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eight-node elements effectively capturing the edge effects of 

Mindlin-Reissner plates  
 

Abstract 

Purpose－A simple shape-free high-order hybrid displacement function element method is 

presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and 

locking-free eight-node plate elements are proposed by utilizing this method.  

Design/methodology/approach － This method is based on the principle of minimum 

complementary energy, in which the trial functions for resultant fields are derived from two 

displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element 

boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam 

functions. Then, three locking-free 8-node, 24-DOF quadrilateral plate bending elements, 

HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) 

boundary, and HDF-P8-FREE for edge effects along free boundary, are formulated.  

Findings－The proposed elements can pass all patch tests, exhibit excellent convergence and 

possess superior precision when compared to all other existing 8-node models, and can still 

provide good and stable results even when extremely coarse and distorted meshes are used. They 

can also effectively solve the edge effect by accurately capturing the peak value and the dramatical 

variations of resultants near the SS1 and Free boundaries. The proposed 8-node models possess 

the potential in the engineering application and could be easily integrated into the commercial 

software. 

Originality/value－This work presents a new scheme, which can take the advantages of both 

analytical and discrete methods, to develop high-order mesh-distortion resistant Mindlin-Reissner 

plate bending elements.  

Keywords finite element methods; hybrid displacement function element; analytical trial function; 

edge effect; plate bending   

Paper type Research paper 

 

1. Introduction 

The availability of simple, efficient and reliable elements for thin and thick plates represents one 

of the main features of all finite element computer program libraries for structural analysis. To 

date, considerable research efforts have been made to develop various plate bending elements 

(Bathe 1996; Cen and Shang 2015; Long et al. 2009; Zienkiewicz and Taylor 2000), in which 

many models are based on Mindlin–Reissner plate theory (Mindlin 1951; Reissner 1945). Unlike 

the thin plate theory which requires C1 continuity between the displacement fields of two adjacent 

elements, Mindlin-Reissner plate theory only requires C0 continuity and can be used for both thin 

and moderately thick plates (Crisfield 1984). 
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 Most conventional Mindlin-Reissner plate elements are displacement-based models and 

generally perform well in moderately thick-plate applications. However, when the 

span-to-thickness ratio of the plate becomes very large, their performances often become over stiff, 

so they are not reliable for thin-plate cases. This numerical difficulty is known as the transverse 

shear locking caused by false shear strains. During the history of finite element method, many 

investigators have proposed recognized treatments on shear locking, including the classical 

reduced (Zienkiewicz et al. 1971) and selective reduced integral schemes (Hughes et al. 1977), the 

stabilization procedure for reduced integral (Belytschko et al. 1981; Belytschko and Tsay 1983), 

the mixed interpolated tensorial components (MITC) techniques (Bathe and Dvorkin 1985,1986), 

the substitute shear strain methods (Hinton and Huang 1986; Onate et al. 1992), the mixed 

element method derived from the modified Hellinger-Reissner principle (Lee and Wong 1982), the 

linked interpolation schemes (Taylor and Auricchio 1993; Zienkiewicz et al. 1993), the discrete 

shear constraint methods (Batoz and Lardeur 1989; Katili 1993), the hybrid-mixed variational 

approach (Ayad et al. 1998; Ayad and Rigolot 2002), the enhanced displacement interpolation 

(Ibrahimbegović 1993), the improved interpolation based on locking-free Timoshenko’s beam 

formulae (Chen and Cheung 2000; Soh et al. 1999a,1999b,2001), the generalized conforming 

Mindlin-Reissner plate element (Cen et al. 2006) based on the quadrilateral area coordinates 

(Long et al. 2009; Long et al. 2009), the smoothed FEM(SFEM) (Nguyen-Thoi et al. 2012; 

Nguyen-Xuan et al. 2008;2009), and so on (Cen et al. 2002; Falsone and Settineri 2012; Hansbo 

et al. 2011; Hu et al. 2010; Jin et al. 1993; Jin and Qin 1995; Jirousek et al. 1995a,1995b; 

Nguyen-Thoi et al. 2011; Petrolito 1990,1996; Rezaiee-Pajand and Karkon 2012; Ribaric and 

Jelenic 2012). On the other hand, high-order elements usually have better precisions and exhibit 

better performance for thin plate cases. So, many attempts have also been devoted to construct 

high-order models free of shear locking. Ahmad et al. (1970) applied Mindlin-Reissner plate 

theory in the degenerated shell approach and developed an 8-node isoparametric element; 

Crisfield (1984) developed a quadratic element using shear constraints; Spilker et al. (1980,1982) 

proposed 8-node hybrid-stress elements for analysis of thin and moderately thick plates; Hughes 

and Cohen (1978) presented a so-called “heterosis” element which utilized an 8-node interpolation 

for rotations and 9-node interpolation for deflections; Kant et al. (1982) proposed an element 

based on a higher-order displacement mode and a three-dimensional state of stress and strain; 
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Hinton and Huang (1986) developed a family of elements, including 8-,9-,12- and 16-node ones, 

with substitute strain fields; Donea and Lamain (1987) provided a modified representation of 

transverse shear component in 8-node and 9-node quadrilateral plate elements; Polit et al. (1994) 

proposed an 8-node quadrilateral element, in which each monomial term of the interpolation 

functions for the normal rotations is matched by the derivatives of its corresponding deflection; 

Zhang and Kuang (2007) developed a new 8-node Reissner–Mindlin plate element with a special 

interpolation within the element, this special interpolation is an extension of the element boundary 

interpolation that employs Timoshenko beam function for the boundary segment interpolation; 

Dhananjaya et al (2009) adopted the integrated force method to construct an 8-node serendipity 

quadrilateral thin-thick plate bending element (MQP8); Li et al (2015) presented an 8-node 

quadrilateral assumed stress hybrid Mindlin plate element with 39 unknown parameters.  These 

efforts more or less improved the element resistance to shear locking problem 

 In addition to above shear locking problem, how to obtain good resultant/stress solutions is 

another problem that should be concerned about. For a Mindlin-Reissner plate, its rotations and 

stress resultants may vary sharply in a narrow region at the vicinity of certain types of boundary 

conditions. This is so-called the edge effect or the boundary layer effect, and represents another 

interesting and troublesome numerical challenge in Mindlin-Reissner plate theory (Arnold and 

Falk 1989). However, aforementioned efforts mainly concentrate on the shear-locking problem, 

few solution strategies have been considered for solving this difficulty. Although the edge effect 

does not impose great influences on the entire structure, it will make the numerical analysis more 

complicated. Some analytical, semi-analytical and discrete methods have been proposed to 

conquer this challenging topic (Arnold and Falk 1990; Babuška and Scapolla 1989; Briassoulis 

1993a,1993b; Haggblad and Bathe 1990; Hinton et al. 1995; Kant and Gadgil 2002; Kant and 

Hinton 1983; Rao et al. 1992; Wang et al. 2002; Ye and Yuan 2002; Yuan 1993; Yuan et al. 

1998), but few finite element models can easily and accurately predict the distributions of the 

resultants near the plate boundaries when edge effect takes place.  

 Besides good behaviors in dealing with shear locking and edge effect problems, an ideal plate 

bending element should have following features: i) no any adjusted factor existing in its 

formulations; ii) high tolerance to various mesh distortions; and iii) high-precision results for 

stress/resultant solutions as well as the displacements. Recently, in order to develop plane 
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quadrilateral elements immune to mesh distortions, Fu et al. (2010) and Cen et al. 

(2011a,2011b,2011c) proposed a simple hybrid stress-function (HSF) element method, in which 

the trial functions for stress fields are the analytical solutions of the stress function φ. Inheriting 

from this technique, Cen et al. (2014) and Shang et al. (2015) established a simple hybrid 

displacement-function (HDF) element method for constructing Mindlin-Reissner plate bending 

elements, in which the trial functions for resultant fields are derived from two displacement 

functions, F and f (Hu 1984), and satisfy all governing equations. Then, a robust shape-free 

4-node, 12-DOF quadrilateral element HDF-P4-11β for general cases, two shape-free 4-node, 

12-DOF quadrilateral elements HDF-P4-Free and HDF-P4-SS1 for solving edge effects along free 

and soft simply supported (SS1) boundaries, respectively, were successfully developed. Numerical 

examples proved that these new models possess outstanding performances among all existing 

4-node models, no matter for conventional problems, or for edge effects.  

