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Abstract 

Nutrition related health conditions can seriously decrease quality of life; a sys­
tem able to monitor the kitchen activities and eating behaviour of patients could 
provide clinicians with important indicators for improving a patient's condition. 
To achieve this, the system has to reason about the person's actions and goals. 
To address this challenge, we present a behaviour recognition approach that relies 
on symbolic behaviour representation and probabilistic reasoning to recognise the 
person's actions, the type of meal being prepared and its potential impact on a 
patient's health. We test our approach on a cooking dataset containing unscripted 
kitchen activities recorded with various sensors in a real kitchen. The results show 
that the approach is able to recognise the sequence of executed actions and the pre­
pared meal, to determine whether it is healthy, and to reason about the possibility 
of depression based on the type of meal. 

1 Introduction 

Nutrition affects our health and is an important factor for having a healthy lifespan 
[7]. Nutrition related diseases thus can impact our well-being and reduce the quality of 
life. This is particularly true for long term physical conditions, such as diabetes, eating 
disorders, or mental conditions such as depression, that affect the patient's willingness 
to prepare and consume healthy food, or people suffering from dementia disorders 
whose ability to prepare food is hampered by the disease's progression [10]. To reduce 
the costs associated with hospitalisation and treatment of these conditions, different 
works have attempted to provide automated home monitoring of the patient that besides 
reducing the hospitalisation costs, potentially improves the wellbeing of the patient as 
they can be monitored and treated in home settings [2]. 

To build such systems, one needs to recognise the user actions and goals as well as 
the causes behind the observed behaviour [5]. To achieve that, different works make use 
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of knowledge-based models [9]. In contrast to data-driven approaches that rely on large 
amounts of sensor data and which can learn only situations that are present in the data, 
knowledge-based approaches have the advantage that they are able to reason beyond 
the sensor data. Thanks to the rules that define the possible behaviour, they can provide 
information about the person's situation, e.g. caused by the progression of the disease 
[10]. The main challenge for rule-based approaches is that they are usually unable to 
cope with the problems associated with real world scenarios: (a) the variability of the 
user behaviour results in complex models that are often computationally infeasible, and 
(b) the presence of imperfect sensors makes the purely symbolic models unable to cope 
with the ambiguity. 

To address these problems, some works propose approaches that combine rules and 
probabilistic inference, such as [3, 8]. This type of models is also known as computa­
tional state space models (CSSMs) [4]. CSSMs combine symbolic representation with 
probabilistic reasoning to cope with the combination of behaviour variability and sen­
sor noise [3, 4]. One challenge with CSSMs is that so far they have only been applied to 
scripted scenarios which implies simplified settings that do not address the challenges 
of complexity and behaviour variability present in real settings. Another challenge is 
the reconstruction of the user activities and goals from low level sensor data. As [ 11] 
point out, "bridging the gap between noisy, low-level data and high-level activity mod­
els is a core challenge". In this work, we address the above challenges by presenting 
first empirical results showing that CSSMs are able to reason about the user's actions 
and goals in unscripted kitchen scenarios based on low level sensor data. 

2 Related Work 

There are different rule-based approaches that can reason about the person's actions 
and goals based on context information. One such approach is where ontology-based 
behaviour libraries are explicitly provided by human experts [9]. One problem with 
this type of approaches is that "library-based models are inherently unable to solve 
the problem of library completeness caused by the inability of a designer to model all 
possible execution sequences leading to the goal" [13]. 

A second option for arriving at a suitable model is to mine action sequences from 
observations of human behaviour. Such approaches manually define an initial library 
of behaviours. Later, behaviour variations are added or removed based on observations 
of the user activities [l]. Although this approach provides a solution to the problem 
of keeping behaviour libraries up-to-date, it still relies on initial manual definitions of 
behaviour variations. 

