Grünewald, 2012). It would be highly recommended to perform a Life Cycle 

Assessment  (LCA) prior to deploy an industrial outdoor dinoflagellate culture, to elucidate if 
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this lower growth is compensated by the lower production cost (by using natural light, no 

temperature control etc.).  

The pH showed maximum nocturnal-diurnal difference of 1.5 unit, but always the pH values 

were slightly neutral-acidic. Those slightly acidic values were due to the use of CO2 in order 

to keep the cultures with carbon dioxide constantly available, and it seems to be that A. 

carterae likes these conditions because as in the work of Kitaya et al., 2008 when there is an 

increase in CO2 the growth performance in the culture is better. It must be noted that when 

the pH values were higher than 8.5 unit neither a calcium carbonate formation nor a slow-

down of the culture in terms growth rate were observed. 

 

 

Figure 1.  Growth curve in indoor condition (1a) and outdoor condition (1b) recorded as a dry 

weight (black line) and optical density using absorbance at 720 nm (grey line). Main abiotic 

parameters in indoor (1c) and outdoor condition (1d) temperature °C (grey line) and pH (dash 

black line). 
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Figure 2.  Biomass productivity in A. carterae cultures in indoor PBR’s. Productivity of  the 

10 cm light-path from day 13 to day 170, 5 cm light-path from day 170 to day 223. 

 

Table 1. Averages of the main biotic parameters recorded during the growth of A. carterae in 

controlled indoor condition and outdoor condition. L-P: Light-Path. Two factor ANOVA test 

(L-P and in-outdoor condition) on productivity was conducted (*: p<0.05, Df: Degrees of 

Freedom). Tukey: post hoc test comparing the different factor levels. 

Biotic parameters  Outdoor PBR  

     48 L 

L-P 5 cm 

Indoor PBR  

540L 

L-P 10 cm 

Indoor PBR  

320L 

L-P 5 cm 

Indoor 

average 

 

µ (day-1)  0.13±0.05 0.19±0.06 0.29±0.16 0.21±0.11  

Duplication time (days)  5.77±2.06 4.10±1.36 3.10±1.69 3.49±1.50  

Real biomass productivity (g L day-1)  0.036±0.02 0.049±0.02 0.078±0.02 0.052±0.03  

Theoretical biomass productivity (g L day-1)  0.039±0.02 0.038±0.01 0.087±0.03 0.049±0.03  
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3.2 Fatty acids 

The main free fatty acids in A. carterae identified during the experimental period are shown 

in Table 2. The highest percentages in the fatty acid profile are those of the saturated group 

(SAFA), with on average above 80% in this fraction. Among the saturated, the highest and 

predominant one was the palmitic acid (C16:0) with an average of 76.91%, followed far 

behind by the miristic acid with an average of 5.1%. The second group of fatty acids detected  

were the unsaturated fatty acids (USFA) with an average of 10%, the majority being 

palmitoleic acid C16:1 (6.5%) and then oleic acid C18:1 (4.0%). The polyunsaturated fatty 

acids (PUFA) were the lowest percentage group among the different fatty acid groups with an 

average of 2% of the total fatty acids. DHA was the highest one in this group with an average 

of 1.52% of the total fatty acids and with peaks of 3.95% at day 109 (Table 2). Among the 

PUFA’s the second one is the EPA with an average of 0.52% and a peak of 1.07% at day 109. 

Note that unusually the boost in the PUFA fraction and especially in those high value fatty 

acids as DHA and EPA were recorded when the culture was run in nutrient depletion mode 

(between day 109 and 120) in the indoor PBR. 