Actually, above hybrid displacement function element method can be simply extended to 

construct higher-order elements, so that more precise results for both displacements and resultants, 

especially for the resultant distributions with edge effects, can be obtained using fewer elements. 

In this paper, three 8-node, 24-DOF quadrilateral Mindlin-Reissner plate bending elements for 

different purpose are presented. For general situation, twenty-three sets of the resultant 

components derived from the displacement function F and satisfying all governing equations are 

taken as the trial functions for resultant fields. Meanwhile, the element boundary displacements 

and shear strains are determined by the locking-free arbitrary order Timoshenko’s beam functions 

(Jelenic and Papa 2011). Then, an 8-node, 24-DOF quadrilateral plate bending element, 

HDF-P8-23β, is firstly formulated by the principle of minimum complementary energy. For 

special situation consisting of the edge effect or the boundary layer effect (SS1 and FREE types), 

the additional displacement function f related to the edge effect is considered. Then, two new 

8-node, 24-DOF quadrilateral elements, denoted by HDF-P8-SS1 and HDF-P8-FREE, are also 

constructed. The proposed elements pass all patch tests, exhibit excellent convergence and possess 

superior precision when compared to other existing 8-node models, and can still provide good and 

stable results even when extremely coarse and distorted meshes are used. It can also effectively 

solve the edge effect by accurately capturing the peak value and the dramatical variations of 

resultants near the SS1 and Free boundaries. The proposed 8-node models possess the potential in 
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the engineering application and could be easily integrated into the commercial software. 

 

2. The arbitrary order Timoshenko’s beam functions  

For a robust Mindlin-Reissner plate bending element, it is necessary to eliminate the 

phenomenon of shear locking which induces an over stiff problem as the plate becomes 

progressively thinner. So, how to determine rational displacement modes and shear strains along 

element edges becomes a key technique for many existing models. In the formulations of some 

low-order plate elements, a set of locking-free functions for 2-node Timoshenko beam have been 

successfully applied (Cen et al. 2002,2006,2014; Chen and Cheung 2000; Soh et al. 

1999a,1999b,2001; Shang et al. 2015). Recently, Jelenic and Papa (2011) presented a set of new 

arbitrary order Timoshenko beam functions. These functions are given by: 

1

1 11

1
( 1)

1

nn n
i

i i j i

i ij

nL
w I w N

in
ψ−

= ==

− 
= − −  − 

∑ ∑∏ , 
1

n

i i

i

Iψ ψ
=

= ∑ ,             (1) 

where L is the beam length; wi and ψi (i=1~n) are the nodal displacements and the rotations at the 

nth nodes equidistantly located between the beam ends; Ii (i=1~n) are the standard Lagrange 

polynomials of order n−1; 

for 1,         

( 1)
else,   1

( 1)

j

j

r
j N

L

n r
N

j L

 = =
 − = −
 −

,                       (2) 

in which r is the length along the beam from the starting point. For an 8-node quadrilateral 

element, any quadrilateral side can be treated as a 3-node Timoshenko beam element as given in 

Figure 1. Then, the displacement and rotations can be obtained: 

* *

0[( 2 ) ( 2 ) ]a i b j c k xi xj xk x yi yj yk yw I w I w I w I l lψ ψ ψ ψ ψ ψ= + + − + − − + − ,        (3) 

x a xi b xj c xkI I Iψ ψ ψ ψ= + + ,  y a yi b yj c ykI I Iψ ψ ψ ψ= + + ,           (4) 

with 
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1 2 2 1

1 2 1 1 2 2 1 2 0

* *

* *

1 1

*2 *2 *2 *22 2

( )
1 , , (2 1), (2 1), 4 ,

3

(4 3) (4 1) (4 8 ) , (4 3) (4 1) (4 8 )

,

( ) ( )

a b c

x i j k y i j k

y x

x y

x y x y

L L L L
L s L s I L L I L L I L L I

l s x s x s x l s y s y s y

l l
l l

l l l l


− = − = = − = − = =





= − + − + − = − − − − − −


 − −
 = =
 + +

,    (5)                       

in which s=r/L is the local coordinate along the beam (varies from 0 to 1). One should be noticed 

here that the formulations are valid for curved boundaries because at different points along the 

boundaries different tangent directions and outer normal directions could be derived by applying 

differential method. 

Thus, the displacement components ū along the i-j-k boundary can be written as 

* * * * * *

0 0 0 0 0 02 2

0 0 0 0 0 0 =

0 0 0 0 0 0

a x y b x y c x y

ijk x a b c ijk abc ijk

y a b c

w I I l I l I I l I l I I l I l

I I I

I I I

ψ
ψ

   − − −
  

= =   
   
   

u q L q ,   (6) 

where  

T

ijk i j k
 =  q q q q , 

T

( , , )m m xm ymw m i j kψ ψ = = q         (7) 

  

3. The General formulations of the HDF elements 

In element level, the finite element equations can be written as: 

e e e

q=K q P ,                                (8) 

in which e
K  is the element stiffness matrix; 

eq  is the element nodal displacement vector; and 

e

qP  is the element nodal equivalent load vector caused by the distributed transverse load q. 

Following the construction procedure of the hybrid-displacement function elements (Cen et al. 

2014), the element stiffness matrix of the Mindlin-Reissner plates can be obtained: 

=e T -1
K H M H ;                                (9) 

*e

q = −T T -1
P V H M M .                            (10) 

where 
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Tˆ ˆd d
eA

x y= ∫∫M S CS , 
* T *ˆ d d

eA
x y= ∫∫M S CR , 

T* *d d
eA

x y= ∫∫Q R CR ,         (11) 

T Tˆ d
eS

s
Γ

= ∫H S L N , 
T* T d

eS
s

Γ
= ∫V R L N .                   (12) 

In above equations, Ŝ  represents the general solution part; 
*

R  represents the corresponding 

particular solutions of the resultant forces (for different distributions of the transverse load q, 

*
R is also different); C  is the flexibility matrix:  

2 2

2 2

1
0 0 0

(1 ) (1 )

1
0 0 0

(1 ) (1 )

2
0 0 0 0=

(1 )

1
0 0 0 0

1
0 0 0 0

D D

D D

D

C

C

µ
µ µ

µ
µ µ

µ

− 
 − − 

− 
 − − 
 
 − 
 
 
 
 
 
 

C ,                 (13) 

with Poisson’s ratio µ and the bending stiffness D of the plate; L denotes the matrix of the 

direction cosines for element boundaries: 

2 2

2 2

2 0 0

0 0

0 0 0

x y x y

x y x y x y

x y

l l l l

l l l l l l

l l

 
 

= − − 
 − − 

L ,                     (14) 

where xl  and yl  denote the direction cosines of outer normal of the element boundary; 
Γ

N  is 

the interpolation matrix for boundary displacements, and has different values along each element 

edge. The components of 
Γ

N  are derived from the formulae of the arbitrary order Timoshenko’s 

beam functions given in last section (Jelenic and Papa 2011), and their detailed expressions are 

given in Appendix. 

According to Reference (Hu 1984), the solutions of rotations ψx, ψy and deflection w for a 

Mindlin-Reissner plate can be expressed by : 

   
2, ,

x y

F f F f D
w F F

x y y x C
ψ ψ

∂ ∂ ∂ ∂
= + = − = − ∇

∂ ∂ ∂ ∂
,                (15) 

with 

( )
3

2
12 1

Eh
D

µ
=

−
, 5

6
C Gh= ,                        (16) 

where h is the plate thickness; E is Young’s modulus; G = E/ [2(1+µ)] is shear modulus; F and f in 
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Equation (15) are two displacement functions and satisfy following equations  

2 2D F q∇ ∇ = ,                              (17) 

21
(1 ) 0

2
D f Cfµ− ∇ − = ,                         (18) 

in which q is the distributed transverse load. From Equations (9) to (12), the key point for 

formulating the HDF elements is to define the general solution part Ŝ  and the corresponding 

particular solutions 
*R of the resultant forces which can be derived from the two displacement 

function F and f. 

