Wide broadband ASE source based on Thulium-doped fibre for 2 μm wavelength region

M A Khamis and K Ennser
College of Engineering, Swansea University, Swansea, UK
805172@swansea.ac.uk; k.ennser@swansea.ac.uk

Keywords: Thulium-doped fibre; amplified spontaneous emission; silica glass material; Numerical modelling.

Abstract: This paper investigates the generation of the amplified spontaneous emission (ASE) from thulium-doped silica fiber pumped at 1570 nm. The developed model provides the ASE spectral power at short and long wavelength bands by using two different thulium doped fibre types with optimized fibre length. Shorter wavelengths in the emission band can be accessed with a short thulium fiber, whereas longer wavelengths can be obtained using a long thulium fiber. Our findings reveal that, in contrast to a 100 nm (1800nm-1900nm) and 70 nm (1900nm-1970nm) broadband source at short and long wavelength bands, a broader spectrum source can be achieved at about 170 nm (1800nm-1970nm) by a combined of the two ASE spectra via a wideband 50:50 coupler. As a result, the proposed ASE source configuration doubles the bandwidth of the conventional single fiber based light source.

1 INTRODUCTION

Over the last few years, broadband sources near 2 μm have attracted the attention of many researchers. Hu et al. (2015) points out a broadband source at 2 μm have many useful characteristics, including high output power, high light brightness, good beam quality, compact structure and excellent spatial coherence. These characteristics make broadband sources at 2 μm suitable for use in a number of significant applications, such as remote sensing (Li et al. 2014), gas sensing (Hsu et al. 2008), medical surgery (Morse et al. 1995), materials processing (Jackson Sabella and Lancaster 2007) and atmospheric lidar measurement (Sugimoto et al.,1990). In addition, according to Halder et al. (2012) and Cheung et al. (2015), high power and wideband sources are required in optical coherence tomography and fiber optic gyroscopes.

One effective way to generate this broadband source is by using the process of amplified spontaneous emission between $^3\text{F}_4 \rightarrow ^3\text{H}_6$ transition in thulium-doped fiber. High broadband source efficiency can be obtained via diode pumping on the transition $^3\text{H}_6 \rightarrow ^3\text{F}_4$ in combination with high concentration of thulium-doped silica fiber in order to take into account the cross-relaxation process (Oh 1994; Shen et al. 2008). Alternatively, the need for high doping concentrations can be avoided by using an in-band pumping scheme, which directly excites the upper laser level on the transition $^3\text{H}_6 \rightarrow ^3\text{F}_4$. Nevertheless, Tsang et al. (2005) explain that high efficiencies can be achieved because of the much lower quanta defect associated with this pumping scheme. However, in spite of the progress in the performance of thulium broadband sources the efficiency and bandwidth are still below those routinely provided from conventional thulium fiber laser oscillators.

To better optimize the broadband source performance near 2 μm. It is necessary to develop a theoretical modeling and perform simulations. There are relatively few theoretical studies on ASE sources based on thulium-doped fiber (TDF) (Gorjan et al. 2012; Yu et al. 2010). On the other hand, various experimental configurations for broadening the spectral bandwidth of ASE source have been presented in the literature. Broader bandwidths up to
72 nm have been demonstrated using Tm: Ho-doped silica fibre (Tsang et al. 2005). Up to 100 nm of broadband spectra has been achieved using single end operation (Shen et al. 2008). However, these configurations have limited spectra bandwidth. This paper proposes a new thulium ASE configuration that doubles the bandwidth of the conventional configuration.

