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Abstract

Regression analysis is a machine learning approach that aims to accurately predict the

value of continuous output variables from certain independent input variables, via auto-

matic estimation of their latent relationship from data. Tree-based regression models are

popular in literature due to their flexibility to model higher order non-linearity and great

interpretability. Conventionally, regression tree models are trained in a two-stage proce-

dure, i.e. recursive binary partitioning is employed to produce a tree structure, followed

by a pruning process of removing insignificant leaves, with the possibility of assigning

multivariate functions to terminal leaves to improve generalisation. This work introduces

a novel methodology of node partitioning which, in a single optimisation model, simul-

taneously performs the two tasks of identifying the break-point of a binary split and

assignment of multivariate functions to either leaf, thus leading to an efficient regression

tree model. Using six real world benchmark problems, we demonstrate that the proposed

method consistently outperforms a number of state-of-the-art regression tree models and

methods based on other techniques, with an average improvement of 7–60% on the mean

absolute errors (MAE) of the predictions.

Keywords: regression analysis, surrogate model, regression tree, mathematical program-

ming, optimisation.



1 Introduction

In machine learning, regression analysis seeks to estimate the relationships between out-

put variables and a set of independent input variables by automatically learning from a

number of curated samples (Sen and Srivastava, 2012). The primary goal of applying a

regression analysis is usually to obtain precise prediction of the level of output variables

for new samples. Examples of methodologies for regression analysis in the literature in-

clude linear regression (Seber and Lee, 2012), automated learning of algebraic models for

optimisation (ALAMO) (Zhang and Sahinidis, 2013; Cozad et al., 2014), support vector

regression (SVR) (Smola and Schlkopf, 2004), multilayer perception (MLP) (Hill et al.,

1994), K-nearest neighbour (KNN) (Korhonen and Kangas, 1997), multivariate adaptive

regression splines (MARS) (Friedman, 1991), Kriging (Kleijnen, 2015), and regression tree.

Quite often, one would like to also gain some useful insights into the underlying rela-

tionship between the input and output variables, in which case the interpretability of

a regression method is also of great interest. Regression tree is a type of the machine

learning tools that can satisfy both good prediction accuracy and easy interpretation,

and therefore have received extensive attention in the literature. Regression tree uses a

tree-like graph or model and is built through an iterative process that splits each node

into child nodes by certain rules, unless it is a terminal node that the samples fall into. A

regression model is fitted to each terminal node to get the predicted values of the output

variables of new samples.

The Classification and Regression Tree (CART) is probably the most well known de-

cision tree learning algorithm in the literature (Breiman et al., 1984). Given a set of

samples, CART identifies one input variable and one break-point, before partitioning the

samples into two child nodes. Starting from the entire set of available training samples

(root node), recursive binary partition is performed for each node until no further split is

possible or a certain terminating criteria is satisfied. At each node, best split is identified

by exhaustive search, i.e. all potential splits on each input variable and each break-point

are tested, and the one corresponding to the minimum deviations by respectively predict-

ing two child nodes of samples with their mean output variables is selected. After the tree

growing procedure, typically an overly large tree is constructed, resulting in lack of model
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generalisation to unseen samples. A procedure of pruning is employed to remove sequen-

tially the splits contributing insufficiently to training accuracy. The tree is pruned from

the maximal-sized tree all the way back to the root node, resulting in a sequence of can-

didate trees. Each candidate tree is tested on an independent validation sample set and

the one corresponding to the lowest prediction error is selected as the final tree (Breiman,

2001; Wu et al., 2008). Alternatively, the optimal tree structure can be identified via

cross validation. After building a tree, an enquiry sample is firstly assigned into one of

the terminal leaves (non-splitting leaf nodes) and then predicted with the mean output

value of the samples belonging to the leaf node. Despite its simplicity, good interpretation

and wide applications (Molinaro et al., 2004; Bayam et al., 2005; Bel et al., 2009; Li et al.,

2010; Antipov and Pokryshevskaya, 2012), the simple rule of predicting with mean values

at the terminal leaves often means prediction performance is compromised (Loh, 2011).

The conditional inference tree (ctree) tackles the problem of recursive partitioning in a

statistical framework (Hothorn et al., 2006). For each node, the association between each

independent input feature and the output variable is quantified, using permutation test

and multiple testing correction. If the strongest association passes a statistical threshold,

binary split is performed in that corresponding input variable; otherwise the current node

is a terminal node. Ctree is shown to avoid the problem of building biased tree towards

input variables with many distinct levels of values while ensuring the similar prediction

performance.