 

3.1. Formulations of element HDF-P8-23β (without edge effects) 

Figure 2 shows an 8-node quadrilateral plate bending element. In normal situation, the first 

displacement function F in Equation (17) is capable of reflecting the deformation of a 

Mindlin-Reissner plate. Based on the derivations given by Cen et al. (2014), the trial functions for 

the resultant forces without edge effects can be expressed by the displacement function F as: 

0 * 0 * *

normal

1

ˆ=

x

y
k

xy i i

i

x

y

M

M

M

T

T

β
=

 
 
  

= + = + = + 
 
 
  

∑R R R R R Sβ R ,             (19) 

with 

  0 0

1

=
k

i i

i

β
=
∑R R , 

2 0 2 0

2 2

2 0 2 0
0

2 2
0

2 0
0 0

0

0 2 0

2 0

(1 )

( )

( )

x

y

xy

x

y

F F

x y

F FM
y x

M
FM

x y
T

T F
x

F
y

µ

µ

µ

 ∂ ∂
+ ∂ ∂ 

 ∂ ∂  + 
  ∂ ∂ 
      ∂= =   −

∂ ∂   
   ∂   ∇  ∂ 

 ∂
∇ 

∂  

R ,

2 2

*

2 2
*

* *

*

*

( )
4

( )
4

0

2

2

x

y

xy

x

y

q
x y

M q
x y

M

M

T q
x

T

q
y

µ

µ

 − + 
  
   − +     

= =   
   
   −
    

 
− 

 

R ,   (20) 

0 0 0

1 2 5

ˆ
k k×

 = ⋅ ⋅ ⋅ S R R R ,                      (21) 

where 
iβ  (i=1~k) are k unknown coefficients; 0

iF  are the (i=1~k) are k analytical solutions (in 

Cartesian coordinates) of 
0F which generated from the homogeneous equation of Equation (17). 
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The first twenty-three analytical solutions of 
0F (seventh-order completed in Cartesian 

coordinates) and related resultant solutions are given in Table I. Meanwhile, R
*
 represents the 

corresponding particular solutions of the resultant forces under uniformly distributed transverse 

load q (for transverse load q with different distributions, R
*
 is also different). 

 

After substituting the corresponding Ŝ  and *
R into Equations (9) to (12), a new 8-node 

quadrilateral plate bending element is constructed. This element is denoted by 

HDF-P8-23β (without edge effects), and it is very easy to be integrated into the standard 

framework of finite element programs. 

 

3.2. Formulations of elements HDF-P8-SS1 (with SS1 edge effects) and HDF-P8-FREE(with 

free edge effects)   

When the edge effect is taken into consideration, the second displacement function f has 

significant effect on the performance of the elements. At the vicinity of certain types of boundary 

conditions, it has a significant value near the plate boundaries, but can be ignored in other area 

(Shang et al. 2015).  

After considering the second displacement function f, the resultant forces with edge effects can 

be assumed as: 

2
0 * 0 *

edge

1 1

=

x

y
k

f f
xy i i j j

i j

x

y

M

M

M

T

T

β α
= =

 
 
  

= + + = + + 
 
 
  

∑ ∑R R R R R R R .           (22) 

with 
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2

2

2 2

2 2

(1 )

(1 )

1
(1 ) ( )

2

j

f j
xj

f

yj

f f j j
j xyj

f

xj

f
j

yj

j

f
D

x y

f
M D

x y
M

f f
M D

y xT
fT C
y

f
C

x

µ

µ

µ

 ∂
− − 

∂ ∂ 
 ∂   −
   ∂ ∂
     ∂ ∂= =   − − −

∂ ∂   
   ∂   − 

 ∂
 

∂ 
 ∂ 

R , ( j=1,2 )   

          

(23)

 

The detailed expressions of the resultants derived from f are given in Table II (Shang et al. 2015). 

It is shown that, these resultants are exponentially distributed along the direction perpendicular to 

the SS1 or FREE edge, while no exponential distributions exist along the direction parallel to the 

SS1 or FREE edge.  

In order to formulate the elements HDF-P8-SS1(with SS1 edge effects) and 

HDF-P8-FREE(with free edge effects), the modified general solution part edge

mod
S  and the modified 

particular solution part 
edge

mod
R  when the plate is subjected to a uniformly distributed transverse 

load q are needed. 

Element HDF-P8-SS1 or HDF-P8-FREE should be allocated along the SS1 or FREE edge of 

the plate (for example edge 12 in Figure 2). The boundary resultant force vector at the edge 12 

should satisfy the following SS1 or FREE boundary conditions: 

edge edge edge=R L R = 0 ,                            (24) 

where 

 

SS1

SS1

FREE

FREE

n

ns

n

ns

n

M

M

M

M

T

  
=  

 


 
  =  
   

R

R

,                          (25) 
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2 2

SS1 2 2

SS1

2 2

2 2

FREE

FREE

2 0 0

0 0

2 0 0

0 0

0 0 0

x y x y

x y x y x y

x y x y

x y x y x y

x y

l l l l

l l l l l l

l l l l

l l l l l l

l l

  
=  

− −   

  
  

= − −  
  

 

L

L

,            (26) 

SS1 SS1 SS1 SS1 *

SS1

FREE FREE FREE FREE *

FREE

∆ ∆ ∇ ∇

∆ ∆ ∇ ∇

 + +


+ +

R = S β S β R

R = S β S β R
,                    (27) 

in which: 

SS1 0 0 0 0 0 0

1 10 13 15 17 23

FREE 0 0 0 0 0 0 0 0 0 0 0 0 0

1 5 7 8 9 11 13 14 15 19 21 22 23

∆

∆

  = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  


 = ⋅ ⋅ ⋅  

S R R R R R R

S R R R R R R R R R R R R R
,  (28) 

SS1 0 0 0 0

11 12 14 16 1 2

FREE 0 0 0 0 0 0 0

6 10 12 16 17 18 20 1 2

f f

f f

∇

∇

  =  


 =  

S R R R R R R

S R R R R R R R R R
,           (29) 

The detailed expressions of the matrices 
edge

∆S and 
edge

∇S can be obtained from Tables I and II. 

Substitution of Equations (28)-(29) into (27), then three sets of constraint equations can be 

obtained by substituting the coordinates (x1, y1), (x2, y2), (x5, y5) of nodes 1, 2, 5 into Equation 

(24): 

edge edge edge edge edge

∆ ∆ ∇ ∇ Ω+ + =β β 0κ κ κκ κ κκ κ κκ κ κ ,
 

                      (30) 

with 

SS1 SS1 *

SS1 1 1 SS1 1 1 SS1 1 1

SS1 SS1 SS1 SS1 SS1 *

SS1 2 2 SS1 2 2 SS1 2 2

SS1 SS1 *

SS1 5 5 SS1 5 5 SS1 5 5

F

FREE

FREE

( , ) ( , ) ( , )

( , ) , ( , ) , ( , )

( , ) ( , ) ( , )

x y x y x y

x y x y x y

x y x y x y

∆ ∇

∆ ∆ ∇ ∇ Ω

∆ ∇

∆

∆

     
     

= = =     
     
     

=

L S L S L R

L S L S L R

L S L S L R

L S

κ κ κκ κ κκ κ κκ κ κ

κκκκ

REE FREE *

1 1 FREE 1 1 FREE 1 1

FREE FREE FREE FREE *

FREE 2 2 FREE 2 2 FREE 2 2

FREE FREE *

FREE 5 5 FREE 5 5 FREE 5 5

( , ) ( , ) ( , )

( , ) , ( , ) , ( , )

