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We investigate the dependency of strain rate, temperature and size on yield strength of hexagonal close 

packed (HCP) nanowires based on large-scale molecular dynamics (MD) simulation. A variance-based 

analysis has been proposed to quantify relative sensitivity of the three controlling factors on the yield 

strength of the material. One of the major drawbacks of conventional MD simulation based studies is 

that the simulations are computationally very intensive and economically expensive. Large scale 

molecular dynamics simulation needs supercomputing access and the larger the number of atoms, the 

longer it takes time and computational resources. For this reason it becomes practically impossible to 

perform a robust and comprehensive analysis that requires multiple simulations such as sensitivity 

analysis, uncertainty quantification and optimization. We propose a novel surrogate based molecular 

dynamics (SBMD) simulation approach that enables us to carry out thousands of virtual simulations 

for different combinations of the controlling factors in a computationally efficient way by performing 

only few MD simulations. Following the SBMD simulation approach an efficient optimum design 

scheme has been developed to predict optimized size of the nanowire to maximize the yield strength. 

Subsequently the effect of inevitable uncertainty associated with the controlling factors has been 

quantified using Monte Carlo simulation. Though we have confined our analyses in this article for 

Magnesium nanowires only, the proposed approach can be extended to other materials for 

computationally intensive nano-scale investigation involving multiple factors of influence. 

Key words: hcp-nanowire; Yield strength; Surrogate; Monte Carlo simulation; Uncertainty; 

Sensitivity; Optimum design 
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1. Introduction 

Nanoscale analysis has become immensely popular across all fields of research in the last few 

decades. The fundamental properties of any material such as strength, ductility, creep, fracture 

behavior, durability etc. can be controlled widely at nanoscale compared to its bulk specimen. Rapid 

advancements in electron microscopy and other devices that can manipulate materials at nano-scale 

along with the advancement in computing power are accelerating the progress of nanomaterials 

research. Numerous nanoscale simulations have been reported over the last two decades [1-7]. These 

studies reveal that there are several external and internal factors in a material, which affect the 

mechanical strength. Dislocation plasticity, dislocation movement, grain size, grain geometry and 

alloying elements control for the strength of a material, can be considered as internal factor while 

strain rate (SR), temperature (T) and size (or diameter of nanowire d) can be attributed as external 

factors. We focus on the effect of three external factors that affect mechanical strength in a nanowire. 

HCP-Magnesium nanowires have been considered in this study for the purpose of analysis. A novel 

methodology is proposed in the realm of nano-scale research for quantifying relative sensitivity of 

these three factors by analyzing their relative variances. Subsequently probabilistic analysis has been 

carried out using Monte Carlo Simulation (MCS) to study the relative coefficient of variation 

considering randomness in the three factors. Large-scale multiple-simulation (~10
3
) based statistical 

approach has been reported in scientific literature for nano-scale analyses that requires carrying out 

very large number of expensive and time consuming molecular dynamics simulations [8]. We propose 

a surrogate based molecular dynamics (SBMD) simulation approach where the number of actual MD 

simulations can be drastically reduced and thereby thousands of virtual simulations can be performed 

to investigate the material behavior thoroughly in a computationally efficient paradigm. Virtual 

simulation refers to the surrogate model predictions in this article. Application of the proposed SBMD 
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simulation approach has enabled us to apply global optimization algorithms in the field of MD 

simulation based investigations of materials, wherein we have optimized the size of nanowire to 

maximize the yield strength for different temperatures and strain rates. By implementing the SBMD 

simulation approach we practically replaced the expensive MD simulations by an efficient 

mathematical model that facilitates us to conduct a detail and robust analysis on the strength of the 

nanowire.       

