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Abstract. In the paper, by virtue of the Girsanov transformation, we derive a link of
a class of (time-inhomogeneous) non-Lipschitz stochastic differential equations (SDEs)
with jumps to a class of semi-linear partial integro-differential equations (PIDEs) of
parabolic type, in such a manner that these obtained PIDEs characterize the path-
independence property of the density process of Girsanov transformation for the non-
Lipschitz SDEs with jumps.

1. Introduction

The object of this paper is to establish a link of a class of (time-inhomogeneous) non-
Lipschitz stochastic differential equations (SDEs) with jumps to semilinear partial integro-
differential equations (PIDEs) of parabolic type, by virtue of the Girsanov transformation
for the SDEs. The class of SDEs with jumps we are concerned with was investigated
by the first author in [8]. Our result gives a characterisation of the path-independent
property for the density process of the Girsanov transformation for the SDEs with jumps.
Such a link was considered in [13] where the simple case of one dimensional Itô SDEs
to the celebrated (generalised) Burgers equation was derived. Furthermore, the multi-
dimensional SDEs driven by Brownian motions on Rd as well as on connected complete
manifolds were carried out in [12] and the characterisation of the path-independence of
the associated Girsanov transformation was governed by a Burgers-KPZ type nonlinear
parabolic equation along with the drift coefficients being of gradient form.

To extend such a link for SDEs with jumps is not straightforward, as there is no
analogous version of the Girsanov transformation (i.e., the drift transformation) for the
SDEs with jumps modeled generally by Poisson random measures and the associated
compensated martingale measures, see, e.g., [11]. One has to work with somehow a
modified formulation towards the Girsanov transformation for SDEs with jumps. Such
a realisation was succeeded by the first author in [9], which is the starting point of the
present paper.

AMS Subject Classification(2010): 60H10; 35Q53.
Keywords: non-Lipschitz stochastic differential equations with jumps, the Girsanov transformation,

semi-linear partial integro-differential equation of parabolic type.
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On the other hand, recently, there is an increasing interest in studying partial integro-
differential equations (PIDEs) from a diverse need. Let us just mention, in particular, two
recent papers in mathematical finance [1, 5] where very interestingly PIDEs are linked
with SDEs with jumps via the Feynman-Kac formula. The link we derive in this paper
is different from theirs. It would be interesting to explore our derivation to cover more
general SDEs with jumps, such as those equations arising in [1, 5] and to compare the
corresponding PIDEs. We intend to address this consideration elsewhere in the future.

2. The characterisation theorem on Rd

2.1. The characterization theorem for SDEs with continuous diffusions on Rd.
Let (Ω,F , P; (Ft)t>0) be a complete, filtered probability space. Let (U, ∥ · ∥U) be a finite
dimensional normed space with its Borel σ-algebra U . Let ν be a σ-finite measure defined
on (U,U ). We fix U0 ∈ U with ν(U \ U0) < ∞ and

∫
U0
∥u∥2

U ν(du) < ∞. Furthermore,

let λ : [0,∞) × U → (0, 1] be a given measurable function. Following e.g. [3, 4], there
exists an integer-valued (Ft)t>0-Poisson random measure Nλ(dt, du) on (Ω,F , P; (Ft)t>0)
with intensity E(Nλ(dt, du)) = λ(t, u)dtν(du). Denote

Ñλ(dt, du) := Nλ(dt, du)− λ(t, u)dtν(du)

that is, Ñλ(dt, du) stands for the compensated (Ft)t>0-predictable martingale measure of
Nλ(dt, du).

Next, let T > 0 be arbitrarily fixed, and we consider the following SDE with jumps on
Rd

{
dXt = b(t,Xt)dt + σ(t,Xt)dBt +

∫
U0

f(t,Xt−, u)Ñλ(dt, du), t ∈ (0, T ],

X0 = x0 ∈ Rd,
(1)

where (Bt) is a d-dimensional (Ft)t>0-Brownian motion, which is independent of Nλ. The
coefficients b : [0, T ]×Rd 7→ Rd, σ : [0, T ]×Rd 7→ Rd×d and f : [0, T ]×Rd ×U0 7→ Rd are
all Borel measurable.