To address the problem of designing models that represent the behaviour variability 
without relying on large amounts of sensor data, some works propose computational 
state space models [3, 8, 4, 13]. CSSMs describe the actions in terms of preconditions 
and effects, and some of them allow probabilistic reasoning about the user state, goals 
and context. The manually defined model is very compact as it requires the definition 
of several action templates that are automatically expanded into different execution 
sequences based on the causal relations between them. This provides an alternative 
solution to the problem of manually defining all execution sequences, or relying on 

2 



large amounts of annotated sensor data to learn them. 
So far, CSSMs have been used only in controlled experiments with predefined ex­

ecution sequences. Such experiments limit the behaviour variability typical for real­
world problems, which in tum simplifies the CSSM model needed to recognise this 
behaviour. To our knowledge, so far there is no empirical evidence that CSSMs are 
able to cope with the behaviour complexity typical for a real world daily activities. 
What is more, so far CSSMs have been used for goal recognition only based on sim­
ulated data [3, 8]. In a previous work we proposed a CSSM model that is able to 
recognise the protagonist's activities during unscripted kitchen tasks [12]. The model 
was tested on simulated sensor data. In this work, we extend this model for activity 
recognition based on real sensor data by building the appropriate observation model 
and actions' durations. Furthermore, we extend the model for goal recognition and 
we show first empirical evidence that it is possible to perform both activity and goal 
recognition based on noisy sensor data in real-world everyday scenarios. 

3 Computational Causal Behaviour Models 

The CSSM approach we chose for our problem is called Computational Causal Be­
haviour Models (CCBM) which has been shown to perform adequate activity recogni­
tion in problems with large state spaces and noisy sensor observations [4, 13]. CCBM 
relies on the idea of Bayesian filtering to recognise the person's actions and goals based 
on observations. Figure 1 shows the dynamic Bayesian network (DBN) structure of a 
CCBM model. Informally, CCBM can be divided into two parts: observation model, 
which provides the probability of having an observation given a certain system state 
and system model, which provides the probability of the current system model state 
given the previous state. The observation model is defined through Yt = (Wt, Zt), 
the observation data for time step t, e.g sensor data collected from low level sensors or 
simulated data. So far CSSMs had either performed only activity recognition using real 
sensor data [4, 13] or they have used simulated data to perform goal recognition [3, 8]. 
In this work we use low level sensor data to perform both activity and goal recognition. 
The system model consists of causal model (expressed through Gt, At, St), duration 
model (expressed through Dt and Ut), and action selection heuristics (which are not 
represented in Figure 1). Gt is the current goal the person is pursuing. In difference to 
[4, 13] who assume that the current goal is a constant, in this work we follow different 
goals and the goal can change dynamically over time. St is the high-level model state 
(the state describing the person's behaviour). It is either the result of applying a new 
action At or carrying over the old state St-1• Actions can last longer than a single 
time step, i.e. they have durations. Ut denotes the starting time of an action, while the 
boolean random variable Dt indicated the termination status of the previous action. ½ 
is the time stamp associated to the DBN slice. 

In CCBM the causal model is presented in terms of rules that describe the possible 
initial and goal states, the conditions that have to hold in order for an action to be 
executable and the changes to the world after the action is executed. To select a new 
action CCBM uses action selection heuristics such as goal distance, cognitive heuristic 
etc. The duration model is expressed through probability distribution indicating the 

3 



t-1 t 

Yt 00 
Figure 1: DBN structure of a CCBM model. Adapted from [4]. 

probability of terminating the action given the starting time of the action. For more 
details on CCBM see [4, 13]. 

4 Experimental Setup 

Data Collection A sensor dataset consisting of 15 runs of kitchen activities was 
recorded in the SPHERE House which is part of the SPHERE project (a Sensor Plat­
form for HEalthcare in a Residential Environment) [14]. The SPHERE House in Bris­
tol (UK) is a 2-bedroom house equipped with a variety of environmental sensors. The 
sensor network in the kitchen of the house collects data on temperature, humidity, light 
levels, noise levels, dust levels, motion within the room, cupboard and room door state, 
and water and electricity usage. A head-mounted camera was used to record the actions 
of the participants to allow for annotation of the observations. The resulting dataset can 
be downloaded from [6]. 