In the context of MD simulations there is considerable amount of available literature, where 

mechanical properties have been studied against variables such as strain rate, temperature or size effect 

[9-17].  Both temperature and strain rate have also been taken into account together and attempts have 

been made to carry out quantitative study of all the factors in nanoscale specimens [18-22]. The 

temperature sensitivity analysis has been carried out by an Arhennius expression [23] which is directly 

related to the activation energy of a reaction that can be a mechanical, physical or a chemical reaction. 

Temperature dependence determines the thermal softening of a specimen. Other than temperature, 

there are factors like work hardening, the strain rate sensitivity that also contribute and determine 

ductility. Explicit expression has been reported to quantify sensitivity of a single factor (strain rate) on 

a specific material response [24], but relative sensitivity analyses of multiple factors are still very 

scarce to find in nano-scale research. Few studies have attempted to correlate certain mechanical 

properties to cross-sectional size of nanowires by performing a regression analysis to arrive at some 

empirical formulae [25, 26]. Most of the studies reported so far in scientific literature present the 

variation of a response quantity of interest with respect to one factor, keeping all other factors constant. 

In reality all the factors act simultaneously in a process. The relative sensitivity of each controlling 

factor cannot be truly assessed unless we vary multiple factors simultaneously in an experiment/ 

simulation. In the proposed analysis of variance approach for sensitivity quantification, we have varied 
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all the three considered factors simultaneously to quantify their relative sensitivity on the yield strength 

of the material. This article hereafter is organized as follows, section-2: description of the proposed 

SBMD simulation approach in details; section-3: Large-scale simulation based results and discussion 

on the yield strength of HCP nanowires; section-4: conclusion.   

2. Surrogate Based Molecular Dynamics (SBMD) Simulation 

In this section the proposed SBMD simulation approach is discussed along with the three 

analyses (sensitivity analysis, optimization and uncertainty quantification) performed for HCP 

nanowires to comprehensively study the behavior of this material (Fig. 1). Variance based sensitivity 

analysis has been carried out in conjunction with the SBMD simulation approach for quantifying 

relative sensitivity of the three considered factors. Variance based sensitivity analysis is a form of 

global sensitivity analysis that works in a probabilistic framework. It decomposes the variance of 

output of the system into fractions, which can be attributed to inputs, or sets of inputs [26]. The 

relative contribution of each of the three input parameters (including the contribution of the interaction 

terms) to the total model variance is obtained by dividing each individual sum of squares (SS) by the 

summation of all SS [27, 28]. Percentage relative contributions of variances are designated as 

sensitivity for different parameters. To achieve computational efficiency, a surrogate modeling 

approach based on D-optimal design coupled with polynomial regression [27, 28]
 
has been developed 

in conjunction with MD simulations. On the basis of statistical and mathematical analysis, the 

surrogate modelling technique gives an approximate and efficient model which relates the input 

features ξ and output features y for a particular system. 

                                                   y = f (ξ1, ξ2, . . . ,ξk ) + ε                                                             (1) 

where f denotes the approximate response function and ε is the statistical error term having a normal 

distribution with mean zero and k is the number of input parameters. ξ is usually coded as 
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dimensionless variable having mean zero and a standard deviation of ξ. The surrogate model is fit 

approximately to a set of points in the design space (which may be chosen using design of experiment 

approach) following a multiple regression fitting scheme. Design of experiments is an efficient 

algorithm for planning experiments/samples so that the data obtained can be utilized to achieve any 

particular goal.  

D-optimal design is one of the most efficient designs of experiment algorithms requiring fewer 

samples than standard design procedures and thus it needs much lesser number of molecular dynamics 

simulations/experiments to be carried out for forming the surrogate model [29]. In this design, position 

of design points is chosen algorithmically according to the number of factors and the desired model to 

meet the optimality criteria. Optimal designs can be used to create a good design for fitting a linear, 

quadratic, cubic or higher order models. There can be several types of optimality criteria such as D-

optimality, A-optimality and E-optimality. Let X denotes the design matrix as a set of value 

combinations of coded parameters and X
t
 is the transpose of X, then D-optimality is achieved if the 

determinant of (X
t
X)