 

 

Table 2. Methylated fatty acid profile (%), extracted on different days from A. carterae PBR 

indoor semi-continuous cultures 
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A high concentration of saturated fatty acids (SAFA) were shown when the culture condition 

are nutritionally optimal, this can be explained because most of this SAFA are used by 

photosynthetic cells mainly during the growth process, being an essential part of the cell 

membrane (in form of glyco or phospholipids) in most of the microalgae groups (Olofsson et 

al., 2012). When the cultures were running in nutrient stress conditions (between day 109 and 

120) principally by the absence of nitrogen in the medium, it was noticed that there was an 

important increase in the C16:0/C16:1 - EPA/DHA ratios, and a reduction in the C:N ratio 

(table 4). These results are coincident with the results obtained in dinoflagellates in previous 

studies (Fuentes-Grunewald et al., 2012) and, even in a different microalgae groups such as 

the Chlorophyceae, Prasinophyceae among others (Ho et al., 2003). All these variations can 

be explained by the metabolic change exhibited by microalgae cells when they are submitted 

to nitrogen depleted conditions. It is well known that the nitrogen deficiency in the culture 

triggers an enhancement of the triacylglicerides lipids not just in dinoflagellates, but also in 

Fatty acids Day 53 Day 68 Day 81 Day 89 Day 109 Day 120 Day 177 Day 184 Day 203 

C14:0 6,13 3,25 6,11 4,69 3,01 4,90 9,60 4,86 4,07 
C16:0 75,59 77,99 78,48 75,51 72,84 74,28 77,69 79,41 80,44 
C16:1 6,04 8,61 8,53 6,01 3,45 5,80 8,54 7,57 4,45 

C18:1 2,17 3,81 2,26 4,57 8,44 8,71 1,66 2,39 2,55 

C18:2 1,07 0,56 0,44 1,08 2,74 2,15 0,47 0,98 0,67 

C18:3 0,00 0,00 0,00 0,00 0,07 0,07 0,00 0,00 0,00 
C20:0 6,60 3,82 4,12 6,16 4,44 0,69 2,03 3,37 5,72 

C20:5n3 1,03 0,39 0,00 0,39 1,07 0,81 0,00 0,52 0,47 
C22:6n3 1,37 1,58 0,07 1,58 3,95 2,59 0,00 0,90 1,64 
Saturated 88.32 85.06 88.71 86.36 80.29 79.87 89.32 87.64 90.23 

Unsaturated 8.21 12.42 10.79 10.58 11.89 14.51 10.20 9.96 7.00 
Polyunsaturated 3.47 2.52 0.51 3.05 7.82 5.62 0.47 2.41 2.78 
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most of the microalgae groups (Converti et al., 2009; Fuentes-Grünewald et al., 2013; Li et 

al., 2008; Olofsson et al., 2012). Strangely A. carterae showed an increase in the PUFA 

fraction rather than in tha SAFA when is submitted to nutrient stress. 

 Regarding specific high value fatty acids production in A. carterae cultures, there was an 

interesting production of these metabolites, especially the docosahexaenoic (DHA). Actually, 

if we compare the maximum percentage of DHA in the PUFA fraction found in our A. 

carterae samples (3.95 %), they were more than double of those obtained by Vazhappilly & 

Chen 1998. It should be note that the maximum EPA and DHA content in A. carterae 

samples were achieved when the culture were run in depleted nitrogen condition. It is well 

know that in depleted nutrient condition (especially nitrogen) the amount of lipids in different 

microalgae groups such as chlorophyceas or dinoflagellates increase drastically (Fuentes-

Grunewald et al., 2012; Li et al., 2008), in our case the cultures shown the same pattern. 

Although, there is scarce information regarding the production of essential fatty acid (ω3 y 

ω6)  in this species, it can be indicated that our maximum production during this study (3.6 

mg L
-1

 for DHA and 1.1 mg L
-1

 for EPA) was lower than those obtained by Vazhappilly & 

Chen 1998, probably because our cultures were runned in autotrophic mode. The higher EPA 

and DHA concentration obtained in Vazhappilly & Chen 1998 work can be explained by the 

use of high acetate or glucose concentration used as a carbon source, and because they grew 

