Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Proceedings of the National Academy of Sciences

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa31880

Paper:
http://dx.doi.org/10.1073/pnas.1614359114

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/
Impact of pre-Columbian “geoglyph” builders on Amazonian forests

Jennifer Watlinga,b,1, José Iriarteb, Francis E. Mayle, Denise Schaan, Luiz C. R. Pessenda, Neil J. Loader, F. Alayne Street-Perrott, Ruth E. Dickau, Antonia Damasceno, and Alceu Ranzih

*Museum of Archaeology and Ethnography, University of São Paulo, São Paulo 05508-070, Brazil; 1Department of Archaeology, College of Humanities, University of Exeter, Exeter EX4 4QE, United Kingdom; 2Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of Reading, Reading RG6 6AB, United Kingdom; 3Department of Anthropology, Federal University of Paraná, Belém 66075-110, Brazil; 4Centre of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil; 5Department of Geography, College of Science, Swansea University, Swansea SA2 8PP, United Kingdom; 6HD Analytical Solutions, Inc., London, ON M5H 1V3, Canada; and 7Laboratory of Paleontology, Federal University of Acre, Rio Branco 69916-900, Brazil

Edited by James O’Connell, University of Utah, Salt Lake City, UT, and approved December 28, 2016 (received for review August 27, 2016)

Over 450 pre-Columbian (pre-AD 1492) geometric ditched enclosures (“geoglyphs”) occupy ~13,000 km² of Acre state, Brazil, representing a key discovery of Amazonian archaeology. These huge earthworks were concealed for centuries under terra firme (upland interfluvial) rainforest, directly challenging the “pristine” status of this ecosystem and its perceived vulnerability to human impacts. We reconstruct the environmental context of geoglyph construction and the nature, extent, and legacy of associated human impacts. We show that bamboo forest dominated the region for ≥6,000 y and that only small, temporary clearings were made to build the geoglyphs; however, construction occurred within anthropogenic forest that had been actively managed for millennia. In the absence of widespread deforestation, exploitation of forest products shaped a largely forested landscape that survived intact until the late 20th century.

Amazonian archaeology | Amazonian rainforest | paleoecology | pre-Columbian land use

The notion of Amazonia as a pristine wilderness has now been overturned by increasing evidence for large, diverse, and socially complex pre-Columbian societies in many regions of the basin. The discovery of numerous, vast terra preta (anthropogenic dark earth) sites bordering the floodplains of major rivers, and extensive earthwork complexes in the seasonally flooded savannas of the Llanos de Mojos (northeast Bolivia), Marajó Island (northeast Brazil), and coastal French Guiana, are seen to represent examples of major human impacts carried out in these environments (1–10). However, major disagreement still resides in whether interfluvial forests, which represent over 90% of Amazonian ecosystems, were settings of limited, temporary human impacts (11–13), or were instead extensively transformed by humans over the course of millennia (14–16). A paucity of paleoecological studies conducted in interfluvial areas has been responsible for the polarization of this debate, which encompasses different hypothetical estimates of precontact population size and carrying capacity in the interfluvies (17), and the relative importance of different land use strategies in the past. The extent of ancient forest burning is particularly contested, because some have proposed that pre-Columbian deforestation was on a large enough scale to have influenced the carbon cycle and global climate (18, 19), whereas others argue that large-scale slash-and-burn agriculture is a largely postcontact phenomenon (20). Modern indigenous groups often subject slash-and-burn plots for crop cultivation to long fallow periods, during which useful plants, including many tree species, continue to be encouraged and managed in different stages of succession within a mosaic-type landscape (21, 22). Also known as “agroforestry,” this type of land use is thought to have been common in pre-Columbian times, but its detection in the paleoecological record is often problematic (15) and studies based on modern distributions of useful species lack demonstrable time depth of forest modifications (23). Terrestrial paleoecology programs are essential for a better understanding of these issues, which have strong implications for the resilience of Amazonian forests to human impact and, subsequently, their future conservation (24–26).

With ditches up to 11 m wide, 4 m deep, and 100–300 m in diameter, and with some sites having up to six enclosures, the geoglyphs of western Amazonia rival the most impressive examples of pre-Columbian monumental architecture anywhere in the Americas (27). Excavations of the geoglyphs have shown that they were built and used sporadically as ceremonial and public gathering sites between 2000 and 650 calibrated years before present (BP), but that some may have been constructed as early as 3500–3000 BP (28–30). Evidence for their ceremonial function is based on an almost complete absence of cultural material found within the enclosed areas, which suggests they were kept ritually “clean,” alongside their highly formalized architectural forms (mainly circles and squares)—features that distinguish the geoglyphs from similar ditched enclosures in northeast Bolivia (5, 31). Surprisingly, little is known about who the geoglyph builders were and how and where they lived, as contemporary settlement sites have not yet been found in the region. It is thought that the geoglyph builders were a complex network of local, relatively autonomous groups connected by a shared and
highly developed ideological system (32). Although some have proposed a connection between the geoglyphs and Arawak-speaking societies (33), the ceramics uncovered from these sites defy a close connection with Salado–Barrancoid styles normally associated with this language family, and instead present a complex mixture of distinct local traditions (34). Furthermore, it is likely that the geoglyphs were used and reused by different culture groups throughout their life spans (29).

