

Cronfa - Swansea University Open Access Repository This is an author produced version of a paper published in: Optical Materials Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa29854 Paper: Chiasera, A., Scotognella, F., Valligatla, S., Varas, S., Jasieniak, J., Criante, L., Lukowiak, A., Ristic, D., Gonçalves, R., Taccheo, S., Ivanda, M., Righini, G., Ramponi, R., Martucci, A. & Ferrari, M. (2016). Glass-based 1-D dielectric microcavities. Optical Materials http://dx.doi.org/10.1016/j.optmat.2016.04.014

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Glass-ceramics for photonics: Laser material processing

Clara Goyes¹, Efraín Solarte², Sreeramulu Valligatla^{3,4,5}, Andrea Chiappini³, Alessandro Chiasera³, Cristina Armellini³, Maurizio Mazzola³, Stefano Varas³, Alessandro Carpentiero³, Francesco Scotognella^{6,7}, Stefano Pelli^{8,9}, Francesco Prudenzano¹⁰, Alessandro Vaccari¹¹, D. Narayana Rao⁵, Stefano Taccheo¹², Anna Łukowiak¹³, Dominik Dorosz¹⁴, Marian Marciniak¹⁵, Brigitte Boulard¹⁶, Rogeria Rocha Gonçalves¹⁷, Roberta Ramponi¹⁸, Giancarlo C. Righini^{8,9}, and Maurizio Ferrari^{3,9,*}

¹Grupo IMAMNT, Materiales avanzados para Micro y Nanotecnología, Universidad Autónoma de Occidente, Cali, Colombia.

³CNR-IFN, CSMFO Lab. and FBK-CMM Via alla Cascata 56/c, Povo, 38123 Trento, Italy.
⁴Dipartimento di Fisica, Università di Trento, via Sommarive 14, Povo, 38123 Trento, Italy
⁵School of Physics, University of Hyderabad, Hyderabad 500046,India

⁶Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano

⁷Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan, Italy.

⁸MDF Lab.IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.

⁹Centro di Studi e Ricerche "Enrico Fermi", Piazza del Viminale 2, 00184 Roma, Italy.

¹⁰Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy.

¹¹FBK -CMMM, Unità ARES, via Sommarive 18, Povo, 38123 Trento, Italy.

²¹College of Engineering, Swansea University, Singleton Park, Swansea, UK.

¹³Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wrocław, Poland.

¹³Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wrocław, Poland. ¹⁴Bialystok University of Technology, Department of Power Engineering, Photonics and Lighting Technology, 45D Wiejska St., Bialystok 15-351, Poland.

¹⁵National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland.
 ¹⁶Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, Av.O.Messiaen, 72085
 Le Mans cedex 09, France.

¹⁷Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil,

¹⁸IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy * Tel: (+39) 0461 314918, Fax: (+39) 0461 314250, e-mail: maurizio.ferrari@ifn.cnr.it

ABSTRACT

Transparent glass-ceramics, activated by luminescent species, present an important class of photonic materials because their specific optical, spectroscopic and structural properties. Several top-down and bottom-up techniques have been developed for transparent glass ceramic fabrication. Among them laser material processing plays an important role and many significant results have been obtained in the field of waveguide glass ceramics fabrication. Here, after a short description of the state of art regarding laser material processing for glass ceramics, we report on the specific use of CO₂ laser for the fabrication of transparent glass ceramic waveguides. **Keywords**: Transparent glass-ceramics, Laser material processing, CO₂ laser, Planar waveguides, Crystallization, SiO₂–ZrO₂, SiO₂–HfO₂, Attenuation coefficient