Since almost all the tree-based learning models are constructed using recursive parti-

tioning, an efficient yet essentially locally optimal approach, the evtree implements an

evolutionary algorithm for learning globally optimal classification and regression trees

(Grubinger et al., 2014), and is considered an alternative to the conventional methods

by globally optimising the tree construction. Evtree searches a tree structure that takes

into account the accuracy and complexity, defined as the number of terminal leaves. Due

to the exponentially growing size of the problem, evolutionary methods are employed to

identify a quality feasible solution.

M5’, also knows as M5P, is considered as an improved version of CART (Quinlan, 1992;

Wang and Witten, 1997). The tree growing process is the same as that of the CART,
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while several modifications have been introduced in tree pruning process. After the full

size tree is produced, a multiple linear regression model is fitted for each node. A metric

of model generalisation is defined in the original paper taking into account training error,

the numbers of samples and model parameters. The constructed linear regression function

for each node is then simplified by removing insignificant input variables using a greedy

algorithm in order to achieve locally maximal model generalisation metric. Tree pruning

starts from the bottom of the tree and is implemented for each non-leaf nodes. If the

parent node offers higher model generalisation than the sum of the two child nodes, then

the child nodes are pruned away. When predicting new samples, the value computed at

the corresponding terminal node is adjusted by taking into account the other predicted

values at the intermediate nodes along the path from the terminal to the root node. The

fitting of linear regression functions at leaf nodes improves the prediction accuracy of the

regression tree learning model.

M5’ is then further extended into Cubist (RuleQuest, 2016), a commercially available

rule-based regression model, which has received increasing popularity recently (Moisen

et al., 2006; Minasny and McBratney, 2008; Rossel and Webster, 2012; Kobayashi et al.,

2013; Peng et al., 2015). M5’ is employed to grow a tree first, which is then collapsed

into a smaller set of if-then rules by removing and combining paths from the root to the

terminal nodes. It is noted here that the if-then rules resulted from Cubist method can

be overlapping, i.e. a sample can be assigned into multiple rules, where all the predictions

are averaged to produce a final value. This ambiguity decreases the interpretability of the

rule model.

The Smoothed and Unsmoothed Piecewise-Polynomial Regression Trees (SUPPORT)

is another regression tree learning algorithm, whose foundation is based on statistics

(Chaudhuri et al., 1994). Given a set of samples, SUPPORT fits a multiple linear re-

gression function and computes the deviation of each sample. The samples with positive

deviations and negative deviations are respectively assigned into two classes. For each

input variable, SUPPORT compares the distribution of the two classes of samples along

this input variable by applying two-sample t test. The input variable corresponding to

the lowest P value is selected as splitting node and the average of the two class mean on

this splitting variable is taken as break-point.
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The Generalised, Unbiased, Interaction Detection and Estimation (GUIDE) adopts sim-

ilar philosophy as the SUPPORT (Loh, 2002; Loh et al., 2015). Given a node, the same

step of fitting samples with a linear regression model and separating samples into two

classes based on the sign of deviations is employed. For each input variable, its numeric

values are binned into a number of intervals before a chi-square test is used to determine

its level of significance. The most significant input variable is used for binary split. In

terms of break-point determination, either a greedy search or median of the two class

mean on this splitting variable can be used.

More other variants of the above regression tree models also exist in the literature, includ-

ing SECRET (Dobra and Gehrke, 2002), MART (Friedman, 2002; Elish, 2009), SMOTI

(Malerbao et al., 2004), MAUVE (Vens and Blockeel, 2006), BART (Chipman et al., 2010)

and SERT (Chen and Hong, 2010), etc.

In the above classic regression tree methodologies, the traditional means of node split-

ting are dominated by either exhaustively searching the candidate split corresponding to

the maximum variance reduction by predicting of mean output values in two child nodes

(Breiman et al., 1984; Quinlan, 1992; Wang and Witten, 1997), or examining distribution

of sample deviations from fitting one linear regression function to all the samples in the

parent node (Chaudhuri et al., 1994; Loh, 2002). However, it is noticed that for those

algorithms where terminal leaf nodes are fitted with linear regression functions (Quinlan,

1992; Wang and Witten, 1997), the choice of splitting variable, break-point and regression

coefficients are done sequentially, i.e. the splitting variable and break-point are estimated

during tree growing procedure while regression coefficients for each child node are com-

puted at pruning step.