As archaeological evidence points to interfluvial populations in Acre on such an impressive scale, understanding the nature and extent of the landscape transformations that they carried out is vital to how we perceive Amazonian forests in the present and conserve them in the future. Crucially, if the region’s forests were intensively cleared for geoglyph construction and use, this might imply that terra firme forests are more resilient to human impacts than previously thought.

Paleolimnology is unsuited to tackle these questions. Most geoglyphs are situated away from lakes, which generally occupy abandoned river channels too young to capture the full temporal span of pre-Columbian occupation. Instead, we applied phytolith, charcoal, and stable carbon isotope analyses to radiocarbon-dated soil profiles at two excavated and dated geoglyph sites: Jacó Sá (JS) (9°57′38″S, 67°29′51″W) and Fazenda Colorada (FC) (9°52′35″S, 67°32′45″W) (Fig. 1; SI Text, Site Descriptions) to reconstruct vegetation and land use before, during, and after geoglyph construction (SI Text, Terrestrial Paleoclimatology Methods).

We aimed to answer the following questions: (i) What was the regional vegetation when the geoglyphs were constructed? Today, the region is dominated by bamboo (Guadua) spp. forests (Fig. 1B), which cover roughly 161,500 km² of southwest Amazonia (35). Was bamboo forest also dominant before the geoglyphs, as some have suggested (36–38)? Or did people exploit and maintain a more open landscape afforded by drier climatic conditions of the mid-Holocene (8000–4000 BP) (39), as recently found to be the case for pre-Columbian earthworks <1000 y old in the forest-savanna ecotone of northeast Bolivia (26, 40)? (ii) What was the extent of environmental impact associated with geoglyph construction? If the study area was forested, was clearance affected on a local (i.e., site-level) or regional (i.e., more than several kilometers) scale, and how long were openings maintained? (iii) How was the landscape transformed for subsistence purposes (e.g., through bamboo harvesting and agroforestry)? (iv) What happened to the vegetation once the geoglyphs were abandoned? Did previously cleared areas undergo forest regeneration?

Study Area

The study area is characterized by seasonal precipitation (average, 1944 mm/y), the majority of which falls between October and April (41). The eastern part of the state where the geoglyphs are located can experience severe drought during its 4- to 5-mo dry season and has been subject to several recent wildfires, partly exacerbated by the loss of roughly 50% of the region’s forest to cattle ranching since the 1970s (42). The local vegetation is dominated by bamboo forest with patches of palm forest, grading into dense humid evergreen forest closer to the southern border with Bolivia (43) (Fig. 1A). Soils of the region are sandy clay acrisols, a relatively fertile type of ultisol that still has low agricultural potential (44). More fertile alluvial soils are found only along the region’s three major rivers—the Purus, Jurujá, and Acre.

Typical of most geoglyphs, JS and FC are situated on topographical high points (191 and 196 m above sea level), within a landscape of gently rolling hills belonging to the Solimões geological formation. We excavated five soil profiles (JS1–JS5) along a linear transect starting at the center of the JS geoglyph (JS1) and at distances of 0.5, 1.5, 3.5, and 7.5 km (JS5) away from the site (Fig. 1C). This sample design allowed quantification of the spatial scale of environmental impact associated with geoglyph construction and use, ranging from highly localized (<0.5-km radius) to regional (>7.5-km radius). An additional soil profile was placed inside the FC geoglyph, situated 10 km away from JS, to compare the context of earthwork construction at that site. All of the soil profiles were located within pasture dominated by nonnative grasses and palm trees (mostly Attalea sp., Mauritia flexuosa, and Euterpe precatoria), except for JS4, which lay within bamboo forest.

Results and Discussion

Exploiting Bamboo Forest. Basal dates from the soil profiles range from 6500 BP (JS5) to 4500 BP (JS3) (Table S1). Phytolith assemblages dominated by bamboo bulliform phytoliths in the sand fraction (SI Methods) and >15% bamboo short cells in the silt fraction (Fig. 2; SI Methods, Phytolith Methods), demonstrate that the bamboo forest ecosystem that exists in the region today was present throughout the past ~6000 y. These data provide compelling empirical evidence that the dominance of bamboo in this region is not a legacy of pre-Columbian human impact but is instead a natural phenomenon reflecting the distinctive climate and topography of the region. They also demonstrate the resilience of this forest ecosystem to the drier-than-present climatic conditions of the mid-Holocene (~6000 BP), a period exemplified by a major lowstand of Lake Titicaca (45) and a shift from forest to savanna in northeast Bolivia and neighboring Rondônia state, Brazil (46–48) (Fig. 1A, a, b, and c).