( , ) ( , ) ( , )

x y x y x y

x y x y x y

x y x y x y

∇

∆ ∇ ∇ Ω

∆ ∇








     
      = =     
           

L S L R

L S L S L R

L S L S L R

κ κκ κκ κκ κ

,  (31) 

where 
SS1

∆κκκκ is a 6×19 matrix; 
SS1

∇κκκκ is a 6×6 matrix; 
SS1

Ωκκκκ is a 6×1 matrix; 
FREE

∆κκκκ is a 9×17 matrix; 

FREE

∇κκκκ is a 9×9 matrix; and 
FREE

Ωκκκκ is a 9×1 matrix. Then, the vector 
edge

∇β  can be solved by: 

1edge edge edge edge edge( )
−

∇ ∇ ∆ ∆ Ω= − +β βκ κ κκ κ κκ κ κκ κ κ ,
                       

(32) 

Substitution of Equation (32) into (27) yields 

edge edge edge

edge mod mod∆= +R S β R ,

                           

(33) 
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where 

1edge edge edge edge edge

mod

−

∆ ∇ ∇ ∆= −S S S κ κκ κκ κκ κ ,
                        

(34)
 

1edge * edge edge edge

mod

−

∇ ∇ Ω= −R R S κ κκ κκ κκ κ .                         (35) 

Equation (34) is the final modified trial functions for resultants of element HDF-P8-SS1 or 

HDF-P8-FREE, which can satisfy the boundary conditions at the nodes along the SS1 or FREE 

edge. edge

mod
S  is the modified general solution part; edge

∆β  is the final unknown coefficient vector; 

edge

mod
R  is the modified particular solution part when the plate is subjected to a uniformly 

distributed transverse load q. 

 

In order to derive the formulations of the element HDF-P8-SS1 and the element HDF-P8-FREE, 

the Ŝ  and 
*

R  from Equations (9) to (12) can be simply substituted by 
edge

mod
S , 

edge

mod
R  

respectively. The other procedures are the same as the formulations of element HDF-P8-23β. 

 

4. Numerical examples 

  In this section, the performances of the proposed elements HDF-P8-23β, HDF-P8-SS1 and 

HDF-P8-FREE are fully assessed by some classic benchmark examples. Both traditional and new 

severely distorted meshes are employed. Meanwhile, the results calculated by element S8R in 

Abaqus (2009), some other well-known high-order quadrilateral elements, and the low-order 

hybrid displacement function elements proposed by Cen et al. (2014), Shang et al. (2015) are also 

given for comparison. 

 

4.1. Eigenvalues and rank 

It is found that, for extremely thin and moderately thick plate cases, each element stiffness 

matrix of three new elements always produces only three zero eigenvalues corresponding to three 

rigid body modes for various regular or distorted element shapes. As a result, the proper rank and 

the absence of spurious modes can ensure that proposed elements are stable. 

 

4.2. Patch tests for element HDF-P8-23β 
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Figure 3 plots the Irons patch test problems. These tests are only performed for element 

HDF-P8-23β without edge effect. And different test conditions are summarized as follows: 

i)     Meshes: Four mesh types are employed. Mesh A contains only one 8-node element, 

while Meshes B, C and D are divided into five distorted elements.  

ii)     Loads and Constraints: Distributed line loads along the patch boundaries; three nodal 

deflections are constrained (w1=w2=w3=0) to eliminate rigid body motions. 

iii) Span-thickness ratios: Three different span-thickness ratios 2a/h=1000, 100, 10, are 

considered.   

(a) Constant bending moment case (Mn= 1). As shown in Figure 3a, the rectangular plate patch 

is subjected to bending moment Mn= 1 along its all edges. The computed results of bending 

moments Mx (=1) and My (=1), twisting moment Mxy (=0), shear forces Tx (=0) and Ty (=0), at any 

point are exact for all span-thickness ratio cases.  

(b) Constant twisting moment case (Mns= 1). As shown in Figure 3b, the rectangular plate patch 

is subjected to twisting moment Mns= 1 along its four edges. In all cases, the numerical results of 

Mxy (=1), Mx (=0), My (=0) Tx (=0) and Ty (=0) obtained by the element HDF-P8-23β are exact. 

(c) Non-zero constant shear force case (Tx=Constant, Ty=Constant). As shown in Figure 3c, the 

eight boundary nodes of the rectangular plate patch are imposed by given deflections and rotations. 

The element HDF-P8-23β can give the exact constant shear force (Tx=Constant, Ty=Constant) 

corresponding to different span-thickness ratio cases. 

 

4.3. Square plate subjected to uniformly distributed load 

Figure 4 gives the meshes employed for this example, in which only a quarter of the plate is 

considered owing to the biaxial symmetry. The geometric parameters and conditions are given as 

follows: 

i)     Geometric parameters: L denotes the edge length; h denotes the thickness of the plate; 

Poisson’s ratio µ= 0.3. 

ii)     Load and Boundary Conditions (BCs): The square plate is subjected to a uniform    

transverse load q=1. Three BC cases, the clamped BC (w=0, ψn=0, ψs=0), the soft 

simply supported (SS1) BC (w=0), and the hard simply supported (SS2) BC (w=0, ψs=0), 

are considered. 

Page 13 of 54

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

14 

 

iii) Span-thickness ratios: From thick case (h/L=0.1) to very thin case (h/L=10
−30

) 

iv) Meshes: Three mesh types are used, and the mesh densities are 1×1, 2×2, 4×4, 8×8 and 

16×16. 

The dimensionless results (here, let L =1 and D =1) of deflections and moments at the plate 

center are presented in Tables III to V. It should be noted that under SS1 BC, edge effect will 

take place. So, as shown in Figure 4, element HDF-P8-SS1 will be allocated along the SS1 

boundary, in which the corner region is split into two degenerated triangular elements. Since the 

shapes of the present elements are quite free, such mesh will not bring unfavorable influence. 

The corresponding results are given in Tables III to V, and plotted in Figures 5 to 7. From 

Figures 5(c), 6(c) and 7(c), the distributions of the bending moments and the shear forces under 

different boundary conditions are clearly visualized. And the influence of the edge effects for 

shear force Tx can be observed in Figure 7(c). The new elements exhibit excellent performance 

for both precision and convergence for this example. 

 

4.4. Test for checking the sensitivity problem to mesh distortions 

As shown in Figure 8, several distorted meshes are designed to test the sensitivity to mesh 

distortions for the new element HDF-P8-23β. A quarter of thin square plate with symmetry and 

clamped boundary conditions is subjected to a uniformly distributed load. All parameters are the 

same as those given in section 4.3. 

The normalized results of the central deflection and moment of the plate are also given in 

Figure 8. It can be seen that element HDF-P8-23β is quite roust even when the mesh is severely 

distorted. 

 

4.5. Skew plates subjected to uniformly distributed load 

Figure 9 shows a new 4×4 mesh configuration and the geometric parameters for a 30° skew 

plate with SS1 BC (soft simply supported). This example has been studied by Morley (1963) 

under the thin plate assumptions. Two characters exists in this test: i) singularity appears in the 

bending moment at the obtuse corner; and ii) edge effect appears. This problem has also been 

solved as a 3D elastic case by Babuška and Scapolla (1989). Two span-thickness ratios (L/h=1000, 

100) are considered. The principal bending moments and deflections at the central node O are 
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calculated. Table VI, Table VII and Figure 10 present the dimensionless results obtained by the 

new elements HDF-P8-23β and HDF-P8-SS1 (due to the occurrence of the edge effects) and other 

models. Better convergence can be obtained by the new models when compared to other elements. 

 

4.6. Circular plate subjected to uniformly distributed load 

Figure 11 shows a circular plate subjected to a uniform load q = 1. According to the symmetry, 

only a quarter of the plate is modeled. Two different thickness-radius ratio cases (h/R=0.02, 0.2), 

and two different BC cases, the soft simply supported (SSl) BC (w = 0) and the clamped BC (w=0, 

ψn=0, ψs=0), are considered. The analytical solutions can be found in references (Ayad et al. 1998; 

Ayad and Rigolot 2002). Results obtained by the new element HDF-P8-23β and some other 

models are given in Tables VIII, IX and plotted in Figure 12, 13.  

