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Abstract 

In this paper an experimental method for extensional measurements on medium viscosity fluids in 

contraction flow is evaluated through numerical simulations and experimental measurements. This 

measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid 

extension and fluid shear, where the extensional component is assumed to dominate. The present 

evaluative work advances our previous studies on this experimental method by introducing several 

contraction ratios and addressing different constitutive models of varying shear and extensional 

response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-

CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first 

normal stress difference on the measured pressure drop are studied through numerical pressure 

drop predictions. In addition, stream function patterns are investigated to detect vortex 

development and influence of contraction ratio. The numerical predictions are further related to 

experimental measurements for the flow through a 15:1 contraction ratio with three different test 

fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the 

numerical simulations, offering close correlation and tight predictive windows for experimental data 

capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such 

elastic fluid properties, and that this is matched by numerical predictions in evaluation of their flow 

response. The hyperbolical contraction flow technique is commended for its distinct benefits – it is 

straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, 

non-homogenous fluids can be tested, and one can directly determine the degree of elastic fluid 

behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT 

models, a decline is predicted in pressure drop for the shear-thinning LPTT model. This would 

indicate a modest impact of shear in the flow, since such a pressure drop decline is relatively small. It 

is particularly noteworthy, that the increase in pressure drop gathered from the experimental 

measurements is relatively high despite the low Deborah number range explored. 

 

Keywords: Hyperbolic contraction, pressure-drop, viscoelastic fluid, Boger fluid, extensional flow, 

axisymmetric contraction-expansion. 
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1. Introduction 

In a large number of industries, knowledge of flow behaviour of fluids is necessary for appropriate 

quality control, product development and process design. A common procedure to study flow 

behaviour is to determine properties like shear viscosity during shear flow. But as soon as a 

viscoelastic fluid undergoes any sudden geometric change (e.g. contraction or expansion), 

extensional deformation will occur, generating the need of also determining the extensional 

viscosity. Many fluids used in industry and most food products are viscoelastic, which means that 

their extensional response will have an impact on the overall behaviour of the fluid. Since the 

behaviour in shear and extension can be quite diverse, both shear and extensional properties have to 

be determined for viscoelastic fluids. Moreover, extensional properties also have a considerable 

impact on sensory perception - texture and mouth feel of a food product (Chen et al. 2011; 

Dobraszczyk 2003; Koliandris et al. 2011). Today, there are a number of well-known measuring 

techniques for determining extensional properties, such as the filament-stretching extensional 

rheometer (FiSER) (Gupta 2000; Meissner 1972), the Meissner elongational melt rheometer 

(Meissner 1972; Meissner et al. 1997) and the similar SER and EVF, capillary break-up (CaBER) (Entov 

and Hinch 1997) and opposed jets (Fuller et al. 1985). However, none of these techniques are 

adapted to measure on medium non perfectly homogenous viscosity fluids, which are common in 

e.g. food products and bio-fluids. The term “medium viscosity fluids” is a loose description of fluids 

having shear viscosities between polymer melts and dilute solutions, typically 1-1000 Pas. The CaBER 

mainly covers the low viscosity range and the FiSER requires liquids which are possible to extend to 

long and thin filaments. Moreover, most food and bio-fluids are not perfectly homogeneous and do 

not form perfect filaments. In addition, only the capillary break-up method, and the wind-up 

methods (SER, EVF) are available commercially.  

 

The hyperbolic contraction flow (HCF) developed by Wikström and Bohlin (1999) and Stading and 

Bohlin (2000, 2001) is a proposed measuring technique specially aimed for these medium viscosity 

fluids. The system can be mounted into any commercially available tension tester where a controlled 

deformation and deformation rate can be set, and the resulting force is measured. The HCF is based 

on contraction flow, where the fluid is forced through a hyperbolic nozzle at constant displacement 

speed, and the exerted force is measured by a load cell. At the flow centre of the nozzle, a desired 

uniaxial extensional flow is achieved. At the nozzle wall, a shear contribution is emerged and 

subtracted from the measured transient stress by fitting the sample fluid to a power-law behaviour 

based on the theory developed by Binding (1988). The HCF has previously been successfully 

employed to estimate extensional viscosity for materials, such as, doughs (Andersson et al. 2011; 

Oom et al. 2008), protein melts (Gillgren et al. 2010), mineral suspensions (Isaksson et al. 1998) and 

dairy products (Stading and Bohlin 2001). Furthermore, samples such as liquid medicine and different 

dispersions (e.g. paints) are also measurable with the HCF method. The use of a hyperbolic 

contraction for measuring extensional deformation has also been used for measurements on 

polymer melts by Baird and Huang (2006),  Baird et al. (2010), Collier at al. (1998), Kim et al. (1994) 

and James et al. (1990). In addition, it has been utilised on the micro scale for planar extensional 

measurements (Campo-Deano et al. 2011; Ober et al. 2013; Oliveira et al. 2007).  