The phytolith assemblages continue to record bamboo forest in the late Holocene (after ~4000 BP), during which increases in smaller (125–250 μm) charcoal particles demonstrate intensification of forest clearance and/or management by humans. Wetter-than-previous climatic conditions characterized the late Holocene (39), which would have made the vegetation less naturally flammable, whereas archaeological dates attest to people in the landscape from at least 4400 BP (28); thus, we can be confident that fire activity in these levels was human—rather than naturally—driven. It is likely that these cultures took advantage of the bamboo life cycle to facilitate deforestation (36), as Guadua bamboo undergoes periodic mass die-offs every 27–28 y across areas averaging 330 km² (35). The resulting dead vegetation is flammable in the dry season, which favors clearance using fire, rather than laborious tree felling with stone axes. The recovery of maize (Zea mays) and squash (Cucurbita sp.) phytoliths at the Tequinho and JK geoglyph sites (49) (SI Text, JK Phytoliths) suggests that clearance was related to agricultural practices, as well as the creation of dwelling spaces.

Geoglyph Construction. Surprisingly, despite the relative ease with which bamboo forest could be cleared, we found no evidence that sizeable clearings were created for any significant length of time (i.e., over multidecadal to centennial timescales) for geoglyph construction and use. Charcoal peaks at FCI (45–50 cm) and JS1 (30–35 cm), with 2σ date ranges (respectively, 1385–1530 BP from charcoal and 2158–2335 BP from associated soil humin) that agree with archaeological dates for site construction, represent initial earthwork building at both locations; however, true grass (nonbamboo) phytoliths remain below 10%, as opposed to ~40–60%, which would be expected if open, herbaceous vegetation was subsequently maintained (50). Furthermore, δ¹³C values of soil organic matter (SOM) at JS1 (30–25 cm) remain between ~25‰ and ~24‰, attesting to the persistence of predominantly C3 (closed-canopy) vegetation during this time. Given that peak values of 20% for grass phytoliths and ~19.7‰ for δ¹³C in surface samples (0–5 cm) represent 40-y post-deforestation, we deduce that the vegetation was never kept completely open for this length of time in the pre-Columbian era. This finding is consistent with archaeological evidence that the geoglyphs were used on a sporadic basis rather than continually inhabited (28, 29). Furthermore, the absence of a charcoal peak or abrupt vegetation change 500 m away (JS2) implies that forest clearance for geoglyph construction was highly
localized. This suggests that the geoglyphs were not designed for intervisibility, but were instead hidden from view: an unexpected conclusion.

Rather than being built within largely “untouched” bamboo forest, our phytolith data suggest that the geoglyphs were constructed within anthropogenic forests that had already been fundamentally altered...
later attracted other groups to the same locations, who in turn encouraged them further.

Legacies of Anthropogenic Forests. What happened once the geoglyphs were abandoned ~650 BP? Toward the top of the profiles, a sudden decrease in palm taxa [between −15% (JS4) and −25% (JS1)] occurs at all four locations where they have proliferated. Dated charcoal from these levels gave erroneous dates at FC1 and JS1 (SI Text, Age Inversions); however, concordant dates from JS2 and JS4 (~600–670 BP) associate the beginning of the palm decline with the period of geoglyph abandonment, suggesting a link between these two phenomena.

Such a scenario finds support in studies of forest succession. In the Amazonian terra firme, palms are often the first trees to colonize forest clearings after herbs and lianas (53) but are eventually outcompeted by slower-growing trees (54). If humans stopped maintaining this artificial succession stage, palm communities would eventually be replaced by other species. The sudden resurgence of palms observed in the 0- to 5-cm horizons is explicable by the same mechanism, as modern deforestation has favored a resurgence of palms observed in the 0- to 5-cm horizons is explicable by the same mechanism, as modern deforestation has favored the colonization of these areas by creating completely open landscapes.

