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Abstract Ytterbium-doped optical amplifiers have become common tools for industrial

applications due to their high efficiency, relatively low cost and potentially very high

output power level. The efficiency of an ytterbium-doped fiber amplifier depends mainly

on the absorption of pump radiation, and, therefore, optimum pump wavelengths have been

proposed such as 915 nm. However, the semiconductor pump diodes batch supplied by

manufacturers may exhibit a spread in the output wavelength. This paper theoretically

investigates the performance of Yb-doped amplifiers for different pump wavelengths and

defines the pump power penalty when the pump source does not emit at the optimum

wavelength. The penalty has been defined as normalized excess pump power required to

achieve the desired gain.

Keywords Ytterbium-doped fiber amplifier � Pumping efficiency � Yb-doped germano-

silicate glasses

1 Introduction

Ytterbium-doped fibre amplifiers (YDFA) provide a wide gain bandwidth, high output

power, and a high electrical to optical power conversion efficiency, making them suit-

able for medium and high power applications (Paschotta et al. 1997; Zervas 2014; Injeyan
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and Goodno 2011). This makes YDFAs one of the most common type of amplifiers in

numerous applications, ranging from medium to high-power amplification, such as mass,

manufacturing, fiber sensing, free-space laser communication, and ultra-short pulse

amplification (Paschotta et al. 1997; Pask et al. 1995; O’Neill 2008; Zhang et al. 2012a, b;

Zervas 2014; Nogee 2014). In case of device low price target for large market production

there is a sensitive economic-engineering issue related to supplied pump diodes. In fact the

semiconductor pump lasers are usually supplied, to reduce cost, without a specific

wavelength, and therefore the supplied batch may exhibit a significant wavelength spread.

The non-optimum pump diode wavelength implies need of driving the diode with higher

current intensity to achieve the desired gain and this turns out into higher running costs as

well accelerated diode aging. The aim of this paper is to numerically explore the impact of

the diode pump wavelength on the amplifier efficiency and provide guidelines on tolerated

pump diode wavelength spread. Laser numerical simulations, are in fact a useful tool to

predict general device behaviour since the era of telecom Erbium-doped fiber amplifiers

and have now reached a high degree of sophistication (D’Orazio et al. 2005; Giles and

Desurvire 1991; He et al. 2006; Magne et al. 1994).

The configuration that will be analyzed is one of the more common in laser industry, in

term of mass use, being used, for example, for marking processes, and is based on the

Master-Oscillator-Power-Amplifier (MOPA) scheme where the YDFA is seeded by a few

hundred of mW input and provide an output power of about 20 W (O’Neill 2008; Zhang

et al. 2012a; Pask et al. 1995; Snitzer 1966). We will evaluate the extra pump power

required to achieve a desired gain in case of non-optimal pump diode wavelength. We will

consider amplification of both 1030 and 1064 nm signals.

2 Simulation

We investigated a 20 W, 17 dB gain (i.e. with a 0.4 W seed) Yb-doped germane-silicate

continuous wave amplifier (Paschotta et al. 1997; Zervas 2014; Zhang et al. 2012a; Pask

et al. 1995; O’Neill 2008), being a quite common design for the large market of lasers for

marking. The doping level was set to be compatible with a fiber length ranging from 3 to

13 m. We simulated the device under continuous wave condition since results may be

extended in term of efficiency to a configuration were a ns pulsed seed is used (O’Neill

2008). Of course, in case of long fiber lengths, the amplifier pulsed amplification will suffer

from several nonlinear effects, here not considered. This was also the reason to use

maximum length of 13 m above which nonlinear effects may be detrimental. The speci-

fications of the active fiber are summarized in Table 1. The active fiber is a Yb-doped

germanium silicate fiber, doping concentration, Nyb, is 3 9 1025 m-3, and input signal

Table 1 Active fiber parameters
Parameters Yb-germanosilicate

Core diameter 5 lm

Doping concentration 3 9 1025 ions/m-3

Signal power 400 mW

Gain 17 dB

Pump cladding radius 50 lm

Radius of propagating Gaussian seed 4.8 lm
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power Ps is 400 mW with a targeted 17 dB gain. The absorption and emission cross-

sections for Yb-doped germanium silicate glass fiber by Paschotta et al. (1997) are shown

in Fig. 1 (Paschotta et al. 1997; O’Connor and Shiner 2011; Weber et al. 1983), and

commercial software (RP Fiber Power) was used for the simulation (Paschotta 2011). In

the simulation, we used the standard ytterbium two level scheme and we included the

impact of amplified spontaneous emission (ASE) using emission and absorption cross

section data of Fig. 1 (Paschotta 2011). No phenomena, as photodarkening, depending on

the local inversion level, have been considered, yet, for the given configuration they should

not impact the comparison we investigate (Taccheo et al. 2011; Gebavi et al. 2015). The

fiber radius was set at r = 5 lm, while the length of the fiber has been varied from 3 to

13 m. A Gaussian field distribution of 4.8 um radius was used for the propagation of signal

radiation, while the pump radius is set at 50 lm, with a top-hat profile to simulate a double

cladding fiber with a 100 lm diameter outer cladding.