 

An issue with converging flow is the presence of shear deformation at the tube wall, and therefore 

the design of the converging region is highly important in order to achieve as constant and shear-free 
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extensional flow as possible. Previous work on numerical simulations of viscoelastic fluids has 

demonstrated that the hyperbolic configuration is a suitable candidate geometry for achieving 

practically constant uniaxial extensional flow (Nystrom et al. 2012). In the HCF, shear contribution is 

minimized through the smooth contraction geometry compared to other contraction-flow 

alternatives i.e. vortex activity is removed.  

 

To further improve the HCF it would be desirable to study the validation of the Power-law 

assumption, or to find an alternative approximation for the shear contribution and calculation of the 

extensional viscosity. A draw-back with using the Power-law assumption is that it is not viscoelastic, 

i.e. memory-effects are not included. This validation can be done through numerical simulations of 

the complex flow arising in the converging or contracting region in the nozzle of the HCF. Studies on 

viscoelastic flow through an abrupt 90O-corner 4:1 contraction and 4:1:4 contraction-expansion have 

long been considered as a set of benchmark problems on which numerous studies are available (see 

review papers Walters and Webster (2003), Baaijens (1998), White et al. (1987), and the extensive 

work of Boger (1987) and Binding et al. (1998). The non-Newtonian fluids primarily considered are 

viscoelastic Boger fluids (Boger 1977) - highly elastic, dilute polymer solutions with constant shear 

viscosity. The transient extensional flow achieved in the contraction can give rise to a significant 

contribution in total pressure drop over the converging region, a contribution greater than that of 

shear flow. Experimental results by Nigen and Walters (2002) show an increase in pressure drop over 

axisymmetric contractions for viscoelastic Boger fluids compared to Newtonian fluids with the same 

shear viscosity. Rothstein and McKinley (1999, 2001) have shown a large increase in the so-called 

‘Couette correction’ (excess pressure drop, epd) for contraction-expansion flow independent of 

contraction ratio and corner curvature. The epd extracted over the hyperbolic contraction has shown 

a substantial increase with rising Weissenberg numbers, when compared to an abrupt 90O-corner 

contraction flow counterpart (Nystrom et al. 2012). Of the many factors influencing steady-flow 

pressure-drops, key factors affecting the increase in epd have been suggested to be a strong 

dependence on first normal stress difference (N1) and extensional viscosity (ηe) response (see Binding 

1991) and Debbaut and Crochet (1998). This has been confirmed computationally in the work of  

Aguayo et al. 2008, Walters et al. 2009a, 2009b, and Tamaddon-Jahromi et al. 2010, 2011. by 

comparing the epd in contraction-expansion flow for different constitutive models. A high level of 

extensional viscosity (ηe) has been shown to increase epd-measure, whilst in contrast, a strong 

dependence on N1 was observed to decrease epd.  

 

The present work analyses the flow through the contracting region of the HCF in order to isolate 

shear and elastic effects on the measured pressure drop. Currently, a test sample in the HCF is fitted 

to a Power-law model, for which a shear contribution can be calculated for each measurement. Thus, 

there is a limitation in the testing in that it can only be used for shear-thinning materials. By 

introducing viscoelastic properties as well, the shear contribution can be quantified numerically, 

whilst at the same time avoiding the Power-law fitting. One aim of the present paper is focused on 

comparing the outcomes from simulated and experimental epd-results over the hyperbolic 

contraction flow. An ultimate target is then to go on to utilise this knowledge to examine the 

potential for and limitations of using pressure drop calculation as an estimation measurement to 

determine extensional properties. Based on predictive findings by Tamaddon Jahromi et al. (2010, 

2011), the FENE-CR model (Chilcott and Rallison 1988) has been chosen as an appropriate 

mathematical model to mimic well-characterised Boger fluids, while the LPTT model has been chosen 
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for its shear-thinning properties. The Oldroyd-B model is also used to compare and contrast 

incrementation in rheological properties across models and identify the corresponding influences 

impacting upon epd-estimation. The numerical results are subsequently compared with experimental 

findings to confirm the numerical predictions extracted, through such an axisymmetric hyperbolic 

contraction domain.  

 

2. Flow and Governing Equations 

The governing equation system for isothermal, viscoelastic, incompressible flow is composed of the 

conservation of mass and transport of momentum equations, defined as: 

0 u ,      (1) 

Re ( 2 )p
t


 

      
 

u
u u d .    (2) 

Here, u, τ, and p denotes the velocity vector, the extra-stress tensor and the hydrodynamic pressure; 

temporal and spatial differential operator notation is implied over the space-time domain (x, t). The 

rate-of-deformation tensor, 
Tu u

2

 
 is indicated by d . The zero shear viscosity (η0) of the fluid 

can be divided into solvent ( s ) and polymeric contributions (
p ) defining the solvent-viscosity 

ratio parameter as s

s p


 

 
 (β=0.9 or 0.1; see Table 1). Accordingly, the non-dimensional Re-

number is defined as: 
avg

s p

U
Re



 

 , where  , and Uavg represent fluid density, characteristic 

length-scale (contraction gap-width radius, 2r1) and characteristic velocity-scale (Q/A, average 

upstream velocity, determined on the base flow rate for contraction ratio 4:1, see below), 

respectively. A creeping flow is assumed (Re≈0(10-2)) and as a consequence, the momentum 

convection term has negligible contribution.  