-1
 is minimal. A-optimality is achieved by minimizing the trace of (X

t
X)

-1
. E-

optimality is achieved if the largest eigenvalue of (X
t
X)

-1
 is minimal.  Among these, D-optimal design 

is the most commonly used owing to better accuracy of approximation than others. In D-optimal 

design, the total sample size (n) comprises of minimum design points (nd), additional model points (na) 

and lack-of-fit points (nl) i.e., n = nd + na + nl. The required model points (i.e., minimum design points) 

is the minimum number of samples to estimate the coefficients for model formation while additional 

model points are extra samples added by the user to improve precision estimates or coverage of the 

factor space and lack-of-fit points are the extra points to fill the factor space.  The extra information 

provided by these points can test the fit of the model. 
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After selection of the design points using D-optimal design algorithm as discussed above, a 

surrogate model, is constructed following a multiple regression technique, wherein it is assumed that 

random errors are identically distributed with a zero mean and a common unknown variance and they 

are independent of each other. The difference between the observed (y) and the fitted value (
i

y ) for 

the i
th

 observation 
i

 = yi  i
y  is called the residual. The criterion for choosing the 

i
  estimates of 

equation y=X  + (Eq. (1)) is that they should minimize the sum of the squares of the residuals, which 

is often called the sum of squares of the errors (SSE) and expressed as, 

1

22
)(  

n

i ii

i

S E y yS 


                                                          (2) 

The residuals may be written as 

 = y  X                                                                     (3) 

The SSE thus becomes 

T
( ) ( )

T
SSE y X y X                                                          (4) 

Differentiating the SSE with respect to   using partial derivatives and equating it to zero, one can get 

X  = y. This over-determined system of equations can be solved directly to obtain the coefficients   

as follows 

T 1
(X )

T
X X y


                                                            (5) 

After obtaining the coefficients   as described above, surrogate model can be easily constructed. The 

major drawback for this form of surrogate modelling is to fit the design points to a second order 

polynomial, as systems having high degree of nonlinearity cannot be replaced by a second order 

model. To overcome this lacuna, the data can be converted into another form using suitable 
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transformation scheme to capture the higher degree nonlinearity. For example, using logarithmic 

transformation or power transformation the surrogate model takes the following forms, 

2

0

1 1 1

2

0

1 1 1

ln

k k k k

i i ij i j ii i

i i j i i

k k k k

n

i i ij i j ii i

i i j i i

y x x x x

y x x x x

    

    

   

   

    

    

   

   

                                     (6) 

       The quality of a model should be checked based on several criteria. An optimized model is formed 

by adding or deleting input factors through backward elimination, forward addition or stepwise 

elimination/addition. It involves the calculation of the P-value (probability value, gives the risk of 

falsely rejecting a given hypothesis) and Prob. > F value (gives the proportion of time one would 

expect to get the stated F-value if no factor effects are significant). The surrogate model constructed 

should be checked by some criteria such as R
2 

(A measure of the amount of variation around the mean 

explained by the model), 2

adj
R  (A measure of the amount of variation around the mean explained by the 

model, adjusted for the number of terms in the model. The adjusted R-squared decreases as the number 

of terms in the model increases if those additional terms don’t add value to the model) and 2

pred
R (A 

measure of the prediction capability of the model) expressed as follows. 