1. LASER MATERIAL PROCESSING FOR GLASS CERAMICS

Laser material processing is a fantastic tool not only to improve optical and structural properties of the materials and to write photonic structures but also for the achievement of new materials [Veiko2008, Osellame2012, Dutta1980, Chiasera2013]. One of the field where this tool is highly appreciated is the fabrication of transparent glass ceramics. In fact, in order to produce active rare earth nanocrystals in a glass matrix, heat treatment using a furnace has been commonly used, but laser annealing process offers an effective and complementary fabrication method. For laser annealing several types of lasers have been used, differing primarily in wavelength (e.g. XeCl 308 nm, frequency doubled Nd-YAG 532 nm, Nd-YAG 1064 nm, CO₂ 10.6 µm) [Goyes2009]. It was reported that CO₂ laser annealing can reduce scattering losses in Corning 7059 glasses [Dutta1980,] and ZnO [Dutta1981] thin-film waveguides fabricated on thermally oxidized silicon substrates. Losses as low as 0.05 dB/cm for Corning 7059 glass waveguide [Dutta1980] and 0.01 dB/cm for ZnO waveguides [Dutta1981] have been achieved by this technique. This study was extended by the same authors to reduce optical scattering losses in the fabrication of other waveguides: Si₃N₄ films fabricated by low pressure chemical vapor deposition, Nb₂O₅ films by RF sputtering, and Ta₂O₅ films by both reactive sputtering and thermal oxidation of sputtered tantalum films [Dutta1982]. The technological appeal of the class of glass-ceramics fostered the research in photonic techniques fabrication and the paper of Livingston and Helvajin devoted to photostructurable glasses paved the way of this research field [Livingston2006]. They propose a novel approach to material processing that implements laser photoexcitation in a direct-write scheme to establish initial excitation states in a protean material that enables the regulation of a particular phase transformation pathway. Quite recently interesting results has been obtained in the case of GeO₂ sputtered waveguides [Chiasera2013, Chiasera2014, Valligatla2015]. Laser material processing technique was also successfully employed in SiO₂–ZrO₂ and SiO₂–HfO₂ planar waveguides, prepared by sol-gel route and activated by Er³⁺ ions [Goyes2009, Goyes2007]. Another interesting example concerning specific modification of the luminescence properties induced by laser processing is reported in [Zanatta2004]. The specific interest of this research is related to the manipulation of rare-earth-doped amorphous GeN films. The samples were prepared by the radio-frequency-sputtering method, and light emission from the rare-earth centers was obtained after irradiating the films with a highly focused laser beam. Laser material processing of transparent glass ceramics was also demonstrated employing CW YAG laser [Tanaka2003]. The specific interest of this work is study is to apply laser irradiation to glasses to form a non-linear glass-ceramic system.

Let us look more in detail some results obtained by CO₂ laser action.

2. CO2 LASER FABRICATION OF TRANSPARENT GLASS CERAMIC WAVEGUIDES

The crystallization phenomenon in different glass-ceramic and glass materials under CO₂ laser action was carefully investigated by Veiko et. al. [Veiko2008]. Authors start from the statement that every glass has its own crystallization ability that means that a certain temperature interval exists and glasses can crystallize in this interval. It is also clear that we have to know the crystallization ability and crystallization speed to choose the proper regime for glass melting, manufacturing of different articles and for thermal processing in glass-ceramics manufacture. Crystallization character depends on relation between crystallization centers formation rate, crystal growing rate from this centers and viscosity. The larger the interval between peak rates of crystall growth and formation of crystallization centers, and lower the rates themselves, the lower the tendency of glass to crystallization. Crystallization of glass materials depends on several factors: chemical composition and viscosity of glass, basic material, mutual solubility of every component, duration of exposure on proper temperatures, existence of crystallization catalysts and conditions of thermal processing of glass.

It was already mentioned that laser material processing can improve spectroscopic properties of the parent glass when rare-earth activated glass ceramics are developed [Goyes2007, Goyes2009]. The investigated samples were planar waveguides of silica-zirconia and silica-hafnia activated by Er³+ ions and prepared by sol-gel route. The preparation protocol is reported in detail in [Goyes2007, Goyes2009]. Briefly, the starting solution, for both systems, was obtained by mixing tetraethylorthosilicate (TEOS), ethanol, de-ionized water, and hydrochloric acid as a catalyst. For silica-hafnia the molar composition 70SiO₂-30HfO₂ was chosen on the basis of the previous experience [Righini2005]. For the SiO₂–ZrO₂ waveguide, the precursor was ZrOCl₂ and was then added to the solution containing TEOS with a Si/Zr molar ratio of 70/30 and 80/20. Erbium was added with an Er/(Si + Hf or Zr) molar concentration of 0.5 and 5 mol%. The films were deposited on cleaned pure v-SiO₂ substrates by dip coating and densified by a suitable thermal annealing protocol as presented in Table 1. Other samples were densified with CO₂ laser annealing treatment, as shown in Table 2 employing both CW and pulsed sources.