The numerical algorithm utilized in the present study of this hyperbolic contraction flow is that of a 

hybrid finite element/finite volume scheme. A thorough description of this numerical scheme can be 

found in Wapperom and Webster (1998, 1999), Aboubacar and Webster 2001, Webster et al. 2005, 

and Nystrom et al. 2012). In short, the finite element domain is discretised into parent triangular-

cells consisting of six nodes, three vertex nodes and three mid-side nodes; upon this tessellation the 

finite volume child triangular sub-cell arrangement is constructed. The power of the hybrid scheme is 

that the momentum and continuity equations are approximated by the finite-element (fe) approach, 

whereas the finite volume approximation is utilised for the extra-stress constitutive equation. The 

time-stepping procedure consists of a two-step Lax-Wendroff method developed through a semi-

implicit Taylor series expansion in time. An incremental pressure-correction methodology is utilised 

and divided into three stages, where the Galerkin spatial finite element (fe) discretisation is engaged 

for the momentum equation at the first stage, followed by the pressure-correction at the second 

stage and finally the incompressibility correction constraint is employed at the last stage. Two 

different solvers are employed; the element-by-element Jacobi iterative scheme for the first and last 
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stages, and a direct Choleski decomposition/back-substitution solver for the second pressure-

increment stage. 

Numerical simulations were performed on three hyperbolic contractions ratios: 4:1, 8:1 and 15:1 for 

various choices of constitutive models. The mesh characteristics of the two configurations are 

defined in Fig.1. The inlet radius (r0) and the outlet radius (r1) in Fig. 1a are set to 4 units and unity, 

respectively (setting the base relative flow rate Q=1); 8 units and unity Fig. 1b and 15 units and unity 

in Fig. 1c. The total length of the computational domain is fixed on 31 units, of which the contracting 

region length (H) is set to 15 units. The radius of the hyperbolic profile can be described by: 

 

0

2 2

0 1

z
/ 1 1

H

r
r(z)=

r r  
      (3) 

Only half the fluid domain is depicted in Fig. 1, upon which a symmetry boundary condition is 

imposed at the centreline, with no-slip imposed on the wall. A constant-viscosity pressure-driven 

Poiseuille flow is prescribed at the inlet and a natural streamwise (open) exit condition is established 

at the outlet. In all cases, a pressure reference is fixed at a single location on flow-exit to remove the 

indeterminacy of pressure and all solutions are reported under steady-state conditions. 

The excess pressure-drop (epd), is defined as the ratio between the pressure-drop for a Boger fluid to 

that for a corresponding Newtonian fluid (Szabo et al. 1997, Aguayo et al. 2008, and Binding et al. 

2006): 

 
 

B

N

fd

fd

p p
epd

p p

 


 
     (4) 

where 
f d u u d dp p L + p L   

.
 

This is a relative pressure drop correction of Couette-type, comparing Boger fluid (B) to Newtonian 

(N) Couette-estimates, which eliminates the inlet and outlet contribution to the overall pressure drop 

( p ). The subscripts fd stands for fully-developed, u for upstream and d for downstream. Lu and Ld is 

the distance from an inlet sample-point to front-face and from front-face to exit, respectively. In this 

paper, fully developed conditions are taken to lie within 1% of fully-developed τ.  

The respective models used in the present study are those of the Oldroyd-B model (Davies and Devlin 

1993; Hinch 1993; Renardy 1995), the FENE-CR (Finitely Extensible Nonlinear Elastic-Chilcott Rallison) 

Chilcott and Rallison (1988) and the LPTT (Linear Phan-Thien/Tanner) (Phan-Tien and Tanner 1977; 

Phan-Tien 1978) model, for which their corresponding material and rheometrical functions are 

presented in Table 1, Table 2, and Fig. 2. 

Newtonian solutions, characterised by a constant shear viscosity and a lack of elastic contribution 

(normal stress), are taken as base reference for the viscoelastic calculations. The constitutive 

equation for the FENE-CR model is expressed as follows:  

 f Tr( ) ( I) 0De


  A A      (5) 



 
 

6 

The extensibility parameter L in the FENE-CR model is fitted to control the elongational level and is 

incorporated in the stretch function: 

2

1
f (Tr( ))

1 Tr( ) / L



A

A
     (6) 

An increasing finite extensibility parameter (L) results in a higher plateau level in extensional 

viscosity. The dimensionless Deborah number is then defined as the product of a characteristic 

relaxation time (λ) and a characteristic deformation rate ( ), De   . For an axisymmetric 

contraction, as used here, the characteristic deformation rate is calculated as
3