 
T

E

T

R

pred
SS

SS

SS

SS
R  1

2         (0 ≤ R
2
 ≤ 1) (7) 

)1(
)1(

)1(
1

)1(/

)1(/
1

22
R

kn

n

nSS

knSS
R

T

E

adj










      (0 ≤ 2

adj
R  ≤ 1)                    (8) 

T

pred
SS

PRESS
R  1

2            (0 ≤ 2

pred
R  ≤ 1)                                     (9) 

where 
RET

SSSSSS   is the total sum of square and PRESS is the predicted residual error sum of 

squares, which is a measure of how the model fits the samples in the design space. The values of R
2
, 
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2

adj
R  and 2

pred
R  should be close to 1. A difference between 2

adj
R  and 2

pred
R  within 0.2 indicates that the 

model can be used for further prediction. Another check is Adequate precision, which compares the 

range of the predicted values at the design points to the average prediction error. In general, a value 

greater than four indicates adequate model. Further, some plots should also be checked such as normal 

plot of residuals (indicates whether the residuals follow a normal distribution, in which case the points 

will follow a straight line), residuals vs. predicted plot (plot of the residuals versus the ascending 

predicted response values), actual vs. predicted plot (A graph of the actual response values versus the 

predicted response values for the design points used for meta-model formation. It helps to detect a 

value, or group of values, that are not easily predicted by the model) and Box-cox plot (helps to 

determine the most appropriate power transformation to be applied to response data). 

3. Results and Discussion 

In this section we have discussed details about surrogate model formation including validation 

of the model with respect to original data and thereby results on the surrogate based analysis of HCP 

nano-wire. For surrogate model formation, we have chosen ranges of the controlling factors on the 

basis of available literature as: SR [10
7
 s

-1
, 10

10 
s

-1
], T [200 K, 600 K] and d [4 nm, 12 nm]. From this 

analysis domain, we have algorithmically selected 21 efficient combinations of the three controlling 

factors using D-optimality criteria and thereby the yield strength of the nanowire have been evaluated 

corresponding to each of the combinations using MD simulations (Table 1). On the basis of these 21 

design points (thus 21 MD simulations) a surrogate model has been formed which effectively 

eliminates the need of any further MD simulation to obtain the yield strength of the nanowire 

corresponding to any arbitrary combination of the three controlling factors within the design space. 

Description about the molecular dynamics simulations is furnished next.  The atomistic simulations 
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have been performed in LAMMPS [30], visualized in OVITO [31] and Atom Eye [32]. The embedded 

atom potential used for the simulation was developed by Sun et al. [33]. Initially we ran equilibration 

run for checking the stability of the nanowires are various temperature keeping all three direction 

periodic and under NPT ensemble. After this we change the boundary condition to be periodic in Y & 

Z directions and applied different constant strain rate in X direction where free boundary condition is 

applied. For all the MD simulations that have been performed, the stress-strain relationships are found 

to be similar to each other in nature. HCP metals usually need twinning to accommodate plastic 

deformation in addition to dislocation slip due to their lack of sufficient slip systems (Only 3 in {0 0 0 

1} Mg). A typical stress-strain curve indicating different stages (I, II, III, IV) in the deformation 

process along with formation of slip planes is shown in Fig. 2(a, b). Fig. 3 shows the prediction 

capability of the surrogate model with respect to actual MD simulation considering multiple points; 

wherein less deviation of the tested points from the diagonal line indicates high accuracy of the model. 

The 2
R , 2

adj
R  and 2

pred
R values of the constructed surrogate model have been found to be close to 1, 

indication validity of the model further. 

The sensitivity analysis results for individual and interaction effects on the basis of the 

aforementioned approach are presented in Fig. 4(a). The figure reveals that the strain rate is the most 

sensitive factor for the yield strength of the nano-wire, followed by temperature and size. Among the 

interaction effects, the terms containing both strain rate and temperature are most sensitive, while 

sensitivity of the size effect is relatively lesser. In an earlier study on polycrystalline graphene, strain 

rate has also been identified as one of the most influential factors for fracture strength [34, 35]. Thus, 

along with the findings of the present study, strain rate can be regarded as one of the most influencing 

factors for mechanical behavior of nano-scale materials. 
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It is always necessary to understand a material’s behavior under certain conditions so that we 

get necessary information for using the material as a component in nano-mechanical application  [36-