Because HDF-P8-23β is a high-order element with mid-side nodes, it is possible for the element to 

simulate the circular arc. This example can be perfectly solved by only using one 

HDF-P8-23β element, which cannot be achieved by other models in different literatures. Although 

the test contains the SS1 boundary condition, according to the Mindlin-Reissner theory, the edge 

effects will not take place in the circular plate case. So, satisfactory solutions can be obtained by 

using element HDF-P8-23β only. 

 

4.7. Edge effect test 

As shown in Figure 14, a square plate is subjected to a uniformly transverse load q. Due to 

symmetry, only one quarter of the plate, ABCD (C is the center of the plate), is analyzed. Two 

boundary condition cases are studied: (i) SFSF, two opposite edges hard simply-supported (SS2) 

and the other two edges free; and (ii) SS
*
SS

*
, two opposite edges hard simply-supported (SS2) and 

the other two edges soft simply-supported (SS1). The edge length of the square plate is a, the 

thickness is h, and Poisson’s ratio µ = 0.3. And only one span-thickness ratio, a/h=50, is 

considered. 

Kant and Hinton (1983,2002) have solved the case by using the segmentation method. Thus, 

their solutions are presented here for comparison. Furthermore, results obtained by some other 4-, 

5- and 8-node quadrilateral plate elements, including Shang et al. (2015), S4 (Abaqus 2009), S8R 

(Abaqus 2009), HMPL5 (Saleeb and Chang 1987) and CL8 (Spilker 1982), are also presented for 
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comparison. 

a) The SFSF plate 

The meshes and the locations of the elements HDF-P8-Free and HDF-P8-23β are also 

illustrated in Figure 14. The values of displacements and resultants at selected points, obtained by 

present method and Shang et al (2015), Abaqus elements S8R (Abaqus 2009), are listed in Table X 

for comparing the convergence rate. And the results derived by two semi-analytic methods, 

including the segmentation method (Kant and Gadgil 2002; Kant and Hinton 1983) and the 

FEMOL (Yuan 1993), are also presented. 

The distributions of the resultants obtained by the present scheme along selected paths and the 

corresponding contour plots of the resultants are plotted through Figures 15 to 16. The values at 

nodes are smoothed solutions by averaging direct nodal values at all connective elements.  

Figure 15 plots the distribution of Tx along the symmetry edge DC. Figure 16 shows the 

distributions of Mxy and Ty along the hard simply-supported edge AB. Their distributions 

recalculated by the present method using a 10×10 mesh, and results of some other quadrilateral 

plate elements are also given for comparison.  

From the numerical results, some conclusions could be drawn: 

i)  Compared to other elements, the combination of HDF-P8-Free and HDF-P8-23β exhibits 

better prediction and convergence for the resultants. Meanwhile, for present elements, only a 

coarse mesh is enough to ensure that the zero resultant conditions are satisfied at the nodes 

along free edge. 

ii)  Compared to the low-order element proposed by Shang et al. (2015), the present element 

combination shows better performance in capturing the peak value of the resultants. 

 

b)  The SS
*
SS

*
 case 

The meshes and the location of the elements HDF-P8-SS1 and HDF-P8-23β are also 

illustrated in Figure 14. And for the case a/h=50, the results calculated at selected points are 

listed in Table XI. Figure 17 shows the distribution of Tx along the symmetry edge DC. Figure 18 

shows the distributions of Mxy and Ty along the hard simply-supported edge AB. The 

corresponding contour plots of the resultant are also presented. Results calculated by some other 

quadrilateral plate elements with a 10×10 mesh are also given for comparison. Same conclusions 
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as those in previous case can be obtained. 

 

5. Conclusions 

In this paper, three simple high-order hybrid displacement function elements are presented for 

analysis of thin and moderately thick plates. In general situation, the displacement function F, 

which can be used to derive displacement components satisfying all governing equations, is 

combined with the locking-free arbitrary order Timoshenko’s beam functions. Then, an 8-node, 

24-DOF quadrilateral plate bending element, HDF-P8-23β, is formulated. For the special situation 

consisting of the edge effect or the boundary layer effect (SS1 or FREE type), an additional 

displacement function f related to the edge effect is considered to develop novel plate bending 

elements HDF-P8-SS1 or HDF-P8-FREE.  

Numerical examples show that the proposed elements are free of shear-locking, pass all patch 

tests, exhibit excellent convergence, and possess higher precision when compared to other existing 

models, even when quite coarse and extremely distorted meshes are used. Especially, they can 

effectively solve the edge effect by accurately capturing the peak value and the sharp changes of 

stress/resultant-force near the SS1 or Free boundary. 

The proposed method possesses advantages from both analytical and discrete methods, and can 

be easily integrated into the standard framework of finite element programs. An interesting future 

work is to develop a high performance plate crack element, and then combine the proposed 

elements with plate crack element to solve the plate crack propagation problem of the plate. 

 

 

Appendix: The expressions for matrix 
Γ

N  in Equation (12) 

The i-j-k boundary displacement vector of the element 
Γ

N  can be rewritten as 

n

e

s d ijk

w

ψ
ψ

Γ

 
 

= = = 
 
 

d L u N q ,                        (A1) 

in which the vector ūijk is given by Equation (6); and Ld is the direction matrix, 
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0

0

1 0 0

x y

d y x

l l

l l

 
 = − 
  

L .                             (A2) 

� Along 1-2-5 boundary,  

[ ]1 2 5
=

Γ
N N N 0 0 N 0 0 0 ,                (A3) 

where 

1 2 5

* * * * * *

0 0 0 0 0 0

0 0 0

= 0 , = 0 , = 0

2 2

a x a y b x b y c x c y

a y a x b y b x c y c x

a x y b x y c x y

I l I l I l I l I l I l

I l I l I l I l I l I l

I I l I l I I l I l I I l I l

     
     

− − −     
     − − −     

N N N ,      (A4) 

and 0 is a 3×3 zero matrix. 

� Along 2-3-6 boundary,  

[ ]2 3 6
=

Γ
N 0 N N 0 0 N 0 0 ,                (A5) 

where 

2 3 6

* * * * * *

0 0 0 0 0 0

0 0 0

= 0 , = 0 , = 0

2 2

a x a y b x b y c x c y

a y a x b y b x c y c x

a x y b x y c x y

I l I l I l I l I l I l

I l I l I l I l I l I l

I I l I l I I l I l I I l I l

     
     

− − −     
     − − −     

N N N .       (A6) 

� Along 3-4-7 boundary,  

[ ]3 4 7=
Γ

N 0 0 N N 0 0 N 0 ,                 (A7) 

where 

3 4 7

* * * * * *

0 0 0 0 0 0

0 0 0

= 0 , = 0 , = 0

2 2

a x a y b x b y c x c y

a y a x b y b x c y c x

a x y b x y c x y

I l I l I l I l I l I l

I l I l I l I l I l I l

I I l I l I I l I l I I l I l

     
     

− − −     
     − − −     

N N N ,       (A8) 

� Along 4-1-8 boundary,  

[ ]1 4 8
=

Γ
N N 0 0 N 0 0 0 N ,                 (A9) 

where 

4 1 8

* * * * * *

0 0 0 0 0 0

0 0 0

= 0 , = 0 , = 0

2 2

a x a y b x b y c x c y

a y a x b y b x c y c x

a x y b x y c x y

I l I l I l I l I l I l

I l I l I l I l I l I l

I I l I l I I l I l I I l I l

     
     

− − −     
     − − −     

N N N .    (A10) 

The relevant parameters and matrices have been given in Equations (3) to (7). 
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Table I. Twenty three fundamental analytical solutions for the general part of the displacement 

function and resulting resultant forces 
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Table II. Two analytical solutions for the displacement function f and the resulting resultant forces
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Table III. Clamped square plate: Dimensionless results of central deflection wc /(qL
4
 /100D) 

and moment Mc /(qL
2
/10D) obtained by element HDF-P8-23β (Example 4.3) 

 

h/L 

 