A. carterae in heterotrophic mode. 

3.3 Pigments 

The pigments found in A. carteare samples from indoor cultures are shown in table 3.  It 

should be pointed out that the amount of the carotenoid pigment peridinin predominated with 

an average of 4.25 mg g-1 of dry biomass, followed distantly by chlorophyll a with average 

values of 1.06 mg g
-1

 of dry biomass. Other pigments detected during the experiment were β-

carotene, lutein and zeaxanthin, all quantified in small concentrations (< 0.1 mg g
-1

 of dry 
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biomass). It was noticed that the amount of the main pigments such as chlorophyll and 

peridinin that are actually part of the peridinin-chlorophyll-protein (PCP) light-harvesting 

complex in dinoflagellates, were always detected in higher concentration when the culture 

entered into nutrient depleted conditions, and this condition (nutrient depletion) also cause a 

discoloration in the culture, turning from a healthy maroon to a pale brown (personal 

communication). 

 

Table 3. Main pigments (mg/g of dry biomass) extracted in different days from A. carterae 

PBR indoor semi-continuous cultures. 

 

 

 

 

 

 

 

 

 

 

3.4 Elemental analysis and ratios 

Table 4 shows the elemental analysis results (C, N, H), alongside the different analysed ratios 

for lipids during the study. The main elements found in A. carterae samples was carbon, 

average of 49.2±2.9 %, and then an average of 9.5±3.3  % for nitrogen and 6.8±0.4 % for 

hydrogen. When the evolution of the C:N ratio is analysed a reduction can be seen when 

there is an increase in the intracellular nitrogen content, and the lowest values in the C:N ratio  

coincide with the nutrient depletion mode in the indoor PBR. This nutrient depletion mode 

 

Pigments 

Day 68 Day 89 Day 109 Day 120 Day 184 Day 203 

Zeaxanthin - - - - 0,02 - 

Lutein 0,02 - - - 0,02 - 

Chlorophyll a 0,09 0,01 0,06 4,39 0,88 0,95 
β-Carotene 0,08 - - - 0,15 0,18 

Peridinin 0,35 0,06 0,22 17,55 3,53 3,81 
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also triggered the increase in the PUFA fraction and a rise in the ratio of the main fatty acids 

C16:0/C16:1. In the same nutrient depleted period there was an increase in the EPA:DHA 

ratio due to the increase in the DHA content.  

 

Table 4. Elemental analysis, C16:C18, EPA:DHA, and C:N ratios in A.carterae samples 

extracted during the experiment in a semi-continuous mode indoor PBR 

 

 

 

 

 

 

3.5 Contamination Monitoring Program 

The contaminant organisms detected in A.carterae cultures in indoor conditions, were 

generally competitors (photosynthetic organisms), followed by predators. Among the 

phototrophic organisms the highest level reached was for small cyanophyceas (level 3: 

abundant) and dinoflagellates from the Gymnodinium genus with a level 1: rare. In the case 

of the predators the only organisms found during the whole trial was a ciliates protozoa from 

the Paramecium genus reaching a level 2: scarce, in the qualitative scale. It should be noted 

Parameters Day 53 Day 68 Day 81 Day 89 Day 109 Day 120 Day 177 Day 184 Day 203 

% N 10,1 4,5 10,2 9,4 13,1 15,6 9,7 8,4 4,9 

% C 51,2 52,2 51,5 44,2 49,0 52,2 44,7 47,8 49,7 

% H 7,2 7,5 6,9 6,1 6,6 7,0 6,7 7,0 6,5 

C16:0/C16:1 12,8 9,2 9,2 12,8 22,2 13,3 9,1 10,6 18,4 

EPA:DHA 0,8 0,2 0,0 0,2 0,3 0,3 0,0 0,6 0,3 

C:N 5,1 11,7 5,1 4,7 3,7 3,3 4,6 5,7 10,2 
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that these contamination issues were detected after moving the culture from the 10 cm L-P 

indoor PBR to the 5 cm L-P, and it was probably during the culture movement (using 

peristaltic pumps) that these organisms entered the culture. Nevertheless, it must be pointed 

out that A. carterae shows a certain self-cleaning capacity, because the contaminant 

organisms never reached important concentrations of competitors or predators, and the main 

contaminant organisms disappeared when A.carterae cultures reached over 2x10
6
 cell mL

-1
. 