Instead of reverting back to a more "natural" state, however, other evidence suggests that the species that outcompeted palms after geoglyph abandonment were already managed alongside them. A botanical inventory of a residual forest patch adjacent to the JS2 profile found that 9 out of 10 of its most abundant species are of current socioeconomic importance (SI Methods, JS2 Forest Patch Methods; Table S2). However, several of these species do not produce diagnostic phytoliths [e.g., Bertholletia excelsa (Brazil nut)], or produce them rarely (e.g., Tetragastris altissima). Furthermore, in a principal-components analysis, average...
surface-soil phytolith assemblages from this forest patch plotted close to phytolith sample 20–25 cm in the JS2 profile (Fig. S2), immediately below the peak in palm phytoliths, implying that legacies of pre-Columbia agroforestry still exist today within Acre’s remaining forests.

Implications
In contrast to studies that argue for either minimal (11, 12) or widespread (15, 16) pre-Columbian impact on the Amazonian interfluvies, we suggest that, in Acre, geoglyph construction was not associated with deforestation over large spatial and temporal scales but instead with a long tradition of agroforestry and resource management that altered the composition of native bamboo forest over millennia.

Our findings challenge the hypothesis that reforestation after the Columbian encounter led to a sequestration of CO2 that triggered the Little Ice Age global cooling event (18, 19). This hypothesis was formerly criticized in light of findings that many earthworks in northeast Bolivia were constructed in nonforested landscapes (26), but our data indicate that, even in an archaeologically rich area that remained forested during the mid- to late Holocene, pre-Columbian deforestation was on a more localized scale than previously thought. Despite the number and density of geoglyphs, we did not find any pre-Columbian parallel for the length and extent of modern-day forest clearance in Acre.

Our data also raise a methodological concern crucial to the interpretation of terrestrial paleoecological data—namely, that low soil charcoal frequencies do not necessarily correlate with sparse pre-Columbian populations in Amazonia (11). There is little question that the geoglyphs are a product of sizeable, socially complex societies that once inhabited the region (27, 32), but instead with a long tradition of agroforestry and resource management associated with them.

In contrast, our study has provided empirical, paleoecological evidence for the importance of forest management practices in the pre-Columbian interfluvies. The proliferation of palms and other useful species over apparently millennial timescales suggests a long history of forest manipulation before the JS and FC geoglyphs were even constructed, consistent with some arguments that long-term accumulations of small-scale disturbances can fundamentally alter species composition (15, 16).

We did not detect anthropogenic forest in all profile locations but recognize that formations not rich in palms are currently very difficult to detect in the phytolith record. This point is made clear by the species and phytolith data from the JS2 forest plot, which hint at the other species that were favored by pre-Columbian populations (e.g., Brazil nut) that do not produce diagnostic phytoliths.

We have shown that at least some of Acre’s surviving forest owes its composition to sustainable pre-Columbian forest management practices that, combined with short-term, localized deforestation, maintained a largely forested landscape until the mid-20th century. The lack of a pre-Columbian analog for extensive modern deforestation means that we should not assume forest resilience to this type of land use, nor its recovery in the future.

Methods
Soil profiles were dug to 1.5-m depth and sampled in 5-cm increments for paleoecological analyses. Chronologies were based upon four accelerator mass spectrometry (AMS) dates per soil profile, the majority being determined on bulk macroscopic (>125 µm) charcoal (19 samples), and the remainder on soil humin (6 samples) (Table S1). Due to the occurrence of age inversions, the integrity of the proxy data was assessed based on interprofile replicability of observed patterns (e.g., increases in palm phytoliths) and obtained dates consistent with geoglyph chronologies (SI Text, Age Inversion). Phytoliths were extracted every 5 cm in levels pertaining to geoglyph construction and every 10 cm thereafter, following the wet oxidation method (55).

Two hundred morphotypes were identified per soil sample, and taxa were identified using published atlases and the University of Exeter phytolith reference collection. Paleoecological phytolith assemblages were compared with assemblages from surface soils of modern forests in the region (56). Charcoal was extracted using a macroscopic sieving method (57) and divided into size classes to distinguish local (>250 µm) from extralocal (125–250 µm) burning signals. Stable carbon isotope analysis of SOM was conducted at JS1 (every 5 cm) and JS3 (every 10 cm) and then every 20 cm below 0.4 m below surface using standard procedures (58). Detailed information for the methodologies used in this study is provided in SI Methods.

ACKNOWLEDGMENTS. We thank B. Whitney, M. Arroyo-Kalin, Y. Maezumi, M. Power, J. Carson, and T. Hermenegildo for their insights during the course of the project, J. Gregorio de Souza for creating Fig. 1, and F. Braga for fieldwork support. Funding for this research was granted by the United Kingdom Arts and Humanities Research Council (AH/J500173/1) (to J.W.), Natural Environment Research Council (NERC) (NE/B051054/0) (to N.J.L.),NERC/OCaL Radiocarbon Fund (2013/2/B) (to J.W. and J.J.), and National Geographic Society and Exploration Europe (GEFNE14-11) (to F.E.M. and J.J.).