Remark 2.1. Since in the sequel the density process of the Girsanov transformation is
not related with “big” jumps, we only consider “small” jumps in Eq.(1).

Assume:

(H1) There exists λ0 ∈ R such that for all x, y ∈ Rd and t ∈ [0, T ]

2⟨x− y, b(t, x)− b(t, y)⟩+ ∥σ(t, x)− σ(t, y)∥2 6 λ0|x− y|2κ(|x− y|),
where κ is a positive continuous function, bounded on [1,∞) and satisfying

lim
x↓0

κ(x)

log x−1
= δ < ∞.

(H2) There exists λ1 > 0 such that for all x ∈ Rd and t ∈ [0, T ]

|b(t, x)|2 + ∥σ(t, x)∥2 6 λ1(1 + |x|)2.

(H3) b(t, x) is continuous in x and there exists λ2 > 0 such that

⟨σ(t, x)h, h⟩ >
√

λ2|h|2, t ∈ [0, T ], x, h ∈ Rd. (2)
2



(Hf ) For all x, y ∈ Rd and t ∈ [0, T ],
∫

U0

∣∣f(t, x, u)− f(t, y, u)
∣∣2ν(du) 6 2|λ0||x− y|2κ(|x− y|)

and for q = 2 and 4
∫

U0

|f(t, x, u)|q ν(du) 6 λ1(1 + |x|)q.

Here ⟨·, ·⟩ denotes the inner product in Rd, | · | the length of a vector in Rd and ∥ · ∥ the
Hilbert-Schmit norm from Rd to Rd.

Remark 2.2. In (H1) and (Hf), κ(x) can be taken as

κ(x) =

{
log x−1, 0 < x 6 η,
log η−1 − 1 + η/x, x > η,

for 0 < η < 1/e. And Condition (2) then assures that for any (t, x) ∈ [0, T ] × Rd, the
inverse of σ(t, x) exists and is bounded.

Under (H1), (H2) and (Hf), it is well known that there exists a unique strong solution
to Eq.(1) (cf. [11, Theorem 170, p.140]). This solution will be denoted by Xt. In the
following, we define the support of a random vector ([6]) and then present a result about
the support of Xt under the above assumptions.

Definition 2.3. The support of a random vector Y is defined as

supp(Y ) := {x ∈ Rd|(P ◦ Y −1)(B(x, r)) > 0, for all r > 0}
where B(x, r) := {y ∈ Rd||y − x| < r}, the open ball centered at x with radius r.

Lemma 2.4. Under (H1)-(H3) and (Hf), supp(Xt) = Rd for t ∈ [0, T ].

Proof. Since it is easy to see supp(Xt) ⊂ Rd, we only prove supp(Xt) ⊃ Rd. Moreover,
from Definition 2.3, we only need to show that for any x ∈ Rd and r > 0,

P{|Xt − x| < r} > 0,

or equivalently,

P{|Xt − x| > r} < 1.

By the same method to that in [8, Proposition 2.4], one can prove the above result. �

To apply the Girsanov transformation, we assume further the following

(Hb,σ,λ)

(i)E
[
exp

{1

2

∫ T

0

∣∣σ−1(s,Xs)b(s, Xs)
∣∣2 ds

}]
< ∞,

(ii)

∫ T

0

∫

U0

(
1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds < ∞,

where σ(s,Xs)
−1 stands for the inverse of σ(s,Xs).
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Remark 2.5. If b is bounded, then Condition (i) is satisfied. And for Condition (ii), for
example, take U0 = {u ∈ U|∥u∥U < 1} and for any (t, u) ∈ [0, T ]× U

λ(t, u) =





1, 0 6 ∥u∥U 6 δ,
∥u∥2

U, δ < ∥u∥U < 1,
δ2, 1 6 ∥u∥U,

where 0 < δ < 1 is a constant. Thus, one can justify that Condition (ii) is fulfilled.