Mesh type 

  Mesh density Analytical 

solutions  1×1 2×2 4×4 8×8    16×16 

 wc /(qL
4
 /100D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.12505 

− 
− 

0.12636 

0.12634 

0.12628 

0.12652 

0.12652 

0.12652 

0.12653 

0.12653 

0.12653 

0.12653 

0.12653 

0.12653 

  0.1265 

0.01 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.12530 

− 
− 

0.12662 

0.12659 

0.12654 

0.12677 

0.12677 

0.12677 

0.12678 

0.12678 

0.12678 

 0.12678 

 0.12678 

 0.12678 

   0.1267 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.14944 

− 
− 

0.15072 

0.15071 

0.15066 

0.15066 

0.15067 

0.15069 

0.15055 

0.15056 

0.15057 

 0.15049 

 0.15049 

 0.15050 

   0.1499 

 Mc /(qL
2
 /10D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.24196 

− 
− 

0.22902 

0.22069 

0.21864 

0.22908 

0.22895 

0.22879   

0.22905 

0.22903 

0.22901 

0.22905 

0.22905 

0.22905 

0.2291 

0.01 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.24187 

− 
− 

0.22909 

0.22137 

0.21935 

0.22912 

0.22899 

0.22887   

0.22910 

0.22908 

0.22907 

0.22909 

0.22909 

0.22909 

0.2291 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.23827 

− 
− 

0.23159 

0.23118 

0.23061  

0.23214 

0.23217 

0.23218 

0.23209 

0.23210 

0.23211 

0.23203 

0.23203 

0.23204 

0.231 
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Table IV. SS2 square plate: Dimensionless results of central deflection wc /(qL
4
 /100D)                  

and moment Mc /(qL
2
/10D) obtained by element HDF-P8-23β (Example 4.3) 

 

h/L 

 

Mesh type 

  Mesh density Analytical 

solutions 1×1 2×2 4×4 8×8    16×16 

 wc /(qL
4
 /100D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.40579 

− 
− 

0.40620 

0.40626 

0.40628 

0.40623 

0.40623 

0.40624 

0.40623 

0.40623 

0.40623 

0.40623 

0.40623 

0.40623 

0.4062 

0.01 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.40601 

− 
− 

0.40641 

0.40646 

0.40648 

0.40644 

0.40644 

0.40644 

0.40644 

0.40644 

0.40644 

0.40644 

0.40644 

0.40644 

0.4064 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.42697 

− 
− 

0.42724 

0.42725 

0.42726 

0.42728 

0.42728 

0.42728 

0.42728 

0.42728 

0.42728 

0.42728 

0.42728 

0.42728 

0.4273 

 Mc /(qL
2
 /10D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.49074 

− 
− 

0.47909 

0.47384 

0.47263 

0.47888 

0.47863 

0.47841 

0.47887 

0.47883 

0.47882 

0.47886 

0.47886 

0.47886 

 

0.01 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.49060 

− 
− 

0.47908 

0.47416 

0.47298 

0.47888 

0.47866 

0.47849 

0.47886 

0.47884 

0.47884 

0.47886 

0.47886 

0.47886 

0.4789 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.48279 

− 
− 

0.47869 

0.47818 

0.47786 

0.47884 

0.47883 

0.47883 

0.47886 

0.47886 

0.47886 

0.47886 

0.47886 

0.47886 
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Table V. SS1 square plate: Dimensionless results of central deflection wc /(qL
4
 /100D)                  

and moment Mc /(qL
2
/10D) obtained by element HDF-P8-23β and HDF-P8-SS1 (Example 4.3) 

 

h/L 

 

Mesh type 

  Mesh density Analytical 

solutions  1×1 2×2 4×4 8×8    16×16 

 wc /(qL
4
 /100D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.40925 

− 
− 

0.40698 

0.40691 

0.40695 

0.40678 

0.40656 

0.40657 

0.40658 

0.40648 

0.40643 

0.40631 

0.40634 

0.40637 

 0.4062 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.47047 

− 
− 

0.46388 

0.46265 

0.46223 

0.46220 

0.46191 

0.46182 

0.46186 

0.46181 

0.46181 

0.46187 

0.46187 

0.46189 

 0.4617 

 Mc /(qL
2 /10D) 

10-30~0.001 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.44896 

− 
− 

0.48035 

0.47518 

0.47420 

0.47937 

0.47896 

0.47882 

0.47917 

0.47906 

0.47900 

0.47893 

0.47895 

0.47898 

0.4789 

0.1 

Mesh A-regular 

Mesh B-distorted 

Mesh C-distorted 

0.45202 

− 
− 

0.51146 

0.50959 

0.50909 

0.50995 

0.50970 

0.50963 

0.50972 

0.50967 

0.50968 

0.50974 

0.50974 

0.50976 

0.5096 
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Table VI. Results of deflections and principal moments  

at the center of Morley’s 30° skew plate (L/h=1000) 

Mesh N×N 4×4 8×8 16×16 32×32 
Morley’s 

solutions for thin 

plate 

(a) Central deflection  wo/(qL
4/1000D) 

QH8-39β 0.416 0.422 0.420 0.417 0.408 

HDF-P4-11β 0.462 0.426 0.419 0.416  

S8R 0.181 0.279 0.326 0.356  

Present 0.423 0.419 0.417 0.415  

(b) Central max principal moment Mmax/(qL
2/100D) 

QH8-39β 1.911 1.936 1.938 1.933 1.910 

HDF-P4-11β 2.197 1.873 1.935 1.930  

S8R 1.241 1.517 1.671 1.757  

Present 1.932 1.902 1.925 1.925  

(c) Central min principal moment Mmin/(qL
2/100D) 

QH8-39β 0.966 1.136 1.131 1.122 1.080 

HDF-P4-11β 1.399 1.104 1.169 1.125  

S8R 0.492 0.705 0.802 0.889  

Present 1.121 1.109 1.119 1.112      

� QH8-39β (Li et al. 2015);  

� HDF-P4-11β (Cen et al. 2014);  

� S8R (Abaqus 2009);  

� Morley (1963) 
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Table VII. Results of deflections and principal moments  

at the center of Morley’s 30° skew plate (L/h=100) 

Mesh N×N 4×4 8×8 16×16 32×32 
Morley’s 

solutions for 

thin plate 

3D Solution  

(a) Central deflection  wo/(qL
4/1000D)  

QH8-39β 0.418 0.425 0.425 0.424 0.408 0.423 

HDF-P4-11β 0.463 0.427 0.421 0.420   

S8R 0.262 0.328 0.377 0.406   

Present 0.427 0.425 0.424 0.424   

(b) Central max principal moment Mmax/(qL
2/100D) 

QH8-39β 1.919 1.941 1.950 1.954 1.910  

HDF-P4-11β 2.198 1.882 1.942 1.937   

S8R 1.717 1.705 1.828 1.904   

Present 1.956 1.931 1.949 1.954   

(c) Central min principal moment Mmin/(qL
2/100D)  

QH8-39β 0.963 1.134 1.143 1.143 1.080  

HDF-P4-11β 1.400 1.108 1.157 1.130   

S8R 0.777 0.818 0.964 1.076   

Present 1.148 1.144 1.146 1.144   

� QH8-39β (Li et al. 2015);  

� HDF-P4-11β (Cen et al. 2014);  

� S8R (Abaqus 2009);  

� Morley (1963);  

� 3D (Babuška and Scapolla 1989) 

 

 

 

 

Page 32 of 54

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

 

Table VIII. Normalized center deflection wc / wref and moments Mc / Mref of simply-supported 

(SS1) circular plates subjected to a uniform load 

Mesh N 1 3 12 48 Analytical 

(a)   h/R=0.02 (h=0.1)                               cw / wref 

DONEA 0.9690 0.9980 0.9997 — 1.0000 

Kuang — 0.9945 0.9967 0.9992 (the reference  

QH-39β — 1.0276 1.0075 1.0025 value is 39831.5) 