Waveguide composition	Erbium content [mol%]	Final thermal annealing at 900 °C [min]		
70SiO ₂ –30ZrO ₂	5	5		
70SiO ₂ –30HfO ₂	5	5		
80SiO ₂ –20ZrO ₂	0.5	5		
80SiO ₂ -20ZrO ₂	0.5	30		

Table 1 Composition and final thermal annealing parameters for Er³⁺-activated SiO₂–ZrO₂ and SiO₂–HfO₂ planar waveguides.

Waveguide composition	Erbium content [mol%]	CO ₂ laser type	Average power [W]	Irradiation time [min]
70SiO ₂ –30HfO ₂	5	CW	13	15
70SiO ₂ -30ZrO ₂	5	CW	13	15
80SiO ₂ –20ZrO ₂	0.5	CW	10	10
80SiO ₂ –20ZrO ₂	0.5	CW	10	20
80SiO ₂ -20ZrO ₂	0.5	CW	10	30
80SiO ₂ –20ZrO ₂	0.5	Pulsed	30	2.5
80SiO ₂ –20ZrO ₂	0.5	Pulsed	30	10
80SiO ₂ –20ZrO ₂	0.5	Pulsed	30	15

Table 2 Composition and CO₂ laser annealing parameters for Er³⁺-activated SiO₂–ZrO₂ and SiO₂–HfO₂ planar waveguides.

The schema of the experimental setup used for CO_2 pulsed laser annealing is shown in Fig. 1. In the case of 10.6 μm CW CO_2 laser annealing the beam diameter was 6 mm. The power density of the CO_2 laser beam, with a Gaussian distribution, was around 5.7 W/cm², and the irradiated zone of the waveguide was adjusted to 2 cm diameter; the Gaussian distribution is along the beam cross-section. The waveguides were positioned at around 50 cm from the laser. For the pulsed CO_2 laser irradiation, $80SiO_2-20ZrO_2$ planar waveguides has been used. The laser power density, with a Gaussian distribution, was 78 W/cm² for pulsed CO_2 laser irradiation and a pulse period of 400 and 32 μs pulse width. The sample was about 1.5 m from the laser head and Argon C45 was used as a shroud gas for the annealing processes at a flow rate of 2.0 l/min.

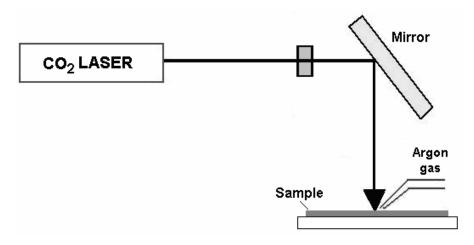


Figure 1 Schema of the experimental setup used for CO₂ pulsed laser annealing

Optical parameter, i.e. thickness and refractive index of the waveguide, were measured by m-line technique [Righini2005]. The losses for the TE_0 mode were evaluated by photometric detection of the light intensity scattered out of the waveguide plane and the photoluminescence spectra were measured in waveguide configuration exciting the TE_0 mode of the investigated waveguides [Righini2005].

The optical and spectroscopic parameters for the continuous CO_2 laser irradiated planar waveguides are reported in Table 3. The thermal annealed samples are also reported for comparison. The parameters measured before and in the case of the standard thermal annealing are also reported to better evidence the effect of the CW laser processing.

Waveguide composition	Annealing procedure	Refractive index @ 1.5µm TE polarization	⁴ I _{13/2} Bandwidth	⁴ I _{13/2} Lifetime (±0.5 ms)	Attenuation coefficient @ 633 nm
70SiO ₂ -30HfO ₂	BTA	1.583	50	≤ 0.5	≥ 2
70SiO ₂ –30HfO ₂	ATA T = 900 °C; t = 5 min	1.589	47	0.8	≥ 2
70SiO ₂ –30HfO ₂	After CW LA IT = 15 min	1.621	49	0.7	0.8
80SiO ₂ -20ZrO ₂	Before LA	1.548	46	4.6	≥ 2
80SiO ₂ -20ZrO ₂	After CW LA IT = 10 min	1.561	48	4.5	1.5
80SiO ₂ -20ZrO ₂	After CW LA IT = 20 min	1.563	48	5.4	1.4
80SiO ₂ –20ZrO ₂	After CW LA IT = 30 min	1.566	48	5.9	1.1

Table 4 Optical and spectroscopic parameters of the 0.5 mol% Er³⁺-activated 70SiO₂–30ZrO₂ and 70SiO₂–30HfO₂ planar waveguides: BTA before thermal annealing; ATA after thermal annealing; IT irradiation time; LA laser annealing.