Set

Λt : = exp

{
−

∫ t

0

⟨σ−1(s, Xs)b(s,Xs), dBs⟩ −
1

2

∫ t

0

∣∣σ−1(s,Xs)b(s,Xs)
∣∣2 ds

−
∫ t

0

∫

U0

log λ(s, u)Ñλ(ds, du)

−
∫ t

0

∫

U0

((
log λ(s, u)

)
λ(s, u) +

(
1− λ(s, u)

))
ν(du)ds

}
,

Mt : = −
∫ t

0

⟨σ−1(s,Xs)b(s,Xs), dBs⟩+

∫ t

0

∫

U0

1− λ(s, u)

λ(s, u)
Ñλ(ds, du),

and then (Λt) is the Doléans-Dade exponential of (Mt). Under (Hb,σ,λ), (Mt) is a locally
square integrable martingale. Moreover, Mt −Mt− > −1 a.s. and

E
[
exp

{1

2
< M c,M c >T + < Md,Md >T

}]

= E
[
exp

{1

2

∫ T

0

∣∣σ−1(s,Xs)b(s,Xs)
∣∣2 ds

+

∫ T

0

∫

U0

(
1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞,

where M c and Md are continuous and purely discontinuous martingale parts of (Mt),
respectively. Thus, it follows from [7, Theorem 6] that (Λt) is an exponential martingale.

Define a measure P̃ via
dP̃
dP

= ΛT .

By the Girsanov theorem for Brownian motions and random measures, one can obtain
that under the measure P̃ the system (1) is transformed into the following

dXt = σ(t,Xt)dB̃t +

∫

U0

f(t,Xt−, u)Ñ(dt, du),

where

B̃t := Bt +

∫ t

0

σ−1(s, Xs)b(s,Xs)ds, Ñ(dt, du) := Nλ(dt, du)− dtν(du).

Next, we set

Yt := − log Λt

=

∫ t

0

⟨σ−1(s, Xs)b(s,Xs), dBs⟩+
1

2

∫ t

0

∣∣σ−1(s, Xs)b(s,Xs)
∣∣2 ds
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+

∫ t

0

∫

U0

log λ(s, u)Ñλ(ds, du)

+

∫ t

0

∫

U0

((
log λ(s, u)

)
λ(s, u) +

(
1− λ(s, u)

))
ν(du)ds.

Clearly, (Yt) is a one-dimensional stochastic process with the following stochastic differ-
ential form

dYt = ⟨σ−1(t,Xt)b(t,Xt), dBt⟩+
1

2

∣∣σ−1(t,Xt)b(t,Xt)
∣∣2 dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) +

∫

U0

((
log λ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)dt.

Now, we state and prove the first result of this paper.

Theorem 2.6. Let v : [0, T ] × Rd → R be a scalar function which is C1 with respect to
the first variable and C2 with respect to the second variable. Then

v(t,Xt) = v(0, x0) +

∫ t

0

∫

U0

((
log λ(s, u)

)
λ(s, u) +

(
1− λ(s, u)

))
ν(du)ds

+
1

2

∫ t

0

∣∣σ−1(s,Xs)b(s,Xs)
∣∣2 ds +

∫ t

0

∫

U0

log λ(s, u)Ñλ(ds, du)

+

∫ t

0

⟨σ−1(s,Xs)b(s,Xs), dBs⟩, (3)

equivalently,

Yt = v(t,Xt)− v(0, x0), t ∈ [0, T ]

holds if and only if

b(t, x) = (σσ∗∇v)(t, x), (t, x) ∈ [0, T ]× Rd, (4)

λ(t, u) = exp{v(t, x + f(t, x, u))− v(t, x)}, (t, x, u) ∈ [0, T ]× Rd × U0, (5)

and v satisfies the following time-reversed partial integro-differential equation (PIDE),

∂

∂t
v(t, x) = −1

2
[Tr(σσ∗)∇2v](t, x)− 1

2
|σ∗∇v|2(t, x)−

∫

U0

[
ev(t,x+f(t,x,u))−v(t,x) − 1

−⟨f(t, x, u),∇v(t, x)⟩ev(t,x+f(t,x,u))−v(t,x)
]
ν(du), (6)

where σ∗(t, x) stands for the transposed matrix of σ(t, x), ∇ and ∇2 stand for the gradient
and Hessian operators with respect to the second variable, respectively.