A theoretically better node splitting strategy is to simultaneously determine the split-

ting feature, the position of break-point and the regression coefficients for each child

node. In this case, the quality of a split can be directly calculated as the sum of devia-

tions of all samples in either subset. A straightforward exhaustive search algorithm for

this problem can be: for each input variable and each break-point, samples are separated

into two subsets and one multiple linear regression is fitted for each subset. After ex-
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amining all possible splits, the optimal split is chosen as the one corresponding to the

minimum sum of deviations. The problem with this approach is, however, that as the

numbers of samples and input variables grow, the quantity of multiple linear regression

functions need to be evaluated increases exponentially, requiring excessive computational

time. For example, given a regression problem of 500 samples and 10 input variables, we

assume for each input variable, each sample takes a unique value. Then it requires con-

struction of 9980 (=499×10×2) multiple linear regression functions in order to find the

optimal split for only the root node, which will only become worse as the tree grows larger.

In this work, we adopt a recently proposed mathematical programming optimisation

model (Yang et al., 2016), which solves the problem of splitting a node into two child

nodes to global optimality in affordable computational time. In our proposed framework,

tree leaf nodes are fitted with polynomial functions and recursive partition is permitted

when the amount of reduction in deviation achieved by node splitting is above a user-

specific value, which is also the only tuning parameter in our framework. Since the size of

the tree is controlled via the tuning parameter, the pruning procedure is not implemented.

The rest of the paper is structured as follows: In Section 2, we describe the main features

of the optimisation model adopted from literature and introduces the framework of our

proposed decision tree building process. In Section 3, a number of benchmark regression

problems are employed to test the performance of our proposed method. A comprehensive

sensitivity analysis is conducted to evaluate how prediction accuracy varies with different

values of the tuning parameter. Later, prediction accuracy of our proposed method is

compared against a number of decision tree based algorithms and some other state-of-

the-art regression methods. Section 4 presents our main conclusions and discusses some

future directions.

2 Method

In our previous work (Yang et al., 2016), we have proposed a regression method based on

piece-wise linear functions, named segmented regression. Segmented regression identifies

multiple break-points on a single independent variable and partitions the samples into

multiple regions, each one of which is fitted with a multiple linear regression function so
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as to minimise the absolute deviation of the samples. The core element of the segmented

regression is a mathematical programming optimisation model that, given one single in-

put variable as splitting variable and the number of regions, simultaneously optimises the

positions of the break-points and the regression coefficients of one multiple linear regres-

sion function for each region.

In this work, we adopt this optimisation model to optimise binary splitting of nodes.

Given a node and a single input variable as splitting variable, the optimisation model is

solved to find the single break-point and the regression coefficients for the two child nodes.

The model is solved when each input variable in turn serves as splitting variable once,

and the input variable giving the minimum absolute deviation is selected for splitting the

current parent node. Recursive node splitting terminates when the reduction in devia-

tion drops below a user-specific threshold value. Below, the overview of the regression

approach, and the detailed mathematical programming model for node partitioning are

presented.

2.1 Regression Tree Approach

As for other regression tree learning algorithms, recursive splitting is used to grow the

tree from root node until a split of node cannot yield sufficient reduction in deviation.

The pseudocode for building a tree is given below.

Proposed regression tree algorithm

Step 1. Fit a polynomial regression function of order 2 to root node minimising absolute
deviation, recorded as ERRORroot.

Step 2. Start from the root node as the current node, and let ERRORcurrent = ERRORroot

Step 3. In each current root, for each input variable m, specify it as splitting variable (m =
m∗) and solve the proposed Optimal Piece-wise Linear Regression Analysis model
(OPLRA). The deviation is noted as ERRORsplit

m .

Step 4. Identify the best split corresponding to the minimum absolute deviation, noted as
ERRORsplit = min

m
ERRORsplit

m .

Step 5. If ERRORcurrent − ERRORsplit ≥ β × ERRORroot, the current node is split; oth-
erwise the current node is finished as a terminal node.

Step 6. Apply step 3-5 to each remaining child node in turn.
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Given training samples, the first step of our proposed tree growing strategy is to fit a

polynomial regression function of order of 2 to the entire set of training samples minimis-

ing absolute deviation, which is noted as ERRORroot. The used polynomial regression

function can provide higher prediction accuracy. Note that when the coefficient of the

quadratic term is zero, the obtained regression model is a linear function. The absolute

deviation is minimised here, due to its simplicity and ease of optimisation. The absolute

deviation of root node, multiplied by a scaling parameter β, taking value between 0 and

1, is specified as the condition for node splitting. In other words, the current node is split

into two child nodes, only if the optimal split of the node results in reduction of absolute

deviation being greater than β × ERRORroot. Then starting from the root node as the

current node, each feature m is specified in turn as splitting feature m∗ once, while solving

model OPLRA minimising the sum of absolute deviations of two child nodes. The best

split of the current node is identified as the one corresponding to minimum absolute error.