The waveguides present a thickness ranging from 0.63 to 0.99 μm. All waveguides support one TE and TM modes at 1319 nm and 1542 nm. For the 70SiO₂-30HfO₂ and 70SiO₂-30ZrO₂ planar waveguides doped with 5 mol% Er³⁺ after thermal annealing the refractive indexes measured in TE polarization are quite similar to those obtained in TM polarization, indicating that the birefringence is negligible in the systems and similar differences are obtained for the refractive indexes for the samples treated with CO₂ laser annealing, indicating that the laser annealing do not induce birefringence in these systems.

Comparing the refractive indexes in the SiO_2 – HfO_2 samples before and after the CO_2 laser irradiation we observe a variation Δn of about 0.04, for example at 1542 nm the refractive index in TE polarization is 1.583 nm before any final treatment, 1.589 after thermal conventional annealing and 1.621 after CO_2 laser annealing. The increasing of the refractive index observed with laser annealing can suggest that with this laser treatment a better densification of the system is achieved in respect to the use of only thermal annealing. As a matter of fact, as appear in the Table 4, the SiO_2 – ZrO_2 samples, shown after thermal annealing similar values of refractive index than before the annealing, but with CO_2 laser annealing we observe a variation Δn of about 0.01.

Finally, we have observed that laser annealing can lead to waveguides with a lower attenuation coefficient, than the attenuation coefficient obtained after the thermal annealing. In fact we observe an attenuation coefficient at 632 nm of 0.80 and 1.1 dB/cm for silica - hafnia and silica - zirconia waveguides respectively for the irradiated systems while we obtain attenuation coefficient higher that 2 dB/cm for the systems processed with thermal annealing The decreasing of the attenuation coefficient on the CO_2 laser irradiated systems, has been attributed to the elimination of surface irregularities.

An increase of the lifetime from 4.6 ms before and 7.0 ms after pulsed CO_2 laser annealing was measured for $80SiO_2$ - $20ZrO_2$ with 0.5 mol% Er^{3+} -activated. This behavior can be related to a better structural order of the erbium environment. It is well known that a crystalline environment around the rare earth induce a shortening in the phonon energies. Indeed the phonon energy of the surrounding environment of the rare earth ions is proportional to the non radiation contribution of the ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ transition. [Goyes2009]

CONCLUSIONS

Laser material top-down processing can be successfully employed to tailor the optical, spectroscopic and structural properties of rare-earth-activated glass-based planar waveguides. The important role of CO₂ laser is evidenced in the case of 70SiO₂-30HfO₂ and 70SiO₂-30ZrO₂ activated by Er³⁺ions. Depending on the CW or pulsed irradiation as well as on the irradiation time and fluency local crystallization or smoothing of the surface can be achieved. Laser material processing is nowadays a consolidated tool for fabrication of transparent glass ceramics although the crystallization mechanism remain an open investigation subject.

ACKNOWLEDGEMENTS

This research was performed in the framework of CNR-PAS joint project (2014–2016), ITPAR PhaseIII research project, Premiale Centro Fermi (2012-2015) and COST Action MP1401. R.R. Gonçalves and M. Ferrari acknowledge Brazilian Scientific Mobility Program "Ciências sem Fronteiras".

REFERENCES

- [1] [Veiko2008] V.P.Veiko, A.I. Ignatyev, N.V. Nikonorov, E.B. Yakovlev, D.V. Orlov, "Crystallization phenomenon in different glass-ceramic and glass mmaterials under CO2 laser action", Proc. of SPIE Vol. 6985 (2008) pp. 69850E-1/7.
- [2] [Osellame 2012] R. Osellame, G. Cerullo, R. Ramponi "Femtosecond Laser Micromachining" Topics in Applied Physics 123, Springer 2012.
- [3] [Dutta1980] S. Dutta, H.E. Jackson, J.T. Boyd, "Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing", Applied Physics Letters 37 (1980) pp. 512–514.
- [4] [Chiasera2013] A. Chiasera, C. Macchi, S. Mariazzi, S. Valligatla, L. Lunelli, C. Pederzolli, D.N. Rao, A. Somoza, R.S. Brusa, and M. Ferrari, "CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering" Optical Materials Express 3 (2013) pp. 1561-1570.
- [5] [Goyes2009] C.Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G.C. Righini, F. Fonthal, E. Solarte, "CO2 laser annealing on erbium-activated glass-ceramic waveguides for photonics", Optical Materials 31 (2009) pp.1310-1314.
- [6] [Dutta1981] S. Dutta, H.E. Jackson, J.T. Boyd, F.S. Hickernell, R.L. Davis, "Scattering loss reduction in ZnO optical waveguides by laser annealing", Applied Physics Letters 39 (1981) pp. 206–208.
- [7] [Dutta1982] S. Dutta, H.E. Jackson, J.T. Boyd, R.L. Davis, F.S. Hickernell, "CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction", IEEE Journal of Quantum Electronics QE 18 (4) (1982) 800–806.