Proof. Firstly, we prove necessity. On one hand, there exists a C1,2-function v(t, x) such
that v(t,Xt) satisfies Eq.(3), i.e.

dv(t,Xt) =

[
1

2

∣∣σ−1(t,Xt)b(t,Xt)
∣∣2 +

∫

U0

((
log λ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)

]
dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + ⟨σ−1(t,Xt)b(t,Xt), dBt⟩. (7)
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It is clear from (7) that v(t,Xt) is a càdlàg semimartingale with a predictable finite
variation part. On the other hand, note that Xt solves Eq.(1) and v(t, x) is a C1,2-
function. By applying the Itô formula to the composition process v(t,Xt), one obtains
the following

dv(t,Xt) =
∂

∂t
v(t,Xt)dt + ⟨b,∇v⟩(t,Xt)dt +

1

2
[Tr(σσ∗)∇2v](t,Xt)dt

+

∫

U0

[
v(t,Xt− + f(t,Xt−, u))− v(t,Xt−)

−⟨f(t,Xt−, u),∇v(t,Xt−)⟩
]
λ(t, u)ν(du)dt

+

∫

U0

[v(t,Xt− + f(t,Xt−, u))− v(t,Xt−)] Ñλ(dt, du)

+⟨(σ∗∇v)(t, Xt), dBt⟩. (8)

Thus, (8) is another decomposition of the semimartingale v(t,Xt). By uniqueness for
decomposition of the semimartingale, it holds that for t ∈ [0, T ],

σ−1(t,Xt)b(t,Xt) = (σ∗∇v)(t,Xt),

log λ(t, u) = v(t,Xt− + f(t,Xt−, u))− v(t,Xt−), u ∈ U0,

and

1

2

∣∣σ−1(t,Xt)b(t, Xt)
∣∣2 +

∫

U0

((
log λ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)

=
∂

∂t
v(t,Xt) + ⟨b,∇v⟩(t,Xt) +

1

2
[Tr(σσ∗)∇2v](t,Xt)

+

∫

U0

[
v(t,Xt− + f(t,Xt−, u))− v(t,Xt−)

−⟨f(t,Xt−, u),∇v(t,Xt−)⟩
]
λ(t, u)ν(du), a.s..

Based on Lemma 2.4, Xt runs through Rd. So, we have that

σ−1(t, x)b(t, x) = (σ∗∇v)(t, x), (t, x) ∈ [0, T ]× Rd, (9)

log λ(t, u) = v(t, x + f(t, x, u))− v(t, x), (t, x, u) ∈ [0, T ]× Rd × U0, (10)

and

1

2

∣∣σ−1(t, x)b(t, x)
∣∣2 +

∫

U0

((
log λ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)

=
∂

∂t
v(t, x) + ⟨b,∇v⟩(t, x) +

1

2
[Tr(σσ∗)∇2v](t, x)

+

∫

U0

[
v(t, x + f(t, x, u))− v(t, x)

−⟨f(t, x, u),∇v(t, x)⟩
]
λ(t, u)ν(du). (11)

It is easy to see that (9) and (10) correspond to (4) and (5), respectively, which together
with (11) further yields the PIDE (6).
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Next, let us show sufficiency. Assume that there exists a C1,2-function v(t, x) satisfying
(4), (5) and (6). For the composition process v(t,Xt), the Itô formula admits us to get
(8). Combining (4), (5) and (6) with (8), we have

dv(t,Xt) =

[
1

2

∣∣σ−1(t,Xt)b(t,Xt)
∣∣2 +

∫

U0

((
log λ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)

]
dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + ⟨σ−1(t,Xt)b(t,Xt), dBt⟩.

The proof is completed. �
The above theorem gives a necessary and sufficient condition, and hence a characteri-

sation of path-independence for the density Λt of the Girsanov transformation for SDEs
with jumps in terms of a PIDE. Namely, we establish a bridge from Eq.(1) to a PIDE in
the form of (6).