3.6 Nutrient uptake  

Other results were obtained that confirm it is feasible to grow a dinoflagellate like A. carterae 

in long term semi-continuous mode in indoor and outdoor conditions. It was noted that during 

the semi-continuous mode (feeding with full L1 medium) the nitrate uptake time was the 

same after consecutive harvest-inoculation events, showing an uptake average time of 7 days, 

equivalent to 5.23 µmol per hour. 

3.7 Species characteristic 

Is interesting noted that the performance of A. carterae during this exploitation regime (semi-

continuous) showed suitable attributes for industrial scale culture. Despite it being an 

athecate dinoflagellate, it is quite tough as it withstood all the cultures transfers (normally 

using peristaltic pumps), with no evidence of morphological change or cell damage. 

Another interesting characteristic of this species is the ability to form clumpy cell 

aggregations when is not in a turbulent regime. It is important to highlight this peculiarity of 

A. carterae cells during the harvest time, because it showed a high sedimentation speed of 1.5 

hour per meter of column, and could be used as a harvesting strategy by natural flocculation 

reducing processing costs. 

Currently one of the major challenge in microalgal biotechnology is to find a robust algae 

that can be used as a biofactory to produce several expensive metabolites and that can be 

cultivated in semi-continuous mode for a longer period (Greenwell et al., 2010). The results 
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presented in this paper confirm that the dinoflagellate Amphidinium carterae is a good 

candidate for a high scale microalgal production. Basically, due to their good acclimation and 

long-term growth in indoor and outdoor conditions in PBR’s, for their ability to produce 

several expensive metabolites such as DHA and EPA fatty acids, pigments (peridinin) and 

others compounds suggested by other authors such as macrolides (amphinolides) that can be 

used for cancer treatment, or long chain polyketides such as lutheophanol, colopsinol, with 

known antibacterial and antifungal activities (Huang et al., 2009; Kobayashi and Tsuda, 

2004; Samarakoon et al., 2013). 

The adaptation of A. carterae to outdoors conditions, is similar to those obtained in the same 

microalgae group but with different species (Fuentes-Grünewald, 2012; Fuentes-Grünewald 

et al., 2013). It did not show cell damage when the cultures were submitted to turbulent 

conditions compared with other species of the same microalgae group (Gallardo Rodríguez et 

al., 2010). A. carterae cultures had show a low level of competitors or predator contaminant 

organisms present, possibly due to the exudation of sulfuric compounds such as 

dimethylsulfide or the allelopathic characteristic founded in dinoflagellates when they release 

secondary metabolites to the medium that inhibit the growth of others organisms (Garcés et 

al., 2013; Legrand et al., 2003). It is also important to highlight the A. carterae feature of 

forming cellular aggregates when the culture is not in turbulent conditions, which enables a 

short time of sedimentation, thereby simplifying and helping to save economic and energetic 

resources during the harvest stage. All of these characteristics show the positive prospects of 

A. carterae culture to be successfully used in an industrial scale cultivation. 
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Conclusion 

Amphidinium carterae is a promising dinoflagellate that can be exploited succesfully in larger 

scale semi-continuous culture, because of its versatility in terms of acclimation to closed 

systems such as photobioreactor in both indoor and outdoor conditions, growth rates, biomass 

productivity, and the number of expensive metabolites capable of being exploited. Also it is 

noted that the culture features found during the present work such as self-cleaning ability 

against contaminants, cell strength to mechanical actions, and the capacity to form cell 

agregations during the harvest, allow us to confirm that this dinoflagellate is a suitable 

candidate for microalgal biomass industrial production.  
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Highlights: 

• Amphidinium carterae is a good candidate to be exploited in larger scale  

• A short light-path improves the main biotic parameters in A. carterae cultures 

• Several high value metabolites can be extracted from A. carterae biomass 

• Natural floculation and self cleaning properties were found in A. carterae cultures 
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