In this paper, a broadening ASE source can be generated from combining the ASE output source of two different TDFs as shown in fig.(1). The first fiber TDF$_1$ is a commercial thulium fibre (TmDF200 from OFS) with short fiber length. Agger and Povlsen (2006) demonstrated that the center emission spectrum of this fiber is at the wavelength 1800 nm. The second fiber TDF$_2$ is a commercial thulium fibre (SM-TSF-9/125 from Nufern) with long fiber length. Jackson (2009) shows that this fiber produces an emission spectrum with 1900 nm center wavelength. Long TDF leads to shift the output spectrum to ward long wavelength bands (Li et al. 2013). Thus, TDF$_1$ generated ASE1 source with short wavelength bands which is centered at 1840 nm and TDF$_2$ produced ASE2 source with long wavelength bands which is centered at 1950 nm. The two ASE sources were combined together into a single ASE source via wideband 50:50 coupler. This type of coupler is already applied to design a widely tunable thulium laser (Stevens and Legg 2015). Notes that in our simulation, we choose couplers and combiners have flatting coupling response over the wavelengths range in order to allow broadband ASE source.

![Figure 1](image_url)

Figure 1. A schematic diagram of proposed ASE source. ISO is an optical isolator at 2μm, ASE o/p is the combined ASE sources of TDF$_1$ and TDF$_2$ ASE output. Note that all fibre ends are angle polished.

2 NUMERICAL MODEL OF ASE

A theoretical model of ASE generation are presented. The investigation into ASE spectral power is achieved by solving the rate and propagation equations. The model takes into account the wavelength-dependent absorption and emission cross-sections. Based on Jackson and King (1999) and including ASE, the rate equations of thulium energy levels are established as follows:

\[
\frac{dN_i}{dt} = w_{p12}N_1(z,t) - w_{p21}N_2(z,t) - \frac{N_i}{\tau_i} \quad (1)
\]

\[
N_i(z,t) = N_T - N_2(z,t) \quad (2)
\]

Here N_T is the Tm$^{3+}$ concentration and set to be a constant. τ_i is the spontaneous lifetime of the 3F_4 level N_1 and N_2 are the population densities of the 3H_4 and 3F_4 levels, respectively. w_{p12} is the pumping rate from 3H_4 to 3F_4 and w_{p21} represents the de-excitation of the 3F_4 level; w_{s11} is the stimulated emission rate from 3F_4 to 3H_4 and w_{s12} is the stimulated absorption rate from 3H_4 to 3F_4. The expressions of w_{p12}, w_{p21}, w_{s11} and w_{s12} can be obtained from:

\[
w_{p12} = \frac{\lambda_p^p \Gamma_p}{\hbar A_{core}} \sigma_a(\lambda_p) (p^-_p(z) + p^+_p(z)) \quad (3)
\]

\[
w_{p21} = \frac{\lambda_p^p \Gamma_p}{\hbar A_{core}} \sigma_e(\lambda_p) (p^-_p(z) + p^+_p(z)) \quad (4)
\]

\[
w_{s12} = \frac{\lambda_s^s \Gamma_s}{\hbar A_{core}} \sigma_a(\lambda_s) [ASE_f(z) + ASE_s(z)] \quad (5)
\]

\[
w_{s21} = \frac{\lambda_s^s \Gamma_s}{\hbar A_{core}} \sigma_e(\lambda_s) [ASE_f(z) + ASE_s(z)] \quad (6)
\]

Here λ_p is the wavelength of the pump light and λ_s is the signal light in vacuum; \hbar is the Planck constant; c is the light speed in vacuum; A_{core} is the cross-section area of the fibre core; $\sigma_a(\lambda_p)$ and $\sigma_e(\lambda_s)$ are the absorption cross-sections of the pump light and the signal light, respectively; $\sigma_a(\lambda_p)$ and $\sigma_e(\lambda_s)$ are the...
emission cross-sections of the pump light and the
signal light, respectively; $P^a(z)$ is the pump
(corresponding to forward and backward)
emission at position z; and $\text{ASE}^+(z)$ and $\text{ASE}^-(z)$ are the forward
and backward amplified spontaneous emission powers at
position z; Γ_+ and Γ_- are the confinement factors for
the pump and the signal, respectively which are
given by Eq. 7 (Whitley and Wyatt, 1993).

$$\Gamma(\lambda) = 1 - \exp \left(- \frac{2a^2}{w^2} \right)$$

(7)