0R

Q
 


, where Q  is 

the volumetric flow rate and R0 is the radius of the contraction. Hence the Deborah number can be 

expressed as  
avgnum

U
De   . I is the identity tensor, A the stress conformation tensor and Tr is the 

trace operator ( 11 22 33Tr( ) A A A  A ). The stress (τ) can thus be expressed as: 

 
 

1
f Tr( )

De


 A (A - I) .    (7) 

The second model used in this study is that of the LPTT model, which predicts a decreasing shear 

viscosity with increasing shear-rate and has a controllable extensibility parameter. N1 is weaker than 

in the FENE-CR model (see Fig. 2c). The constitutive equation for the LPTT-model has the following 

expression: 

( ) 2(1 )f De


   d   ,     (8) 

where d  represents the rate of deformation and the upper-convected material derivative of stress, 


  and ( )f   are defined as: 

PTT( ) 1 tr( )
(1 )

f


  


       (9) 

The non-dimensional model parameters selected for investigation are PTT =0.05, PTT =0.042 and 

PTT =0.01. Here, PTT =0.05 is chosen to match the extensional viscosity plateau of FENE-CR, L=3 

model, PTT =0.042 is chosen to match the extensional viscosity plateau of FENE-CR, L=5 model and 

PTT =0.01 is chosen to match the extensional viscosity plateau of FENE-CR, L=10 model. As 

demonstrated in Fig. 2, the properties in N1 for these three LPTT models are essentially the same; 

whilst, viscometric response for PTT =0.05 expresses a lower limiting ηe-cap than that for 

PTT =0.042. By direct inspection between the material functions of the LPTT model and the FENE-CR 

model, shear-thinning effects may be isolated. The Oldroyd-B model on the other hand, is a constant 

shear viscosity fluid that displays extreme strain-hardening already at an extension rate of 0.5   

(see Fig. 2). The Oldroyd-B model is recovered as the limiting case (f=1). In addition, in Fig. 2c, the 

experimentally-measured stress-data (N1) are superimposed against those predicted in theory by the 
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FENE-CR model. Here, experimental N1 matches best, in a least-squares best-fit sense, against the 

FENE-CR(L=5) theoretical data, providing an intercept at rates of O(102). Otherwise, the experimental 

data straddles the theoretical data curves from (L=3), to (L=5), to (L=10).  

 

3. Experimental section  

3.1 Materials 

Two types of model fluids are used for the method evaluation, differing in viscoelastic properties; a 

Newtonian fluid, and a Boger fluid. The fluids under consideration in this experimental section are 

based on a solution of glucose syrup dissolved with water and polyacrylamide (PAA). To control the 

level of viscosity, the syrup was diluted with a desired amount of distilled water. Boger fluids are 

model fluids with a constant shear viscosity and are highly elastic at room temperature. The 

characteristics of the test fluids are given in Table 3. The light syrup used in the present study was 

provided from Dan Sukker (Danisco Sugar, Oslo) and the polyacrylamide (92560-10G PAA, Mw=5-

6 MDa) was provided from Sigma-Aldrich Co., USA. The samples were all left on a magnetic stirrer 

overnight at low speed to ensure satisfactory homogeneity. The PAA was first dissolved, in distilled 

water for 24 hours, with a magnetic stirrer at room temperature before being added to the syrup. 

The test fluids were characterised at a constant temperature of 20°C, controlled with a water jacket, 

and the rheological properties were determined with a controlled strain device (TA Instruments, 

Model: ARES-G2, USA) with a cone-plate system (40 mm in diameter, cone angle of 0.398 rad). The 

truncation gap was 0.0482 mm. Both dynamic oscillatory and steady shear flow testing was 

performed to determine the dynamic viscosity *( )  , shear viscosity ( )  and the first normal 

stress coefficient Ψ1( ). The exposed edges were covered with paraffin oil to reduce water loss from 

the sample during performance of the measurements.  

3.2 Experimental measuring technique 

Here, an experimental setup has been used to measure uniaxial extensional flow, based on a 

hyperbolic contraction flow device, described by Wikström and Bohlin (1999) mounted on an Instron 

Universal Testing Machine model 5542 (Instron Corporation, Canton, USA) with a measuring range of 

500 N and accuracy of 1.2-N (Stading and Bohlin 2000). The fluid is contained in a temperature 

controlled cylinder (82 mm long) and pressed by a piston at constant speed (0.5 mm/minute – 15 

mm/min) through an axisymmetric hyperbolic contraction nozzle. The nozzle is designed to give a 

constant extension rate and is mounted directly in contact with the load cell of the instrument to 

minimize the influence of friction. A schematic drawing of the hyperbolic contraction flow device is 

shown in Fig. 3. Various contraction ratios can be obtained by switching the particular choice of 

nozzle. At the start of the measurements the sample goes through a stress growth period before 

reaching a steady state. The contraction nozzle rests on a load cell and the exerted force on the load 

cell is measured. After passing the contraction nozzle the test sample is let to flow out to room 

conditions. The force needed to push the sample through the nozzle is estimated to correspond to a 

pressure drop, from which extensional properties of the test sample can be determined.  