S8R 0.9524 1.0070 0.9998 1.0000  

HDF-P4-11β — 1.0242 1.0065 1.0017  

Present 1.0002    1.0008 1.0001 1.0000  

Mc/ Mref 

Kuang — 0.9864 0.9922 0.9961 1.0000 

QH-39β — 0.9149 0.9922 0.9990 (the reference 

S8R 1.1000 1.2424 1.0087 1.0027 value is 5.15625) 

HDF-P4-11β — 1.0262 1.0046 1.0012  

Present 1.0152 1.0041 1.0003 1.0000  

(b)   h/R=0.2 (h=1)                                 cw / wref 

Kuang — 0.9907 0.9975 0.9988 1.0000 

QH-39β — 1.0841 1.0312 1.0120 (the reference 

S8R 0.9594 1.0012 0.9999 1.0000 value is 41.5994) 

HDF-P4-11β — 1.0206 1.0048 1.0010  

Present 1.0002 1.0010 1.0001 1.0000  

Mc/ Mref 

Kuang — 0.9864 0.9922 0.9981 1.0000 

QH-39β — 0.8408 0.9920 0.9990 (the reference 

S8R 1.1468 1.0771 1.0156 1.0040 value is 5.15625) 

HDF-P4-11β — 1.0170 1.0030 1.0007  

Present 1.0060 1.0008 1.0000 1.0000  

� DONEA (Donea and Lamain 1987);  

� Kuang (Zhang and Kuang 2007);  

� QH8-39β (Li et al. 2015); 

� HDF-P4-11β (Cen et al. 2014);  

� S8R (Abaqus 2009);  
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Table IX. Normalized center deflection wc / wref and moments Mc / Mref of clamped circular plates         

subjected to a uniform load  

Mesh N 1 3 12 48 Analytical 

(a)   h/R=0.02 (h=0.1)                               cw / wref 

DONEA 0.2960 1.0130 1.0020 — 1.0000 

S8R 0.1042 0.8621 0.9619 0.9971 (the reference  

Kuang — 0.9620 0.9957 0.9998 value is 9783.48) 

HDF-P4-11β — 0.7985 0.9484 0.9871  

Present 0.9965 0.9983 0.9999 1.0000  

Mc/ Mref 

S8R 0.1599 0.8169 1.0082 1.0083 1.0000 

Kuang — 0.9901 0.9951 0.9999 (the reference 

HDF-P4-11β — 0.9151 0.9727 0.9933 value is 2.03125) 

Present 1.0557 1.0050 1.0008 1.0001  

(b)   h/R=0.2 (h=1)                                 cw / wref 

S8R 0.9698 0.9992 0.9993 1.0000 1.0000 

Kuang — 0.9931 0.9955 0.9974 (the reference 

HDF-P4-11β — 0.8200 0.9512 0.9871 value is 11.5513) 

Present 0.9984 0.9985 0.9999 1.0000  

Mc/ Mref 

S8R 1.5142 1.1410 1.0390 1.0101 1.0000 

Kuang — 0.9951 0.9992 0.9995 (the reference 

HDF-P4-11β — 0.8924 0.9686 0.9918 Value is 2.03125) 

Present 1.0310 1.0008 1.0000 1.0000  

� DONEA (Donea and Lamain 1987);  

� Kuang (Zhang and Kuang 2007);  

� QH8-39β (Li et al. 2015); 

� HDF-P4-11β (Cen et al. 2014);  

� S8R (Abaqus 2009); 
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Table X. The dimensionless results of displacements and resultants at certain positions for the 

SFSF square plate 

 Mesh N×N 2×2 4×4 8×8 12×12 16×16 FEMOL Kant 

4

Cw D

qa

⋅  

HDF-P4-FREE — 0.01311 0.01311 0.01311 0.01311 

0.01311 0.0131 S8R 0.01311 0.01311 0.01311 0.01311 0.01311 

Present 0.01311 0.01311 0.01311 0.01311 0.01311 

4

Dw D

qa

⋅  

HDF-P4-FREE — 0.01507 0.01507 0.01507 0.01507 

0.01507 0.0150 S8R 0.01512 0.01507 0.01507 0.01507 0.01507 

Present 0.01507 0.01507 0.01507 0.01507 0.01507 

2

xCM

qa

 

HDF-P4-FREE — 0.02650 0.02675 0.02680 0.02681 

0.02683 0.0268 S8R 0.02851 0.02731 0.02695 0.02688 0.02686 

Present 0.02576 0.02656 0.02676 0.02680 0.02681 

2

yCM

qa
 

HDF-P4-FREE — 0.1229 0.1226 0.1225 0.1225 

0.1225 0.1220 S8R 0.1273 0.1237 0.1228 0.1226 0.1226 

Present 0.1235 0.1227 0.1225 0.1225 0.1225 

2

yDM

qa
 

HDF-P4-FREE — 0.1304 0.1304 0.1304 0.1304 

0.1304 0.130 S8R 0.1361 0.1322 0.1312 0.1309 0.1308 

Present 0.1308 0.1305 0.1304 0.1304 0.1304 

2

xy AM

qa
 

HDF-P4-FREE — 0.00000 0.00000 0.00000 0.00000 

NA NA S8R 0.01676 0.01795 0.01415 0.01124 0.00910 

Present 0.00000 0.00000 0.00000 0.00000 0.00000 

yBT

qa
 

HDF-P4-FREE — 0.4381 0.4552 0.4609 0.4634 

0.4679 0.463 S8R 0.4286 0.4286 0.4678 0.4679 0.4679 

Present 0.4431 0.4612 0.4659 0.4671 0.4675 

xDT

qa
 

HDF-P4-FREE — 0.00000 0.00000 0.00000 0.00000 

NA NA S8R 0.01362 0.04750 0.03875 0.03053 0.02468 

Present 0.00000 0.00000 0.00000 0.00000 0.00000 

�  FEMOL (Yuan 1993);  

�  Kant (Kant and Gadgil 2002; Kant and Hinton 1983); 

�  HDF-P4-FREE (Shang et al. 2015);  

�  S8R (Abaqus 2009); 
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Table XI. The dimensionless results of displacements and resultants at certain positions for the 

SS
*
SS

*
 square plate 

 Mesh N×N 2×2 4×4 8×8 12×12 16×16 Kant 

4

Cw D

qa

⋅  

HDF-P4-SS1 — 0.00410 0.00410 0.00410 0.00411 

0.0041 S8R 0.00412 0.00411 0.00411 0.00411 0.00411 

Present 0.00411 0.00411 0.00411 0.00411 0.00411 

2

xCM

qa

 

HDF-P4-SS1 — 0.04806 0.04809 0.04810 0.04811 

0.0481 S8R 0.05193 0.04901 0.04834 0.04822 0.04818 

Present 0.04814 0.04812 0.04813 0.04813 0.04813 

2

yCM

qa
 

HDF-P4-SS1 — 0.04821 0.04822 0.04824 0.04825 

0.0482 S8R 0.05253 0.04913 0.04848 0.04836 0.04832 

Present 0.04815 0.04827 0.04827 0.04827 0.04827 

2

xy AM

qa
 

HDF-P4-SS1 — 0.00000 0.00000 0.00000 0.00000 

NA S8R -0.02648 –0.02547 –0.01941 –0.01528 –0.01232 

Present 0.00000 0.00000 0.00000 0.00000 0.00000 

yAT

qa
 

HDF-P4-SS1 — –5.087 –5.074 –5.047 –5.039 

–5.214 S8R -0.772 –1.325 –2.207 –2.834 –3.289 

Present -5.504 -5.441 -5.346 -5.252 -5.197 

yBT

qa
 

HDF-P4-SS1 — 0.3076 0.3154 0.3179 0.3208 

0.333 S8R 0.5224 0.3975 0.3394 0.3392 0.3392 

Present 0.3415 0.3335 0.3371 0.3383 0.3387 

xDT

qa
 

HDF-P4-SS1 — 0.4226 0.4095 0.3875 0.3697 

0.419 S8R 0.3978 0.3563 0.3708 0.3810 0.3883 

Present 0.4178 0.4157 0.4129 0.4133 0.4137 

� Kant (Kant and Gadgil 2002; Kant and Hinton 1983); 