The used software (Paschotta 2011) utilizes the Finite Difference Time Domain with a

fixed number of mesh points, N, which the software employs to solve the differential

equations. In order to avoid gain calculation errors we performed a preliminary set of

simulation, showing gain calculations reaches a stable value for N[ 50, a safeguard value

of 1000 was chosen.

3 Results and discussion

3.1 Pump power for seed wavelength of 1030 and 1064 nm

Figure 2a shows the required pump power versus fiber length and pump wavelength with a

1030 nm seed. We notice that for a 3 m fiber length, the minimum pump power is 47,2 W

at 914 nm and then increases as the pump diode wavelength diverges from optimum value

to reach 60.5 W at 930 nm, and 64.7 W at 890 nm as shown in Fig. 2b. As the fiber length

increases the optimum wavelength red-shift and the minimum pump power decreases as

well as the difference between minimum pump power and the power at the edges: 26.5 W

at 890 nm wavelength, 23.8 W at 918 nm wavelength (minimum) and 25.3 W at 930 nm

wavelength. However we notice that pulsed amplification in case of long fibre will be

limited by non-linear effects (Paschotta et al. 1997; Zervas 2014; Pask et al. 1995), so long

fibre case may not be practical for pulsed amplification.
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Fig. 1 Absorption and emission
cross-section of ytterbium-doped
germanosilicate glass (Paschotta
et al. 1997)
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Figure 3 illustrates the same simulations for a 1064 nm seed. While the absolute power

is a slightly different from the case of the 1030 nm wavelength seed of Fig. 2a, the

difference between optimum case and edge pump wavelength excess power is very similar.

For example in case of the fiber length of 3 m, minimum pump power is 50.4 W at

wavelength of 914 nm, and reaches 69.3 W at 890 nm wavelength.

3.2 Normalized pump power penalty

Since each specific amplifier may require a different pump power level, we decided to

define a normalized power penalty as excess pump power percentage required to reach the

desired gain, 17 dB in our case. The normalized pump power penalty (Pn) is defined as:

Pn ¼
Ppw k; Lð Þ � Popt kmin; Lð Þ

Popt kmin; Lð Þ � 100 ð1Þ

where Ppw (k, L) is the pump power at a given fiber length, L, and for a specific pump

wavelength k, and Popt (kmin, L) is the minimum pump power required at the optimum

wavelength kmin and for the same fiber length L.
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Fig. 2 a Pump power versus fiber length and pump wavelength with seed wavelength of 1030 nm,
b section of a showing the pump power variation versus wavelength for fiber lengths of 3, 10 and 13 m
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Fig. 3 a Pump power versus fiber length and pump wavelength with seed wavelength of 1064 nm,
b section of a showing the pump power variation versus wavelength for fiber lengths of 3, 10 and 13 m
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Figure 4a illustrates that normalized excess pump power using data from Fig. 2. Note

for sake of clarity we shows on the right side (Fig. 4b) the same data in a bidimensional

plot. Here we notice more clearly that short fibre lengths are definitively far more sensitive

to diode pump wavelength spread: up to 37.2 % normalized pump power penalty is

reached in case of using a 890 nm pump laser diodes in a 3 m long amplifier, while

normalized pump power penalty is 12.5 % at 890 nm for a 13 m fibre length.

Similar results and behaviours are obtained when the signal wavelength is set at

1064 nm as shown in Fig. 5.

Considering Figs. 4 and 5 we notice that power penalty is very similar and therefore

some guidelines can be drawn. As example if we set a 10 % normalized pump power

penalty the allowed batch wavelength spread is between 901 and 924 nm for short fibre.

We also note that penalty grows non linearly with the wavelength offset and varies from

10 % to over 25 % when moving from 898 to 890 nm pump wavelength. Results also

indicates the laser performance will be more sensitive with respect pump wavelength offset

if short fibre lengths are planned to be used, as in the case of short amplifiers for short pulse

amplification.
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Fig. 4 a Normalized pump power penalty versus fiber length and pump wavelength with a 1030 nm
wavelength seed, b bidimensional representation
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Fig. 5 a Normalized pump power penalty versus fiber length and pump wavelength with a 1064 nm
wavelength seed, b bidimensional representation
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4 Conclusion

This paper shows pump diode wavelength spread may cause an increase in the required

pump power, thus increasing the diode driver current and likely accelerating pump diode

ageing. The paper proposes a simple model to quantify the pump power penalty associate

to the use of non optimum wavelength pump laser diode. This allows to define the tolerable

pump wavelength spread. As general guideline pump power penalty is higher for shorter

fibers, preferred to reduce nonlinear phenomena, and the penalty is more severe for pump

wavelength red shifted with respect the optimum pump wavelength. As example a max-

imum of 10 % penalty is achieved within a -13/?10 nm interval with respect to the

optimum pump wavelength of 914 nm for a 3 m long fiber. In case of highly doped

amplifiers schemes using very short fibre the system will be even more sensitive.
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