If the best split brings down absolute deviation from the current node (ERRORcurrent)

by more than β × ERRORroot, then the split takes place; otherwise the current node is

finalised as terminal leaf node. Note that the tuning parameter β determines the size of

the developed tree, and an appropriate value of β can avoid the overfitting on the train-

ing data, and achieve good prediction accuracy for testing. The flowchart of the whole

procedure is illustrated in Figure 1.

[Insert Figure 1 Here.]

2.2 Mathematical Programming Model for Node Partitioning

For a given current node n and one feature m* for potential partition, the proposed

mathematical programming model for the optimal node split, OPLRA, is presented in

this section. The indices, sets, parameters and variables associated with the model are

listed below. For better separation between the parameters and variables, here lower case

letters are for parameters, while upper case letters are for variables:
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Indices

c child node of the current parent node n; c = l represents left child node,

and c = r represents right child node

m feature/independent input variable, m = 1,2,...,M

m* the feature where sample partition takes place

n the current parent node

s samples in the data set, s = 1, 2, ..., S

Sets

Cn set of child nodes of the current parent node n

Sn set of samples in the current parent node n

Parameters

asm numeric value of sample s on feature m

ys real output value of sample s

u a suitably large positive number

ε a suitably small positive number

Continuous variables

Bc intercept of regression function in child node c

Ds absolute deviation between predicted output and real output for sample s

P c
s predicted output for sample s in child node c

W1c
m,W2c

m regression coefficients for feature m in child node c

X
m* break-point on partition feature m*

Binary variables

F c
s 1 if sample s falls into child node c; 0 otherwise

Binary variables F c
s , taking value of either 0 or 1, are introduced to model if sample

s belongs to child node c or not. Modelling of which sample belongs to either child node
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is achieved with the following constraints:

asm∗ ≤ Xm∗ − ε+ u(1− F c
s ) ∀s ∈ Sn, c = l,m∗ (1)

Xm∗ + ε− u(1− F c
s ) ≤ asm∗ ∀s ∈ Sn, c = r,m∗ (2)

When sample s is assigned into left child node (i.e. F c
s = 1 when c = l), Eq. (1) becomes

Asm∗ ≤ Xm∗ − ε while Eq. (2) becomes redundant. On the other hand, when sample s is

assigned into right child node (i.e. F c
s = 1 when c = r), Eq. (2) becomes Asm∗ ≥ Xm∗ + ε

while Eq. (1) is redundant. The insertion of ε is to ensure strict separation of the samples

into two child nodes. The following constraints restrict that each sample belongs to one

and only one child node: ∑
c∈Cn

F c
s = 1 ∀s ∈ Sn (3)

For each child node c, polynomial functions of order 2 is employed to predict the value of

samples (P c
s ):

P c
s =

∑
m

a2smW2c
m +

∑
m

asmW1c
m +Br ∀s ∈ Sn, c ∈ Cn (4)

For any sample s, its training error is equal to the absolute deviation between the real

output and the predicted output for the child node c where it belongs to (i.e. F c
s = 1),

and can be expressed with the following two equations:

Ds ≥ ys − P c
s − u(1− F c

s ) ∀s ∈ Sn, c ∈ Cn (5)

Ds ≥ P c
s − ys − u(1− F c

s ) ∀s ∈ Sn, c ∈ Cn (6)

The objective function is to minimise the sum of absolute training errors of splitting
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the current node n into its child nodes:

min
∑
s∈Sn

Ds (7)

The final OPLRA model consists of a linear objective function and several linear con-

straints, and the presence of both binary and continuous variables define an MILP prob-

lem, which can be solved to global optimality by standard solution algorithms, for exam-

ple branch and bound. The optimisation model simultaneously optimises the break-point

(Xm∗), the allocation of samples into two child nodes (F c
s ) and the regression coefficients

(W1c
m, W2c

m and Bc) to achieve the least absolute deviation. Another advantage of

this optimisation model is that there is no need to pre-process input variable, i.e. input

variables do not need to be binned into intervals for analysis.

2.3 Prediction for New Samples

After the regression tree is determined, prediction of new enquiry samples can easily be

performed. A new sample is firstly assigned to one of the terminal leaf node, before yield-

ing a prediction using the multivariate function derived for that particular node. The

predicted output value, if lies outside the interval bounded by the minimum and maxi-

mum of fitted output values for training samples in that particular node, is then adjusted

to the nearest bound.