� HDF-P4-FREE (Shang et al. 2015);  

� S8R (Abaqus 2009); 
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Figure 1. Timoshenko’s beam element(curved) 
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Figure 2. Shape-free 8-node quadrilateral plate bending element 

 6 

 w
6
 

ψ
y6
 ψ

x6
 

 7 

 w
7
 

ψ
y7
 

ψ
x7
 

 4 

 w
4
 

ψ
x4
 

ψ
y4
 

 1 

 w
1
 

ψ
y1
 

ψ
x1
  2 ψ

y2
 

ψ
x2
  w

2
 

ψ
y5
  5 

ψ
x5
 

 w
5
 

 
 w

8
 

ψ
y8
 

ψ
x8
  3 

 w
3
 

ψ
y3
 

ψ
x3
 

ψ
x
 

∂w/∂x 

z,w 

x,u 

∂w/∂y 

ψ
y 

 

z,w 

y,v 

z 

x 

y 

o 

M
xy
 

M
y
 

T
y
 

M
xy
 

M
y
 

T
y
 

M
xy
 

M
x
 

T
x
 

Mid-surface (xoy plane) 

h 

Page 38 of 54

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Patch tests, geometry, loads and meshes 

E = 1000.0; µ = 0.3; h = 0.04, 0.4, 4; a = 20; b = 10. 

(c)  Non-zero constant shear  

(Tx=Constant, Ty=Constant,). 

(a)  Bending (Mn=1). 

Mx=My=1 

Mn=1 

Mn=1 

Mn=1 Mn=1 

(b)  Twist (Mns=1). 

Mxy = 1 

Mns=1 

Mns=1 

Mns=1 Mns=1 

  BC: w1=w2=w3=0

wi

ψxi

ψyi

2 2 3 2 2 3

0 1 2 3 4 5 6 7 8 9

2
2 2

6 8 1 3 4 6 7 8

2
2 2

7 9 2 4 5 7 8 9

(3 ) 2 3 2
2.5(1 )

( 3 ) 2 2 3
2.5(1 )

i i i i i i i i i i i i i

xi i i i i i i

yi i i i i i i

w a a x a y a x a x y a y a x a x y a x y a y

h
a a a a x a y a x a x y a y

h
a a a a x a y a x a x y a y

ψ
µ

ψ
µ


= + + + + + + + + +


 = + + + + + + +

−


= + + + + + + +
−

3

6 82

3

7 92

(3 ) Constant
6(1 )

( 3 ) Constant
6(1 )

xi

yi

Eh
T a a

Eh
T a a

µ

µ


= + = −


 = + = −

a0, ...,a9 are arbitrary constants, 

given the nodal deflections 

and rotations, exact results 

within the element could be 

calculated 

y 

x 

3 (2a, 2b) 

2 (2a, 0) 1 (0, 0) 

4 (0, 2b) 

Mesh A 

5 6 

8 7 5: (8, 4) 
6: (32, 6) 
7: (32, 14) 
8: (16, 14) 

Mesh B 

5 
6 

8 7 5: (8, 4) 
6: (20, 9) 
7: (32, 14) 
8: (16, 14) 

Mesh C 

8 7 

5 

6 

5: (8, 4) 
6: (18, 11) 
7: (32, 14) 
8: (16, 14) 

Mesh D 

Page 39 of 54

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Typical meshes used by a quarter of square plate (c is the central point of plate) 

b) Mesh B 2×2-distorted a) Mesh A 2×2-regular c) Mesh C 2×2-distorted 
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Mx Tx 

c)  Contour plot under h/L=0.1 using Mesh 16×16 

Figure 5. Convergence of the central deflections and moments and contour plot for 

square plates subjected to uniform load (Clamped BC, Mesh A) 

a)  h/L=0.001 (thin plate case) 

b)  h/L=0.1 (thick plate case) 
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c)  Contour plot under h/L=0.1 using Mesh 16×16 

Mx Tx 

Figure 6. Convergence of the central deflections and moments and contour plot for 

square plates subjected to uniform load (SS2 BC, Mesh A) 

a)  h/L=0.001 (thin plate case) 

b)  h/L=0.1 (thick plate case) 
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Mx Tx 

c)  Contour plot under h/L=0.1 using Mesh 16×16 

Figure 7. Convergence of the central deflections and moments and contour plot for 

square plates subjected to uniform load (SS1 BC, Mesh A) 

a)  h/L=0.001 (thin plate case) 

b)  h/L=0.1 (thick plate case) 
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Figure 8. Distorted meshes and normalized results for a quarter of clamped square plate 

(omitting middle nodes)    
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Figure 9. Mesh 4×4 for Morley’s 30° skew plate 

E=10.92; µ=0.3; h=0.1 and 1;  

L=100; L/h=1000; 100 

Uniform load q=1  

Displacement BCs: 
w=0 along ABCD 
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D 
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30° 
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Figure 10. Convergence test for central deflections and principle moments of 

Morley’s 30° skew plate 
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Figure 11. Circular plate problem 
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Mθ Mr Tr 

c)  Contour plot under h/R=0.2 using 48 elements 

Figure 12. Convergence of the central deflections and moments and contour plot for 

circular plates subjected to uniform load (SS1 BC) 

a)  h/R=0.02 (thin plate case) 

b)  h/R=0. 2 (thick plate case) 
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Figure 13. Convergence of the central deflections and moments and contour plot for 

circular plates subjected to uniform load (Clamped BC) 

a)  h/R=0.02 (thin plate case) 

c)  Contour plot under h/R=0.2 using 48 elements 

b)  h/R=0. 2 (thick plate case) 
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Mesh 4×4 for quarter plate 
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Figure 15. Distributions, contour plots and comparisons of the shear force Tx for the SFSF case  

 

b) i) Comparisons of distributions of the shear force Tx along the symmetric edge CD 

(y=0.5a) with other methods with mesh 10×10; ii) Convergence of the present method 

a) Distributions of the shear force Tx along the symmetric edge CD (y=0.5a) with mesh 

i) 2×2; ii) 4×4; iii) 8×8; and iv) convergent contour plot with mesh 8×8 

 

Tx/qa 
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b) i) Distributions of the shear force Ty along the hard simply-supported edge AB (y=0) with mesh 2×2;         

ii) Convergent contour plot with mesh 8×8 

 

Ty/qa 

a) i) Distributions of the twisting moment Mxy along the hard simply-supported edge AB (y=0) with mesh 2×2;         

ii) Convergent contour plot with mesh 8×8 

 Mxy/qa
2
 

c) i) Comparisons of distributions of the twisting moment Mxy ; ii) Comparisons of distributions of the 

shear force Ty along the hard simply-supported edge AB (y=0) with mesh 10×10 

 Figure 16. Distributions, contour plots and comparisons of the twisting moment Mxy and the shear 

force Ty for the SFSF case  
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Tx/qa 

a) Distributions of the shear force Tx along the symmetric edge CD (y=0.5a) with mesh 

i) 2×2; ii) 4×4; iii) 8×8; and iv) convergent contour plot with mesh 8×8 

 

b) Comparisons of distributions of the shear force Tx along the symmetric edge CD 

(y=0.5a) the with other methods with mesh 10×10 

Figure 17. Distributions, contour plots and comparisons of the shear force Tx for the SS*SS* case  
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Ty/qa
 

Mxy/qa
2 

a) i) Distributions of the twisting moment Mxy along the hard simply-supported edge AB (y=0) with mesh 2×2; 

ii) Convergent contour plot with mesh 8×8 

 

c) i) Comparisons of distributions of the twisting moment Mxy ; ii) Comparisons of distributions of the 

shear force Ty along the hard simply-supported edge AB (y=0) with mesh 10×10 

Figure 18. Distributions, contour plots and comparisons of the twisting moment Mxy and the shear 

force Ty for the SS*SS* case  

 

b) i) Distributions of the shear force Ty along the hard simply-supported edge AB (y=0) with mesh 2×2;         

ii) Convergent contour plot with mesh 8×8 
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