Data Processing The original sensor data is in JSON format. The data was converted 
so that for each type of sensor there is a separate column. This conversion produced 
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multiple rows with the same timestamp (in milliseconds). Rows with the same times­
tamp were then combined as long as per sensor type there was only one unique value. 
As this new format produces NAs for some sensors at a given time ( due to the way 
in which the data is initially collected from the sensors), the NAs between two sensor 
readings were replaced with the first value. As the state of the most sensors is being 
read at a certain sampling rate but additionally there is a reading when a change in the 
state is detected, we believe that this simple replacement of NAs is sufficient. The re­
sulting data contained identical observations for different action labels. To reduce the 
impact of this artefact on the model performance, a sliding window of 5 time steps with 
overlapping of 50% was used and the observations in this window were represented by 
the maximum value for each sensor in the window. 

CCBM Models In this work we use extended version of the model proposed in [12] 
where they use it for activity recognition on simulated data. Here, we extend the model 
by adding probabilistic action durations and goal recognition and use it with real sensor 
data for following different goals. 

Causal model: 15 specialised models, specifically fitted for the corresponding exe­
cution sequence, were developed. Furthermore, a general model was developed which 
can handle all sequences in the dataset. Each of the models can recognise the fol­
lowing action classes: clean, drink, eat, get, move, prepare, put, unknown. The model 
dimensions for the two model implementations can be seen in Table 1. Some additional 

Table 1 · Parameters for the different models 
Parameters General model Specialised model 
Action classes 8 8 
Ground actions 92 10-28 
States 450 144 40-1288 
Valid plans 21889393 162-15 689 

discussion on the models can be found in [12]. 
Goals in the model: The model has three types of goals: 1) the type of meal the 

person is preparing (13 goals); 2) whether the meal/ drink is healthy or not (4 goals); 
3) whether the person is depressed or not (2 goals). For 3) we rely on the assumption 
that the person is depressed when they are preparing ready meals instead of cooking. 

Duration model: The durations of the model were calculated based on the annota­
tion. Empirical probability was assigned to each action class, indicating how long the 
model can stay in the same state before transitioning to another state. 

Observation model: Two types of observation models were trained with a decision 
tree: 1) OM0 : All data was used both for training the OM and for testing the CCBM 
model. 2) OMp: The first run was used for training the OM and the remaining runs 
were used for testing the CCBM. The first run was chosen because it is the only run 
where all action classes appear. 

The decision tree for OM0 without any additional underlying model achieved mean 
accuracy of .52. The decision tree for the OMp achieved mean accuracy of .39. This is 
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to be expected as the tree was trained only on the first run and in each of the remaining 
experiments, a different meal was prepared usually by a different person. 

Experiments For each of the observation models, the following experiments were 
conducted: 1) activity recognition of the action classes based on: the specific CCBM 
model (we call this model CCBM8 ); the general CCBM model with one goal1 (we 
call this model CCBM9 ); the general CCBM model with multiple goals2 (we call 
this model CCBM91 ). 2) goal recognition on: the different meals and drinks that 
can be prepared (the goal recognition is done with the CCBM91 model); whether 
the prepared meal is healthy (we call this model CCBM92 ); whether the person is 
depressed (we call this model CCBM93 ). 