The proposed regression tree approach, referred to as Mathematical Programming Tree

(MPTree) in this paper, is applied to a number of real world benchmark data sets in the

next section to demonstrate its applicability and efficiency.

3 Results and Discussion

In this section, we aim to comprehensively evaluate the behaviour of the proposed MPTree

using real world benchmark data sets. We first conduct a comprehensive sensitivity anal-

ysis for the tuning parameter β in order to identify a robust value that gives consistently

good prediction accuracy. After that, prediction accuracy comparison is performed to
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evaluate MPTree against certain popular regression tree learning algorithms in literature

and some other regression methodologies.

A total number of 6 real world regression data sets have been downloaded from UCI

machine learning repository (Lichman, 2013). The first regression problem Yacht Hydro-

dynamics predicts the residuary resistance of sailing yachts at the initial design stage from

6 independent features describing the hull dimensions and velocity of the boat, including

longitudinal position of the centre of buoyancy, prismatic coefficient, length-displacement

ratio, beam-draught ratio, length-beam ratio and Froude number. The next example,

Concrete Strength (Yeh, 1998), studies how compressive strength of different concrete are

affected by attributes of the concretes. There are 1030 samples with 8 input attributes,

such as cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine

aggregate and age. Energy Efficiency data sets (Tsanas and Xifara, 2012) are obtained

by running simulation model. There are 768 samples, with each corresponding to one

building shape, described by 8 features including relative compactness, surface area, wall

area, root area, overall height, orientation, glazing area and glazing area distribution. The

aims are to establish the relationship between either heating or cooling load requirement

of the building and the characteristics of these building. Airfoil data set concerns how the

different frequencies, chord lengths, angles of attack, free-stream velocities and suction

side displacement thicknesses can predict the sound pressure level of an airfoil. The last

case study, White Wine Quality (Cortez et al., 2009), aims to associate expert preference

of white wine taste with 11 physicochemical features of the wines, including fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur diox-

ide, density, pH, sulphates and alcohol. The details of these data sets are provided as the

supplementary material, and their sizes are summarised in Table 1.

[Insert Table 1 Here.]

For each regression problem, we employ a 5-fold cross validation to estimate the pre-

dictive accuracy of various regression methods. Given a data set, 5-fold cross validation

randomly splits the samples into 5 subsets of roughly equal size. One subset is hold out as

testing set, while the other 4 subsets of samples are merged to form training set. MPTree

constructs a regression tree on the training set, whose prediction accuracy is estimated

using the holdout testing set. The process continues until each subset is hold out once
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as testing set. We conduct 10 rounds of 5-fold cross validation by performing different

random sample splits, and the mean absolute errors (MAE) of the prediction are averaged

over 50 testing sets as the final error. For each data set, we normalise each independent

input variable with the following formula so that the scaled input data take value between

0 and 1: Asm = A′sm−mins A′sm
maxs A′sm−mins A′sm

∀s,m, where A′sm denotes the raw input data.

To assess the relative competitiveness of the proposed MPTree in terms of prediction

accuracy, we compare the proposed MPTree to a number of popular regression meth-

ods in literature, including CART, M5’, Cubist, linear regression, SVR, MLP, Kriging,

KNN, MARS, segmented regression (Yang et al., 2016) and ALAMO. CART, ctree, evtree

and Cubist are implemented in R (R Development Core Team, 2008) using the packages

’rpart’, ’party’, ’evtree’ and ’Cubist’, respectively. M5’, linear regression, SVR, MLP, krig-

ing and KNN are implemented in WEKA machine learning software (Hall et al., 2009).

For KNN, the number of nearest neighbours is selected as 5, while for other methods their

default settings have been retained. We use the MATLAB toolbox called ARESlab for

MARS. ALAMO is reproduced using the General Algebraic Modeling System (GAMS)

(GAMS Development Corporation, 2014), and basis function forms including polynomial

of degrees up to 3, pair-wise multinomial terms of equal exponents up to 3, exponential

and logarithmic forms are provided for each data set. Segmented regression and the pro-

posed MPTree are also implemented in GAMS. ALAMO, segmented regression and our

proposed MPTree are solved using CPLEX MILP solver, with optimality gap set as 0.

All computational runs were performed on a 64-bit Windows 7 based machine with 3.20

GHz six-core Intel Xeon processor W3670 and 12.0 GB RAM.