The sample fluid was completely filled into the sample tube with the attached contraction nozzle and 

allowed to rest for at least 5 minutes before the start of the measurement to attain a relaxed sample. 

The temperature was kept constant at T=20°C by a temperature jacket, which was coupled to a 

controlled circulator Julabo Model FP40 (Julabo Labortechnik, Seelbach, Germany). The 
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measurements were performed at different strain-rates at piston rates ranging from 0.5 mm/s to 15 

mm/s and reproduced three times to check reproducibility. The samples were tested for a 

contraction ratio of 15:1 and 10:2.15. The total Hencky strain experienced by a fluid element, 

calculated as: 0
H

1

r
ln

r

 
   

 
 is presented in Table 4, together with the dimensions of the contraction 

geometry. This is the same range as is often obtained in the CaBER measurements. 

The Deborah number (De), defined in the modeling section above as 
exp

R R3

0R R

Q
De 


  


 , is 

calculated for all the measurements at different flow rates.   denotes the flow velocity and R is the 

radius of the outlet. The relaxation time of the fluid in extensional flow was determined with a 

capillary break-up extensional rheometer (Haake CaBER, Thermo Scientific).The measurement was 

performed at T=23° with a plate diameter of 6 mm. Moreover, the initial and final height was set to 

hi=1.99 mm hf=8.55 mm, obtaining a final aspect ratio of Ai=1.43  

 
4. Results and discussion 

4.1 Numerical results 

4.1.1 Influence of contraction ratios 
Three different axisymmetric hyperbolic contraction ratios were studied numerically in order to 

examine the effect of contraction ratio on fluid flow and pressure drop. Firstly, the onset of vortex 

development in the hyperbolical flow was studied through streamline patterns under identical flow 

rate for the three contraction ratios studied. The result can be seen in Fig. 4. , where streamline 

contours are plotted in core flow at equal increments of 0.05, covering contour levels 0 ≤ ψ ≤ 0.45 for 

the FENE-CR, L=5 model. The stream function was calculated for the De-range of 0.1-100 but only 

results for De=0.1 and De=5 are shown. In the case of vortex development, the –peak value is 

specified. Vortex development is prominent only for the 15:1 contraction ratio (see Fig. 4. e-h). This is 

due to the sharper corner attained in the 15:1 contraction. Furthermore, some vortex enhancement 

is observed over increasing De-numbers, where the diameter of the vortex is increased by 1.7 units 

going from De=0.1 to De=5.0. A small indication of vortex development can also be observed in the 

8:1 contraction ratio (Fig. 4. c-d), although the peak value is practically zero. The peak value is also 

zero in Fig. 4. g-h where a rounded-corner is introduced to the 15:1 contraction ratio; the 

development of the vortex is delayed and the size of the vortex is decreased to some extent in 

agreement with the work of Rothstein and McKinley (2001). Compared to a sharp contraction having 

–peak values above 0.5 for De>1, the peak values detected here are considerable smaller. No 

vortex can be detected in the 4:1 contraction ratio for the whole De-number range tested. These 

results are important to take into account during experimental measurement, especially when using 

the 15:1 contraction, giving slightly lower values due to the vortex presence lowering the actual 

contraction angle. In this respect, constructing a 15:1 contraction ratio nozzle with a rounded-corner 

may prove beneficial. Note that, vortex development is also fluid and rate dependent, influencing the 

tendency to develop vortices (and that vortex presence itself may be undesirable depending upon 

the processing conditions themselves).  
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Secondly, the radial stress (τrr) (principal component of second-normal stress-difference) and axial 

stress (τzz) (principal component of first-normal stress-difference) were studied also through contour 

plots in  for the same flow rate (for the non-dimensional flow rate of Q=1 units) on all contraction 

ratios. Consistently, the radial stress reaches its maximum value at the boundary wall beyond the 

contraction, while the axial stress increases towards the contraction exit. It is interesting to note that 

the axial stress is dominant here with a radial stress close to zero, implying that the influence of 

shear stress is minimized. Additionally, one can see the axial stress (τrr) increasing towards the wall 

with a maximum of 2.32 at r=1 in Fig. 6. From the contour plots in Fig. 5, it can also be observed that 

the contraction ratio seems to have little significant influence on stress levels. The reason for the 

larger variation in normal stress between the contractions ratios is more likely to be caused by exit 

effects. From the radial and axial normal stresses, the first normal stress difference can be calculated 

( 1 zz rr N    ) and N1 line plots are displayed in Fig. 7 together with rates and extensional 

viscosities in both extension Fig. 7A and in shear Fig. 7B. The results are compared both on changing 

contraction ratio, whilst keeping the flow rate constant (Q=1 units), and increasing flow rates (the 

maximum inlet velocity is set constant (Umax=0.125 units) for all contraction ratios). Since the axial 

stress is the dominant factor at the symmetry line, N1 will be a function of zz , which is reflected in 

Fig. 7 through a positive N1 reaching a plateau after the start of the contraction in extension. An 

increase in N1 can be seen with increasing De-number and the onset of N1–rise is shifted closer to the 

start of the contraction with rising De-number. The increase in the normal-stress component, as the 

contraction plane is approached, is related to the increase in pressure drop, similarly to that 

experienced in velocity gradient. At fixed flow rate and as analogous to the radial and normal 

stresses, N1 shows no variation dependence on contraction ratio (see Fig. 7A a). In contrast, an 

increase in flow rate going from 4:1 to 15:1 contraction ratio results in a 8.6 unit increase in such 

stresses in Fig. 7A b), which can also be observed for N1 in shear (Fig. 7B a,b).  