38]. The materialistic information can be extracted from multiple set of repetitive experimentation/ 

computation or we can adopt a statistical method. We have carried out MCS using the surrogate model 

to analyze effect of the three controlling factors (with 10,000 samples for each case) on the yield 

strength in a probabilistic framework. The probability density function (pdf) for random variation of 

the controlling factors following a uniform distribution is presented in Fig. 5 considering both 

individual and combined effects. We have performed 40,000 virtual experiments for MCS using the 

SBMD simulation based approach by actually carrying out only 21 expensive MD simulations. It is 

interesting to notice that the probabilistic characteristics of yield strengths follow a normal distribution 

(Fig. 5), even though distribution of the controlling factors has been considered as uniform. Relative 

coefficient of variation (RCV) [39] obtained from the MCS results for the three factors are shown in 

Fig. 4(b). RCV provides a quantitative idea about relative importance of the controlling factors on the 

response of interest. The relative sparsity in the pdf plots and RCV for different factors are in good 

agreement with the sensitivity analysis results of Fig. 4(a). 

Fig. 6(a, b) presents a deterministic analysis on the variation of the yield strength with size for 

different temperatures and strain rates respectively. From the figures, it is possible to clearly identify 

maximum and minimum yield strength for different combinations of size temperature and strain rate. 

This plot will provide a comprehensive understanding about the material behavior for subsequent 

analysis and design. It has been possible to present such a rigorous analysis on the yield strength only 

because of adopting the SBMD simulation based approach that facilitates us to carry out numerous 

virtual experiments for different combinations of the input parameters instead of performing actual 

MD simulations thousands of times. 
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The primary aim of any experiment or computational study related to strength of material is to 

search an optimum configuration of controlling factors for maximizing the strength.  However, direct 

implementation of any standard global optimization algorithm in the realm of nano-scale 

simulation/experiment is very scarce because of the fact that these algorithms generally follow an 

iterative search procedure requiring large number of function evaluations. The expensive nature of the 

MD simulations makes it difficult to carry out such a huge number of simulations. We have proposed a 

surrogate based approach to mitigate this lacuna in the context of this problem, wherein practically 

huge number of function evaluations can be carried out utilizing only 21 MD simulations. We have 

applied Genetic algorithm [40-42] to optimize the size of the nano-wire (a controllable factor) for 

maximizing the strength considering different strain rates and temperatures. Optimized yield strength 

is plotted with respect to strain rate for different temperatures in Fig. 7. There exists a critical strain 

rate (5.15 × 10
9 

s
-1

), below which the optimized diameter of the nanowire is 4 nm (i.e. the lower range 

of size in the design domain) and above which the optimized diameter ranges within 10.09 nm to 10.60 

nm for all temperatures. This finding is in good agreement with the plots of Fig. 6(a, b), where two 

peaks of the yield strength can be spotted for the same values of the diameter.  

There is always some degree of uncertainty associated with the controlling parameters in actual 

implementation/experimentation. This in turn affects the response quantity of interest (yield strength in 

the present study). Literature concerning the quantification of uncertainty in nano-scale investigations 

based on molecular dynamics simulation is very scarce. The main reason behind this is the fact that 

uncertainty quantification following a non-intrusive Monte Carlo simulation approach is 

computationally very expensive and time consuming. The present SBMD approach is capable of 

mitigating this lacuna effectively. To explore the effect of uncertainty, we have performed MCS (using 

10,000 simulations in each case) with different degree of randomness (∆) in the controlling factors 
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with respect to optimized configuration of the nanowire. Representative results of the uncertainty 

analysis are furnished in Fig. 8, which shows the response bounds and distribution of yield strength 

with increasing degree of randomness in the controlling factors. The mean value of yield strength is 

found to decrease with the increase in temperature. For a particular temperature, response bounds and 

standard deviations are found to increase with increasing degree of stochasticity, while the variation in 

the mean values is marginal. From the significant variability in yield strength due to stochastic input 

parameters, it is quite evident that the effect of uncertainty should be accounted in the investigation of 

HCP nano-wires for precise analysis and design of the system. Following the proposed SBMD 

simulation based approach, optimization can be performed in an efficient manner considering the 

uncertainties associated with the system parameters.  