3.1 Sensitivity Analysis for β

In this section, we first perform a comprehensive sensitivity analysis on the single tuning

parameter β in the proposed MPTree. Recall in the tree growing procedure, β controls

termination of recursive node splitting. A node is split into two child nodes if the opti-

mal split leads to reduction of absolute training deviation being more than a threshold

value, defined as the amount of absolute training deviation of a multiple linear regres-

sion analysis on the entire set of training samples ERRORroot multiplied by the scaling

parameter β. The tree grows larger as β decreases. Identifying a suitable value for β
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is a non-trivial problem as an excessively high value would terminate the node splitting

prematurely without adequately describing the data, while a very small value can over-fit

the unseen samples by constructing very large trees. In this work, we test a series of

values, including 0.005, 0.01, 0.015, 0.025, 0.05 and 0.1. The results of the sensitivity

analysis are presented in Figure 2.

[Insert Figure 2 Here.]

According to Figure 2, we can clearly observe a phenomenon that as β is reduced

from 0.1 to 0.015, prediction error almost monotonically drops. This improved predic-

tion performance can be attributed to the fact that decreased β allows the tree to grow

larger, and thus better describing the latent pattern in the data. As β further lowers

down, MAE can even further decreases for some examples, including Energy Efficiency

Heating and Airfoil. For some other examples, including Yacht Hydrodynamics, Concrete

Strength, Energy Efficiency Cooling and White Wine Quality, more complicating trees

do not predict unseen testing samples well, as MAE worsens.

It is well known that in data mining, parameter fine tuning is required for a particu-

lar method to reach optimal performance for a specific data set. Thus, it is our interest

here to identify a value for β that corresponds to robust prediction accuracy for a range

of different tested benchmark examples. In this study, β = 0.015 appears to yield overall

robust and accurate prediction as it usually leads to lowest or second lowest MAE among

all the tested values. Higher values of β are shown to give significantly higher MAE,

while smaller value of β sometimes leads to noticeable over-fitting, thus compromising

the robustness of its performance.

3.2 Performance Comparison across Different Regression Meth-

ods

After identifying a value (i.e. 0.015 ) for the only user-specific parameter, β, in the

proposed MPTree, we now compare the prediction performance of the MPTree against a

number of state-of-the-art regression methods. To ensure unbiased comparison, β is set to

0.015 thorough all examples studied. For each of the benchmark examples, we compare

the MAE achieved by various competing methods. The detailed prediction accuracies
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reported in Table 2, in which the performance of the proposed MPTree method is shown

in italic, and the best prediction accuracy, i.e. the smallest MAE, of each data set is

given in bold. The proposed has the best prediction accuracy in all data sets, compared

to regression methods based on a wide range of tree and non-tree methodologies. Only

in the Energy Efficiency Heating data set, Cubist achieves the same accuracy as MPTree.

Overall, MPTree achieves 7–60% of improvement on MAE compared to each of other

regression models. We have also implemented MPTree with linear function at each child

node, the results of which still show great competitiveness as being either the top or the

second best method in all examples and achieves the overall best performance with MAE

values of 0.60, 4.16, 0.36, 1.00, 0.014 and 0.55, respectively.

[Insert Table 2 Here.]

The comparative results are summarised in Figure 3. This Radar chart is plotted

to comprehensively visualise the prediction performance of different methods across all

6 data sets. For each benchmark example studied, we normalise the MAE achieved by

all methods in Table 2 to scaled values between 0 % and 100 %, with 0 % and 100 %

respectively denoting the lowest and the highest MAE. To maintain the readability of the

plot, prediction accuracies of only 7 methods are plotted. It is clearly observed from Figure

3 that the proposed MPTree forms the smallest area across all data sets, and performs

better than other implemented tree-based learning algorithms, including ctree, evtree,

M5’ and Cubist, and non-tree-based models, including MLP and Segmented regression.

Overall, MPTree demonstrates clear advantage over the counterparts by managing the

lowest MAE value for each and every tested benchmark example (including SVR, Kriging

and KNN where results are not shown here). It is undoubtedly that the proposed MPTree,

by optimising simultaneously the position of break-point and regression coefficients per

child node, representing significant improvement compared with other tree models in

literature.

[Insert Figure 3 Here.]