Remark 2.7. Let f(t, x, u) = 0, then Eq.(1) has no jumps. In Theorem 2.6, by (5), we
know that λ(t, u) = 1 for u ∈ U0. Thus, Eq.(3) becomes

v(t,Xt) = v(0, x0) +

∫ t

0

⟨σ−1(s,Xs)b(s, Xs), dBs⟩+
1

2

∫ t

0

∣∣σ−1(s, Xs)b(s, Xs)
∣∣2 ds.

By Theorem 2.6, the above equation holds if and only if (4) and the following equation
are right,

∂

∂t
v(t, x) = −1

2
[Tr(σσ∗)∇2v](t, x)− 1

2
|σ∗∇v|2(t, x).

This is exactly Theorem 2.1 in [12]. Hence, our result is more general to allow SDEs
having jumps.

For the simplest case that d = 1, let us look at Eq.(6). By the Hopf-Cole transformation
w(t, x) := ev(t,x) or reciprocally v(t, x) = log w(t, x), Eq.(6) becomes

∂

∂t
w(t, x) = −1

2
[σ2 ∂2

∂x2
w](t, x)−

∫

U0

[
w(t, x + f(t, x, u))− w(t, x)

−f(t, x, u)
∂

∂x
w(t, x)

w(t, x + f(t, x, u))

w(t, x)

]
ν(du).

The above equation is a usual PIDE.
Assume that f(t, x, u) is independent of t, i.e. f(t, x, u) = f(x, u). Set f(x, u) =: y and

ν(df−1(x, ·)(y)) =: K(x)dy

|y|1+α(x) , where K(x) is a positive function and 0 < α(x) < 2. Then

the above equation can be written as

∂

∂t
w(t, x) = −1

2

[
σ2 ∂2

∂x2
w

]
(t, x)−

∫

R\{0}

[
w(t, x + y)− w(t, x)

−y
∂

∂x
w(t, x)

w(t, x + y)

w(t, x)

] K(x)dy

|y|1+α(x)
. (12)

For 0 < α(x) < 1, Eq.(12) has the following form

∂

∂t
w(t, x) = −1

2

[
σ2 ∂2

∂x2
w

]
(t, x)−

∫

R\{0}

[
w(t, x + y)− w(t, x)

] K(x)dy

|y|1+α(x)
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+
∂
∂x

w(t, x)

w(t, x)

∫

R\{0}
w(t, x + y)y

K(x)dy

|y|1+α(x)

= −1

2

[
σ2 ∂2

∂x2
w

]
(t, x)−

[
−(−∆)

α(x)
2 w

]
(t, x)

+
∂
∂x

w(t, x)

w(t, x)

∫

R\{0}
w(t, x + y)y

K(x)dy

|y|1+α(x)
.

For 1 < α(x) < 2, Eq.(12) has the other form

∂

∂t
w(t, x) = −1

2

[
σ2 ∂2

∂x2
w

]
(t, x)−

∫

R\{0}

[
w(t, x + y)− w(t, x)− y

∂

∂x
w(t, x)

] K(x)dy

|y|1+α(x)

+
∂
∂x

w(t, x)

w(t, x)

∫

R\{0}

[
w(t, x + y)− w(t, x)

]
y

K(x)dy

|y|1+α(x)

= −1

2

[
σ2 ∂2

∂x2
w

]
(t, x)−

[
−(−∆)

α(x)
2 w

]
(t, x)

+
∂
∂x

w(t, x)

w(t, x)

∫

R\{0}

[
w(t, x + y)− w(t, x)

]
y

K(x)dy

|y|1+α(x)
.

If we assume further that b(t, x) = b(x) and σ(t, x) = σ(x), the two above parabolic
PIDEs then change into

1

2

[
σ2 ∂2

∂x2
w

]
(x) +

[
−(−∆)

α(x)
2 w

]
(x)−

∂
∂x

w(x)

w(x)

∫

R\{0}
w(x + y)y

K(x)dy

|y|1+α(x)
= 0,

for 0 < α(x) < 1, and

1

2

[
σ2 ∂2

∂x2
w

]
(x) +

[
−(−∆)

α(x)
2 w

]
(x)−

∂
∂x

w(x)

w(x)

∫

R\{0}

[
w(x + y)− w(x)

]
y

K(x)dy

|y|1+α(x)
= 0,

for 1 < α(x) < 2. In particular, for α(x) = α, the two equations contain first-order,
second-order and fractional derivatives.