Furthermore, the comparison of numerical prediction to theoretical rheometric functions on N1 is 

provided in Fig.8, for increasing localized rates (strain and shear) at fixed flow rate. These data show 

close agreement in shear (Fig.8b), throughout the range 0.2 3  and for all three contraction 

ratios. The agreement established in extension (Fig.8a) holds over the earlier rate range of 

0.002 0.009  . In a, a steeper slope is observed for the calculated numerical N1 prediction in 

extension for the different contraction ratios to the corresponding theoretical value; but there is 

close agreement between the data for 8:1 and 4:1 contraction ratios. The discrepancy between the 

prediction (inhomogeneous) and theory (homogeneous) is in the range of 9 % at low De and 6 % at 

high De. Hence, it is to be expected that extensional viscosity will be over-predicted for higher rates 

and under-predicted for lower rates. In contrast studying N1 in shear (b), closer agreement is 

established between numerical predictions (inhomogeneous) and corresponding theoretical values 

(homogeneous) as higher rates are approached. 

Thirdly, the shear rate along the boundary wall and strain rate along the symmetry line are plotted in  

Fig. 7c-d. The shear and strain rate are extracted from the numerical calculations through two 

invariants of the rate of deformation tensor, d  (Debbaut and Crochet 1988). These are denoted as: 

Shear-rate:  2 II  d      (10) 
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Strain-rate: 
III

3
II

  d

d

      (11) 

where, IId and IIId are the second and third non-zero invariants of the rate of strain tensor dik. For 

uniaxial extensional flow the invariant  reduces to the usual extensional strain-rate. Analogously, 

the invariant   reduces to the usual shear-rate in steady simple shear flow: 

21
II tr( )

2


d
d ,  III det( )d d .   (12) 

Analogous to results for N1, neither the shear or strain rate seem to be significantly affected by the 

increase in contraction ratio as shown in Fig. 7A(a,c) and Fig. 7B(a,c). Naturally, a major increase can 

be seen in Fig. 7A(b, d) and in Fig. 7B(b, d) both  shear and strain rate when increasing the flow rate 

going from 4:1 to 15:1 contraction ratio. The shear rate reached at the exit is prominent, and larger 

than that reached in strain rate. In Fig. 7A(e,f) the extensional viscosity is in the same range for all 

contraction ratios when the flow rate is kept constant, increasing by a tenfold towards the exit. 

However, this increase is negligible when introducing increasing flow rate which has a high impact on 

the extensional viscosity attained. Here, a nearly constant extensional viscosity is reached sooner, 

the higher the contraction rate (z≈5 for 15:1 and z≈7 for 8:1 contraction ratio).   

Finally, the epd (excess pressure drop defined above) is calculated and compared for three 

constitutive models in Fig. 9. Here, the flow rate was fixed for all contraction ratios. In contrast to the 

previous results, a clear influence of contraction ratio on epd can be detected for all constitutive 

models considered. There is an overall rise in epd for increasing deformation rate (De) in the low De-

range. In Fig. 9a, the epd for the Oldroyd-B model is shown (note, at an expanded De–scale), where 

the largest De-number reached was 15 (constrained by lack of finite-extensibility). For larger De-

numbers (De>15) either oscillation or divergence is encountered and no reliable results can be 

extracted. A smaller difference in epd can be seen between the 8:1 and 15:1 contraction (7% 

increase) options, than between the 4:1 and 15:1 contraction (50% increase).  

The FENE-CR model results are plotted in Fig. 9b, where there is initial epd-rise observed up to 

De~15, followed by a gradual tail-off to a limiting plateau level in the high De-range. The counterpart 

data for the shear-thinning LPTT model is provided in Fig. 9c, which displays a similar initial epd-rise, 

but now observed only up to De~2, where there is a pronounced overshoot, before proceeding to 

decline and again, gradually tail-off to a limiting plateau level in the high De-range.  In contrast to the 

FENE-CR results, this overshoot and fall with LPTT may be attributed to its additional shear-thinning 

property. Moreover, Oldroyd-B findings in the restricted low deformation-rate range (De≤2), are 

consistent with both those for FENE-CR and LPTT, bar the exaggerated low trend in epd noted with 

the 4:1 geometry. This is somewhat to be expected, as the differences in rheological properties 

between Oldroyd-B and FENE-CR within such a low deformation-rate range, are much closer. As 

expected, a higher level of epd is achieved for the larger contraction ratio for each model taken in 

turn. This is deemed to be due to the elevated deformation rates (and stress) generated in the larger 

contraction ratio instances. In addition, the epd-values for different sample points along the x-axis 

were compared and no significant change (0.2%) in epd was detected. On the contrary, the exit-

correction seems to have a major impact on the pressure drop. In this work, the exit condition is set 

to have zero reference pressure at the exit flow station in order to maintain fully-developed shear 
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flow conditions at the exit. In future work, it is intended to also test an alternative exit condition and 

to examine its influence; for example, to replace with a die-swell exit condition. 