In this work, MAE is adopted as the performance metric of regression models, which

might not be suitable for all the data sets. Besides, other approaches might provide

better fittings over another performance metric, e.g., mean squared error (MSE), root

mean squared error (RMSE), Akaike Information Criterion, etc. When we compare the

14



prediction accuracy in terms of MSE of all tree-based methodologies, Table 3 shows that

the post-processed MSE values from the optimal solutions of MPTree are still very com-

petitive with MSE values from other methodologies, even the proposed MPTree aims to

minimise MAE. Although the performance of MPTree is not as dominant as it is consid-

ering MAE, MPTree still ranks first on three data sets out of six, and is comparable with

Cubist, which performs the best for the other three data sets. These results demonstrate

the impact of performance metrics on the predication performance, and the considera-

tion of other performance metrics in MPTree would be an interesting direction for future

research.

[Insert Table 3 Here.]

3.3 Comparison of actual constructed trees by different regres-

sion tree methods

Last section has demonstrated that the novel MPTree regression tree learning method

offers superior prediction capacity. Compared to certain regression methods whose output

models cannot be interpreted, for example kernel-based SVR and MLP, tree learning

algorithms are well-known for their easy interpretability. The sequence of the derived

rules can be simply visualised as tree, making it easily understandable and possible to gain

some insights into the underlying mechanism of the studied system. The interpretability

of a constructed tree model decreases as the tree grows larger. In this section, attention

is turned into comparing the number of terminal leaf nodes of the trees constructed by

CART, M5’ and MPTree. Taking Energy Efficiency Heating as an example and using

all the available samples as training set, the trees grown by CART, M5’ and MPTree

are presented in Figures 4, 5 and 6, respectively, in which the terminal leaf nodes are

represented by boxes, and other nodes in the trees are represented by circles. The symbol

in each circle represents the feature where the split takes place.

[Insert Figures 4, 5, and 6, Here.]

According to Figure 4, CART has built a simple tree for the 768-sample example. On

the top of the tree, CART splits the entire set of samples on feature m1 at break-point of

0.361 into two child nodes, which are in turn further split on feature m7 and m1, respec-

tively. There are a total number of 7 terminal leaf nodes (TN1–TN7) and the depth of the
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tree is equal to 4. From Figure 5, it is apparent that M5’ has constructed a much larger

tree than the CART. The top part of the M5’ tree is almost identical as the tree built by

CART, which is not surprising as the two algorithms share great similarity during tree

growing procedure and only significantly different from each other on pruning procedure.

Overall, the tree grown by M5’ has a depth of 8 and 24 terminal leaf nodes (TN1–TN24) ,

which is much harder to understand and interpret. Figure 6 visualises the actual tree built

by our proposed MPTree method. The size of the derived tree is similarly small as that

of CART with 7 terminal leaf nodes (TN1–TN7) and a depth of 3, yet the two trees are

quite different as the root nodes of the two trees are split on different features. MPTree,

optimising the node splitting, picks feature m3 as partition feature, in contrast to feature

m1 selected by CART. Overall on the Energy Efficiency Heating example, CART and

MPTree appear to build trees that are small in size, while M5’ outputs a significantly

larger tree.

The same analysis has been repeated on the other 5 benchmark data sets, and the results

of which are available in Table 4. The same observation can be made that for the other

examples, CART and MPTree derive trees of similar numbers of terminal leaf nodes, while

M5’ sometimes builds trees of comparable sizes as the other two (i.e. Yacht Hydrody-

namics and Concrete Strength) but more often outputs trees of several folds larger (i.e.

Energy Efficiency Heating, Energy Efficiency Cooling, Airfoil and White Wine Quality).

[Insert Table 4 Here.]

4 Concluding Remarks

Regression analysis is a data-driven computational tool that aims to predict continu-

ous output variables from a set of independent input variables. In this work, we have

proposed a novel regression tree learning algorithm, named MPTree. An optimisation

model OPLRA recently published in literature has been adopted to optimise the binary

node splitting. Given a specified splitting feature, OPLRA simultaneously determines the

break-point position and the coefficients of the polynomial regression function in either

child node so as to minimise residuals. An algorithm is introduced for recursive partition-

ing to grow the tree.
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A number of 6 real-world benchmark data sets have been used to demonstrate the appli-

cability and efficiency of the proposed MPTree. Popular regression learning algorithms

have been implemented for comparison, including tree-based CART, ctree, evtree, M5’

and Cubist, and methods based on various other principles, including MARS, MLP, krig-

ing, segmented regression, etc. Cross validation experiment has been used to estimate the

predictive accuracy of different methods. The results clearly indicate that MPTree con-

sistently offers a much improved prediction accuracy than the other competing methods

for each of the benchmark data set. Overall, we show that the proposed MPTree builds

regression trees of better quality by optimising the node splitting.