4. Conclusion 

 A critical analysis on yield strength of HCP magnesium nano-wires following an efficient 

SBMD simulation approach is presented in this article. The proposed SBMD simulation approach in 

nano-scale has enabled us to carry out large-scale simulation based analyses in a computationally 

efficient way and subsequently furnish new results for deterministic as well as stochastic analyses 

concerning yield strength of the material. Sensitivity of the three controlling factors (strain rate, 

temperature and size) on the yield strength has been quantified considering simultaneous variations of 

all the three factors, wherein strain rate has been identified as the most sensitive factor followed by 

temperature and size. Deterministic studies have been performed on the basis of numerous virtual 

simulations to characterize strength of the nano-wire in its full inherent complexity. Subsequently a 

probabilistic analysis has been carried out to explore the effect of inevitable uncertainty associated 

with the controlling design parameters using Monte Carlo simulation. Probabilistic description of yield 

strength has been presented considering individual as well as combined variation of stochastic input 
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parameters. Thousands of different combinations of the controlling factors have been considered 

throughout the study to obtain corresponding yield strengths for different analyses using only 21 actual 

MD simulations by following the SBMD simulation approach. Application of the proposed 

methodology enables us to predict the strength of the nanowire within a continuous domain of the 

controlling factors by obtaining a complete map/bridge between the design parameters and the 

response to find an optimized configuration for maximizing the yield strength. The number of input 

factors to explore their effect on the responses of HCP nano-wires can be increased in future 

investigations. This will however increase the required number of actual molecular dynamics 

simulations marginally. The efficient SBMD simulation approach is general in nature and therefore, it 

can be extended to other problems in the realm of nano-scale analysis. 
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Fig. 1: Surrogate based molecular dynamics (SBMD) simulation approach for efficient but 

comprehensive analysis of HCP nanowires. 
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Fig. 2: (a) Slip planes corresponding to the stress-strain curve shown in Fig. 2(b). The green color of 

atoms denotes the Mg-atoms and the empty planes signify the slip planes in cylindrical nanowires. (b) 

A typical stress-strain plot showing different stages (I, II, III, IV) during the formation of slip planes in 

Magnesium Nanowire under uniaxial tension.  

 

Fig. 3: Surrogate model validation plot showing actual MD simulation results vs surrogate model 

results considering multiple points for yield strength. 
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Fig. 4: (a) Sensitivity analysis results for yield strength of HCP nanowire including interaction effects, 

(b) relative coefficient of variation for different controlling factors. 

 

Fig 5: Probability density function plots for random variation due to individual and combined effect of 

the controlling factors 

 

 
Fig. 6: (a) Variation of yield strength with size at different temperatures (b) variation of yield strength 

with size at different strain rates (SR)  

Page 19 of 21



 
20 

 

 

Fig. 7: Optimized yield strength for different strain rates at various temperatures 

 

 

Fig. 8: Representative results on effect of uncertainty in the controlling factors considering optimized 

sizes for a strain rate of 3.5×10
9
 s

-1
. 
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Table 1 Set of molecular dynamics simulations on hcp-Mg nanowire presenting the chosen design 

points through D-optimal algorithm along with corresponding yield strengths and yield strains.  

Serial No. Strain rate (s
-1

) Temperature (K) Diameter (nm) Yield stress (GPa) Yield strain 

1 8.32×10
9
 208 8 0.9101 0.03727 

2 5.005×10
9
 400 8 0.6879 0.03705 

3 1×10
10

 400 11 0.807 0.0438 

  
. . . 
 

   

21 5.005×10
9
 246 11.2 0.9214 0.044 
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