2.2. The characterization theorem for SDEs without diffusion coefficient term.
Consider Eq.(1) with σ(t, x) = 0, i.e.

{
dX̄t = b(t, X̄t)dt +

∫
U0

f(t, X̄t−, u)Ñλ(dt, du), t ∈ [0, T ],

X̄0 = x̄0.
(13)

Since Eq.(13) is driven by a purely jump process, there are something different from the
above derivations. Let us explicate this as follows. By [11, Theorem 170, p.140], when
b, f satisfy (H1)-(H2) and (Hf), Eq.(13) has a pathwise unique strong solution denoted
by X̄t. We assume:

(Hλ)
∫ T

0

∫

U0

(
1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds < ∞.

Set

Λ̄t := exp

{
−

∫ t

0

∫

U0

log λ(s, u)Ñλ(ds, du)
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−
∫ t

0

∫

U0

((
log λ(s, u)

)
λ(s, u) +

(
1− λ(s, u)

))
ν(du)ds

}
,

then by similar derivations above, Λ̄t is an exponential martingale. Define a probability
measure P̄ via

dP̄
dP

= Λ̄T .

Under P̄, by the Girsanov theorem for random measures, the system (13) is then trans-
formed into the following

dX̄t = b(t, X̄t)dt +

∫

U0

f(t, X̄t−, u)Ñ(dt, du).

Note that the drift term still exists in the above equation.
Now, we turn to the path-independence of Λ̄t. By similar arguments as in the proof of

Theorem 2.6, we obtain the following result

Theorem 2.8. Let v̄ : [0, T ] × Rd → R be a scalar function which is C1 with respect to
the first variable and C2 with respect to the second variable. Then

v̄(t, X̄t) = v̄(0, x̄0) +

∫ t

0

∫

U0

log λ(s, u)Ñλ(ds, du)

+

∫ t

0

∫

U0

((
log λ(s, u)

)
λ(s, u) +

(
1− λ(s, u)

))
ν(du)ds, (14)

holds if and only if

λ(t, u) = exp{v̄(t, x + f(t, x, u))− v̄(t, x)}, (t, x, u) ∈ [0, T ]× Rd × U0, (15)

and v̄ satisfies the following time-reversed equation,

∂

∂t
v̄(t, x) = −⟨b,∇v̄⟩(t, x)−

∫

U0

[
ev̄(t,x+f(t,x,u))−v̄(t,x) − 1

−⟨f(t, x, u),∇v̄(t, x)⟩ev̄(t,x+f(t,x,u))−v̄(t,x)
]
ν(du). (16)

We analysis Eq.(16) for the special case of d = 1. By the Hopf-Cole transformation
v̄(t, x) = log w̄(t, x), we obtain that

∂

∂t
w̄(t, x) = −

[
b

∂

∂x
w̄

]
(t, x)−

∫

U0

[
w̄(t, x + f(t, x, u))− w̄(t, x)

−f(t, x, u)
∂

∂x
w̄(t, x)

w̄(t, x + f(t, x, u))

w̄(t, x)

]
ν(du).

This equation is an integro-differential equation. Assume that b(t, x) = b(x), f(t, x, u) =

f(x, u) =: y and ν(df−1(x, ·)(y)) =: K(x)dy

|y|1+α(x) . By similar deduction to above, the above

equation becomes
[
b

∂

∂x
w̄

]
(x) +

[
−(−∆)

α(x)
2 w̄

]
(x)−

∂
∂x

w̄(x)

w̄(x)

∫

R\{0}
w̄(x + y)y

K(x)dy

|y|1+α(x)
= 0,

for 0 < α(x) < 1, and
[
b

∂

∂x
w̄

]
(x) +

[
−(−∆)

α(x)
2 w̄

]
(x)−

∂
∂x

w̄(x)

w̄(x)

∫

R\{0}

[
w̄(x + y)− w̄(x)

]
y

K(x)dy

|y|1+α(x)
= 0,

9



for 1 < α(x) < 2.
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