In the near future, we aim to explore a few aspects to refine the MPTree method. The

existing regression tree learning algorithms, including the proposed MPTree, perform bi-

nary splits recursively to keep the tree growing. Splitting a parent node into multiple child

nodes, instead of two, is likely to better explore the structure of the data set. Another

potential avenue is to optimise multiple levels of splitting simultaneously. Note that most

of the tree building methods consider only splitting one node at a time, while a look-

ahead scheme that optimises also splitting of grandchild nodes would lead to enhanced

prediction performance of the constructed tree.
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Figure 1: Flowchart of the proposed regression tree approach.
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Figure 2: Sensitivity analysis for β of all data sets.
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Figure 3: Prediction accuracy (MAE) comparison across different regression methods.
For each benchmark example, the original MAE achieved by different methods in Table 2
are normalised between 0% and 100%, with 0% representing the lowest MAE and 100%
representing the highest MAE.
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Figure 4: Constructed tree by CART on Energy Efficiency Heating example. Boxes
represent the terminal leaf nodes with labels inside, while circles represent other nodes,
where the symbol inside refers to the feature where the split takes place. The splitting
rules are given on the corresponding paths.
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Figure 5: Constructed tree by M5’ on Energy Efficiency Heating example. Boxes represent
the terminal leaf nodes with labels inside, while circles represent other nodes, where the
symbol inside refers to the feature where the split takes place. The splitting rules are
given on the corresponding paths.
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Figure 6: Constructed tree by MPTree on Energy Efficiency Heating example. Boxes
represent the terminal leaf nodes with labels inside, while circles represent other nodes,
where the symbol inside refers to the feature where the split takes place. The splitting
rules are given on the corresponding paths.
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Table 1: Summary of benchmark data sets
Case study Number of samples Number of features
Yacht Hydrodynamics 308 6
Concrete Strength 1030 8
Energy Efficiency Heating 768 8
Energy Efficiency Cooling 768 8
Airfoil 1503 5
White Wine Quality 4898 11
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Table 2: Prediction accuracy comparison across different regression methods, in terms
of MAE. The proposed MPTree method is highlighted in italic, and the best prediction
accuracy of each data set is given in bold.

Yacht Concrete Energy Efficiency Energy Efficiency Airfoil White Wine
Hydrodynamics Strength Heating Cooling Quality

Tree-based methods
MPTree 0.58 3.85 0.35 0.80 0.015 0.52
CART 1.61 7.22 2.00 2.38 0.035 0.60
Ctree 0.81 5.99 0.63 1.40 0.029 0.58
Evtree 1.05 6.44 0.56 1.59 0.032 0.59
M5’ 0.96 4.72 0.69 1.21 0.021 0.56
Cubist 0.60 4.29 0.35 0.89 0.017 0.56

Non-tree-based methods
Linear regression 7.27 8.31 2.09 2.27 0.037 0.59
SVR 6.45 8.21 2.04 2.19 0.037 0.58
MLP 0.81 6.23 0.99 1.92 0.035 0.62
Kriging 4.32 6.22 1.79 2.04 0.030 0.58
KNN 5.30 7.07 1.94 2.15 0.026 0.54
MARS 1.01 4.87 0.80 1.32 0.035 0.57
Segmented regression 0.71 4.87 0.81 1.28 0.029 0.55
ALAMO 0.79 8.04 2.72 2.76 0.032 0.64
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Table 3: Prediction accuracy comparison across different tree-based regression methods
in terms of MSE. The proposed MPTree method is highlighted in italic, and the best
prediction accuracy of each data set is given in bold.

Yacht Concrete Energy Efficiency Energy Efficiency Airfoil White Wine
Hydrodynamics Strength Heating Cooling Quality

MPTree 2.03 43.88 0.26 2.65 0.0005 0.59
CART 5.41 86.24 6.85 9.40 0.0020 0.58
Ctree 2.79 63.72 1.33 4.37 0.0014 0.55
Evtree 3.02 69.12 1.00 4.44 0.0015 0.56
M5’ 3.08 40.72 0.95 3.26 0.0008 0.53
Cubist 1.07 37.77 0.27 2.76 0.0006 0.51
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Table 4: The number of terminal leaf nodes of the constructed trees by different regression
tree learning methods

Yacht Concrete Energy Efficiency Energy Efficiency Airfoil White wine
Hydrodynamics Strength Heating Cooling Quality

CART 5 13 7 4 18 7
M5’ 4 10 24 24 44 55
MPTree 5 14 7 12 14 6
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