- [8] [Livingston2006] F.E. Livingston and H. Helvajian "Selective activation of material property changes in photostructurable glass ceramic materials by laser photophysical excitation", Journal of Photochemistry and Photobiology A: Chemistry 182 (2006) pp. 310–318.
- [9] [Chiasera2014] A. Chiasera, C. Macchi, S. Mariazzi, S. Valligatla, S. Varas, M. Mazzola, N. Bazzanella, L. Lunelli, C. Pederzolli, D. N. Rao, G. C. Righini, A. Somoza, R. Brusa, M. Ferrari, "GeO2 glass ceramic planar waveguides fabricated by RF-sputtering", Proceedings SPIE 8982 (2014) pp. 89820D-1/12
- [10] [Valligatla2015] S. Valligatla, A. Chiasera, N. Bazzanella, L. Lunelli, A. Miotello, M. Mazzola, D. Narayana Rao, and M. Ferrari, "CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering", IOP Conf. Series: Materials Science and Engineering 73 (2015) pp. 012006-1/6.
- [11] [Goyes2007] C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G.C. Righini, A. Casas, C. Meacock, and E. Solarte, "Effect of CO2 laser irradiation on the performances of sol-gel-derived Er3+activated SiO2 ZrO2 and SiO2 HfO2 planar waveguides", Proceedings SPIE 6458 (2007) pp. 64580D-1/9.
- [12] [Zanatta2004] A. R. Zanatta and C. T. M. Ribeiro, "Laser-induced generation of micrometer-sized luminescent patterns on rare-earth-doped amorphous films", Journal of Applied Physics 96 (2004) pp. 5977-5981.
- [13] [Tanaka2003] H. Tanaka, T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, "YAG laser-induced □-BaB2O4 crystalline dot formation in Sm2O3−BaO−B2O3 glasses" Journal of Physics and Chemistry of Solids 64 (2003) pp. 1179−1184.
- [14] [JLMN2006] V.P. Veiko, Q.K. Kieu, N.V. Nikonorov, P.A. Skiba, "On the Reversibility of Laser-induced Phase-structure Modification of Glass-ceramics", JLMN-Journal of Laser Micro/Nanoengineering 1 (2006) pp. 149-154.
- [15] [Veiko2005] V.P. Veiko, Q.K. Kieu, N.V. Nikonorov, V.Y. Shur, A. Luches, S. Rho, "Laser-induced modification of glass-ceramics microstructure and applications", Applied Surface Science 248 (2005) pp. 231–237.
- [16] [Goyes2005] C. Goyes, A. Casas, E. Solarte, F. Sequeda, A. Devia, "Preparation and characterization of ceramic thin films, structures, and nanocrystals using CO2 laser annealing treatment", Proc. of SPIE 6029 (2005) pp. 60290D-1/6.
- [17] [Goyes2006] A. Casas Bedoya, H.A. Garcia Mejia, C. Goyes, and E. Solarte, "CO2 (10.6 μm) laser for high tech ceramic material production", Proc. Of SPIE 6290 (2006) pp. 629007-1/8.
- [18] [Righini2005] G.C. Righini and M. Ferrari, "Photoluminescence of rare-earth-doped glasses", La Rivista del Nuovo Cimento 28 (2005) pp. 1-53.
- [19] [C. Goyes PhD Thesis] C.E. Goyes López "Aplicación del recocido con láser de CO2 en la fabricación de materiales nanoestructurados y películas cerámicas", PhD Thesis Universidad del Valle July 2006.