4.1.2 Influence of rheology 

In order to segregate the shear and N1 effects, using the base-case 4:1 hyperbolic contraction 

configuration, a comparison across constitutive model solutions was performed. Under such a 

comparison the model parameters are adjusted and various competing factors on epd are analysed. 

The results from the constitutive model comparison are depicted in Fig. 10. The effect of elevating 

extensional viscosity (ηe) is studied through the increase of the L-parameter in the FENE-CR model, 

see Fig. 10a. The strong elevating effect on epd of increasing ηe is apparent in Fig.10a. For De>2, a 

strengthening of N1 can also be observed with rising L-parameter, see Fig.10c. However, the 

strengthening of N1 is not as pronounced as the strengthening of ηe.  

Next, the ε-parameter in the LPTT-model was varied from ε=0.01, to ε =0.042 and ε=0.05. As can be 

seen in Fig. 2, the extensional viscosity of the different ε-parameter levels in the LPTT model are 

matched to the different L-parameters in the FENE-CR model. However, there is a weakening in N1 in 

the LPTT-model compared to the FENE-CR model and there is a shear-thinning effect introduced into 

the LPTT-model. The level of shear-thinning remains practically unaltered for ε=0.042 and ε=0.05, 

while for ε=0.01 the shear-thinning effect is reduced. The onset of shear-thinning is also somewhat 

delayed to a De=1 for the ε=0.01.  From the findings in Fig. 10b, a decrease in epd-level is observed 

for increasing ε. Comparing ε=0.01 to ε=0.05 and ε=0.042, the decrease in epd can be explained 

through decreasing the limiting plateau level of extensional viscosity (ηe), weakening in N1 and 

increasing shear-thinning behaviour. Overall, an initial rise can be observed, followed by a monotonic 

decline for increasing De-numbers. Since ηe has reached a plateau at around De~30 for all 

parameters tested, the decline must be due to the decline in shear-viscosity with increasing De. The 

onset of shear-thinning is delayed for ε=0.01 compared to ε=0.042 and 0.05, reflected in the epd-

result with a delayed epd decline for ε=0.01.  Decreasing ε=0.05 to ε=0.042 results in a slightly lower 

epd-value. Here, the decrease in epd is due to ηe and N1 weakening. Thus, the level of shear-thinning 

has a larger effect on epd-levels, when compared to the influence of ηe level.  

Lastly, the models are compared in Fig. 10c. In addition to the FENE-CR and LPTT model, results for 

the Oldroyd-B model are also included. For the Oldroyd-B model the N1-dependence is quadratic 

with unbounded growth in extensional viscosity at a finite deformation-rate. This behaviour is 

reflected in the epd-results with a steep epd-increase for increasing De-numbers, confirming the 

elevating effect of ηe and a strong N1-dependance. Since the ηe level is matched between the FENE-

CR, L=5 and the LPTT model ε=0.042, the contra effect on the level of epd reached for the LPTT-

model may be attributed to shear-thinning effects (and so to N1 weakening also). Moreover, the level 

of epd reached for both these models is the same for De<1, that is before the onset of shear-

thinning. Thus, corresponding to the findings in Fig. 10b, the decline in epd may be unambiguously 

attributed to shear-thinning effects. These results are confirmed by the results presented by 

Tamaddon-Jahromi et al. (2011), showing a lowering of epd with ηe damping and an elevation due to 

N1 damping. Furthermore, the reduction in LPTT epd-data is shown to be primarily due to shear-

thinning effects. In conclusion it can therefore be assumed that there is a presence of shear effects in 

the HCF device, which should be taken into account during experimental measurement.  
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Next, N1 along the symmetry line and along the boundary wall is studied in Fig. 10d and Fig. 10e, 

respectively for De=5. Since the N1-dependence is the strongest for the Oldroyd-B model, the largest 

N1 is reached for the Oldroyd-B model. In Fig. 10d larger N1 is reached for the LPTT model along the 

symmetry line in contrast to the boundary wall, where larger N1 is attributed to the FENE-CR result. 