Where w is the mode-width parameter of the fiber and a is the radius of the fiber. The normalized frequency V of the fiber is given by:

$$V = \frac{2\pi a \cdot NA}{\lambda}$$

(8)

As $V > 1.5$ the mode-width parameter w of a step-
index fiber can be determined by the normalized frequency V of the fiber as:

$$\frac{w}{a} = 0.632 + 1.478 \cdot V^{-3/2} + 4.76 \cdot V^{-6}$$

(9)

Meanwhile, the pump power distribution along
the fiber length can be expressed by the following
propagation equation:

$$\frac{dp^+(z)}{dz} = \pm p^+(z)[\Gamma_+(\lambda, \gamma) N_s(z) - \sigma_a(\lambda) N_s(z)]$$

$$- \alpha_p]$$

(10)

The positive sign in (10) relates to the forward
direction and the negative sign to the reverse
direction. The distribution of the ASE forward and
backward powers along the fiber length can be
established as follows (Hu et al., 2015; Yu et al., 2010):

$$\frac{d\text{ASE}_f}{dz} = \text{ASE}_f(z)[\Gamma_+(\lambda, \gamma) N_s(z) - \sigma_s(\lambda) N_s(z)]$$

$$- \alpha_s] + 2\sigma_s(\lambda) N_s(z) \frac{hc^2}{\lambda_i^2} \Delta \lambda$$

(11)

$$\frac{d\text{ASE}_b}{dz} = -\text{ASE}_b(z)[\Gamma_-(\lambda, \gamma) N_s(z) - \sigma_s(\lambda) N_s(z)]$$

$$- \alpha_s] - 2\sigma_s(\lambda) N_s(z) \frac{hc^2}{\lambda_i^2} \Delta \lambda$$

(12)

Where α_p and α_s are the intrinsic absorption at
the pump and signal wavelength for the Thulium-doped
fibre, respectively. $\Delta \lambda$ is the bandwidth of
the amplified spontaneous emission (ASE) around 2µm.

3 RESULTS AND DISCUSSION

To solve the thulium rate equations for the ASE
model in steady state condition, the time derivatives of
eq (1) to (2) for in-band pumping are set to zero.
The fourth-order Runge-Kutta method is applied to
solve the differential equations of the pump and the
ampified spontaneous emission ASE signals. Table
1 and 2 summarizes all parameters values used in the
numerical simulations of the TDF1 (Agger and
Povlsen 2006) and TDF2 (Jackson 2009), respectively.
Initially, the entire population is
assumed to be at the ground level $^3\text{H}_6$ in the
numerical calculations.

<table>
<thead>
<tr>
<th>Table 1: Values of numerical parameters for TDF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>N_T</td>
</tr>
<tr>
<td>τ_2</td>
</tr>
<tr>
<td>λ_p</td>
</tr>
<tr>
<td>$\sigma_s(\lambda_p)$</td>
</tr>
<tr>
<td>$\sigma_a(\lambda_p)$</td>
</tr>
<tr>
<td>$\sigma_s(\lambda_s)$</td>
</tr>
<tr>
<td>$\sigma_a(\lambda_s)$</td>
</tr>
<tr>
<td>NA</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>σ_p</td>
</tr>
<tr>
<td>σ_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Values of numerical parameters for TDF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>N_T</td>
</tr>
<tr>
<td>τ_2</td>
</tr>
<tr>
<td>λ_p</td>
</tr>
<tr>
<td>$\sigma_s(\lambda_p)$</td>
</tr>
<tr>
<td>$\sigma_a(\lambda_p)$</td>
</tr>
</tbody>
</table>
The solution is applied for the pump and the ASE power propagating in the first segment (segment 0) by using the initial conditions in Table 3. For the following segments (segment 1 to N-1), the power for the pump and the ASE at one end of a segment is applied as the input for the next segment. Relaxation method is used to solve the differential equations of the pump and the ASE powers (Emami 2011). Using the data of Table 1, 2 and the values of the emission and the absorption cross-section, we solve numerically the rate equations of the pump and ASE power distribution.