5 Results 

Figure 2 shows the results from the activity recognition with the different observation 
and system models . It can be seen that for both OM, the CCBM models performed bet­
ter than the classification with decision tree. For most models, Shapiro-Wilk normality 
test did not reject the null hypothesis that the samples come from normal distribution 
with the exception of CCBMs and CCBM91 with OMp (p value :S 0.03). For that 
reason, to test whether the results significantly differ from each other we performed 
both signed t test and Wilcoxon test. Both tests showed that all CCBM models with 
OM0 do not significantly differ from each other (p ~ 0.84 fort test and p ~ 0.74 for 
Wilcoxon test). This indicates that the general models do not significantly reduce the 
recognition rate in comparison to the specialised model. This however showed that all 
three CCBM models with O M0 significantly differ from the decision tree tested on the 
training data (p ::::; 0.006 fort test and p ::::; 0.003 for Wilcoxon test). On the other hand, 
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Figure 2: Accuracy for the activity recognition. 

both tests illustrated that the CCBM models with OMP and the decision tree where 
a test and train dataset was used do not significantly differ (p ~ 0.73 for t test and p 
~ 0.86 for Wilcoxon test). This stands to show that the very ambiguous observation 

1This means that all possible meals are described with "OR" statement. 
2This means that all possible meals are described as separate goals. 
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model does not allow for the system model to improve the activity recognition perfor­
mance. However, it also shows that despite the inaccurate OM, the system models do 
not reduce the recognition performance. 

Figure 3 shows the results from the goal recognition for the different observation 
models. Here we measure the F score, as for some of the experiments more goals 
were recognised than were followed during the experiment. Surprisingly, 0 Mp did not 
reduce recognition of the goal for healthy meal and the type of meal. On the contrary, 
despite the ambiguous OM and the low activity recognition results, the models were 
able to perform better than when using OM0 • On the other hand, the recognition of 
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Figure 3: Accuracy for the goal recognition. 
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whether the person is depressed or not was lower with OMp than with OM0 • To test 
whether the results for the two OM significantly differ, we performed a Wilcoxon test 
(the Shapiro-Wilk normality test rejected the null hypothesis that the samples come 
from a normal distribution with a p :::; 0.001). The Wilcoxon test showed that results 
for the two OMs for meal recognition and healthy meal do not significantly differ (p 
= 0.86 for CCBM91 , and p = 0.40 for CCBM92 ). This means that the models 
perform comparably and that the inaccurate observation model OMp does not reduce 
the accuracy of recognising the person's goal. The results however showed tllat tlle 
OM has influence on the recognition of whether the person is depressed or not (p = 
0.004 for CCBM93). In other words the more accurate OM0 significantly improved 
the recognition of the cause for the prepared meal. Figure 4 shows an example of the 
probability of preparing a healthy meal / drink for one of the experiments. The true 
goal is "healthy meal" and it can be seen that after time step 125 tlle model converges 
to the real goal. Although in this example, the protagonist pursues only one goal, in 
4 of tlle experiments the goal changes throughout the experiment as tlle protagonist 
prepares more than one meal or drink. 

6 Conclusion and Future Work 

This work investigates the applicability of CSSMs to real world everyday activities. We 
applied the approach to a sensor dataset containing 15 unscripted meal preparations. 
The results showed that the approach is able to perform activity recognition without 
reducing the recognition quality compared to the performance of decision tree. They 
also showed the approach is able to perform goal recognition and to accurately reason 

7 



0 75 -
-~ . 
15 co 0.50 -
.0 e 
a. 0.25-

0.00 -
I I 

0 250 

meal 

- healthy drink 

- healthy meal 

- unhealthy drink 

- unhealthy meal 

I I 

500 750 
time 

Figure 4: Evolving of the goals' probability with the accumulation of new observations 
during the experiment execution. 

about the type of meal, whether it is healthy and whether the person preparing the meal 
is depressed even in the case of poor activity recognition results. These first results 
show that the approach has the potential to reason about the person's behaviour and the 
causes behind it that could hint at (the progression of) medical conditions. 

In the future, we intend to compare the results from the goal recognition to state of 
the art approaches, such as HMMs. Furthermore, we intend to add the data from depth 
cameras to the observations and to investigate the influence of the type of sensor on the 
model performance. 
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