<table>
<thead>
<tr>
<th>Initial condition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_r (z=0))</td>
<td>Forward launched pump power.</td>
</tr>
<tr>
<td>(P_s (z=L))</td>
<td>Backward launched pump power.</td>
</tr>
<tr>
<td>(P_t (z=0))</td>
<td>Seed power.</td>
</tr>
<tr>
<td>(ASE_f (z=0))</td>
<td>Initial condition for forward amplified spontaneous emission at z=0.</td>
</tr>
<tr>
<td>(ASE_b (z=L))</td>
<td>Initial condition for backward amplified spontaneous emission at z=L.</td>
</tr>
</tbody>
</table>

A MATLAB program is developed to evaluate the optimum thulium-doped fibre length for each of the two TDFs of fig. 1. Note that in our simulation the feedbacks’ reflection are set to zero and it is only applied forward pump configuration. Figure 2 and 3 illustrate the theoretical prediction of the output ASE forward power and the residual pump power for TDF1 and TDF2, respectively. The launched pump power is equal 27dBm (0.55 W) at case TDF1 and 31.7dBm (1.5W) at TDF2. We clearly notice that the optimum fibre length of TDF1 is 1.2 m at 1840nm output ASE as shown in fig. 2. In contrast to TDF2, the optimum fibre length is 5m at 1950nm output ASE as illustrated in fig. 3. In our configuration, 1.2m of TDF1 is a suitable length to obtain short wavelength bands of ASE source which is centred at 1840nm, whereas 8m of TDF2 is more suitable to access long wavelength bands which is centred at 1950nm.

The next step is to investigate the output power spectra of ASE at short and long wavelength bands. Figure 4 shows the ASE spectrum of TDF1 at 1.2m fiber length and 27dBm launched pump power. The bandwidths of forward ASE has full-width half maximums (FWHM) of approximately 100 nm between 1800nm and 1900nm compared to only...
68nm and 88nm in forward and backward ASE obtained by Gorjan et al. (2012). The discrepancies are due to the difference in thulium fiber characteristics. Fig. 5 shows the ASE spectrum of TDF₂ at 8m fiber length and 31.7dBm is the launched pump power. The bandwidth of forward ASE at FWHM is approximately 70 nm between 1900nm and 1970nm. Finally, fig. 6 illustrates the combined ASE spectra of the TDF₁ and TDF₂ spectra. Notes that a wide 50:50 coupler is used and assumed to be flat over the range (1800nm-2000nm). It is clearly seen that the combined ASE provides approximately 170 nm bandwidth at FWHM between 1800nm and 1970nm. Thus, this is the first time to our knowledge that over 170nm bandwidth ASE source based only on thulium-doped fiber is reported.

4. CONCLUSION

A theoretical model of ASE generation around 2µm is built up by solving a set of rate and propagation equations. A MATLAB program is developed using the Runge-Kutta method to investigate the behaviour of the ASE generation at 2µm from two different thulium fibres types at 1570nm.

We chose two different fibre characteristics with optimised fibre length in order to generate ASE source for short and long wavelength bands. Wide band ASE source can be generated by combining the two wavelength bands. Thus, the main scope of this study is to generate broad band ASE source at 2 µm for applications that require broader ASE bandwidth such as optical coherence tomography.

Our simulation results show that short wavelength bands (1800nm-1900nm) with 100nm FWHM bandwidth can be generated from the TDF₁. In contrast to long wavelength bands (1900nm-1970nm) with 70nm FWHM bandwidth can be generated from TDF₂. More than 170nm (1800nm-1970nm) should be produced from combining the two above ASE spectra. Note that we choose couplers and combiners have flatting coupling response over the wavelengths range in order to allow broadband ASE source. Hence, our suggested configuration is a suitable arrangement to obtain over 170nm wider broadband source at 2 µm from thulium doped fibre.
REFERENCES

Hsu, Z. C. et al. (2008). ‘High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality’, Proc. SPIE 7004, 7004-4M.