4.1.3 Influence of fluid - Adjustment of solvent-fraction β 

Effect of fluid composition can also be studied through the variation of solvent fraction (β), and its 

impact on pressure drop at fixed flow rate. Here, the results for two different solvent fractions, β=0.9 

(high solvent contribution, as with typical Boger fluids) and β=1/9 (high polymeric contribution) are 

presented in Fig. 11, where also a comparison between different models is performed (with a zoom 

for low rates).  For all three models tested, a lower β-factor (increase in polymeric content) produces 

considerably steeper epd-rise. The critical De-number reached for β=1/9 was Decrit=1 for the Oldroyd-

B model; Decrit=3 for the FENE-CR model; and Decrit=2 for the LPTT model. With β=1/9 and over such a 

restricted deformation-rate range, the three model epd-solutions are comparable, reflecting 

common low deformation-rate rheology.  Considering the adjustment in solvent fraction from β=1/9 

to β=0.9, firstly one notes the consistent decline in epd-level in all three models, associated with the 

order of magnitude reduction in polymeric component stress levels. Secondly, whilst focusing on the 

epd-data(β=0.9) and De≤50, one identifies the deviation, form and curve-intercepts apparent in the 

results. The deviation between the FENE-CR and the LPTT epd-data(β=0.9) is now enlarged from the 

(β=1/9)-status, onset at De~2 and sustained by De~10.  Here, decreasing polymeric contribution from 

β=1/9 to β=0.9, has lessened the impact of shear-thinning; so greater departure between the FENE-

CR and LPTT epd-data(β=0.9) at these larger rates must be associated with their increased disparity in 

N1-weakening (extensional effects are matched). In contrast, the Oldroyd-B epd(β=0.9) result is also 

revealing. Its sharp epd-rise for De≥15 (divergence above De=18), may be strictly inferred from the 

FENE-CR result and intercept, to be associated with its unbounded extensional viscosity response 

(extensional stress effect). Tracing backwards in decreasing De, the intercepts between the Oldroyd-

B epd(β=0.9)-curve, and first that for FENE-CR(De~11), and subsequently for LPTT(De~9), indicate in 

each case the precise switch-over stage at which epd is dominated by extensional stress influence, as 

opposed to stress from shear deformation. 

4.2 Experimental results  

Experimental results were performed on the hyperbolic contraction flow device (HCF) in order to 

evaluate the numerical predictions. Two different model fluids, a Newtonian and a Boger, were 

developed and the characteristics of these fluids are summarized in Table 5. Measurement of a 

Newtonian fluid through the hyperbolic contraction flow was performed to serve as a baseline for 

comparison of the non-Newtonian test fluids. In Fig. 12 the rheological properties from shear 

viscosity measurements for the model fluids are represented. As can be observed, the shear and 

dynamic viscosity of the Boger fluid are almost constant over several decades of shear-rate and at 

the same level as the Newtonian fluid. From determination of the first normal stress coefficient, one 

can observe that the Boger fluid is elastic, unlike the Newtonian fluid, which shows little normal 

stress development. Since the viscosities of the Newtonian and Boger fluids are set at the same level, 

the elastic effects of the Boger fluid can be isolated. The elastic properties were studied through 

measurements in the HCF device of both fluids and findings are presented in Fig. 13 and Fig. 14. 

Measurements were performed on two different contraction ratios: 15:1 and 10:2.15 (≈4:1). 

However, due to the low shear viscosity of the Boger fluid, the measured load with the 4:1 nozzle 
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was too low to be differentiated from the background noise detected. In Fig. 13 pressure drops for 

increasing flow rates are reported at ambient temperature of T=20OC. Taking error-bars into account, 

the steepest slope can be observed for the Boger fluid, initially linear and at higher rates, with 

ascending deviation from the linear relationship. As anticipated, the Newtonian pressure drop is 

linearly proportional to the volumetric flow rate, and here, close agreement is established between 

experimental measured values and those numerically predicted; for the Boger fluid, with more 

dramatic larger pressure drops recorded, the position is somewhat similar, noting the error-bar 

indication on the experimental reading at the largest flow rate taken. For comparison extensional 

measurement were also performed with a capillary break-up extensional rheometer (CaBER). The 

maximum Hencky strain attained was 1.46 and the relaxation time of the Boger fluid was determined 

to be 1.40 s.  

In Fig. 14 the dimensionless excess pressure drop for increasing De-numbers are reported for the 

Boger fluid measurement through the 15:1 contraction ratio. The dimensionless pressure drop from 

the experiments are calculated by dividing the measured pressure drop of the Boger (ΔPB) with the 

results of the Newtonian fluid (ΔPN) at any given flow rate; thus the pressure drop will be a measure 

of the elasticity. In the absence of elasticity (De->0) this pressure drop measure should tend to unity, 

and the more elastic the Boger fluid, the higher the dimensionless pressure drop. Gathered from Fig. 

14, the Boger fluid pressure drop is observed to lie well above the Newtonian reference line, 

indicating that the HCF is able to detect the elastic contribution of the Boger fluid. Furthermore, the 

pressure drop approaches unity for De->0. De=7 was the highest Deborah number attained in the 

experiments due to the practical limitation in measurement with the load cell. Numerical predictions 

with the FENE-CR model are also included in Fig. 14 with varying L-parameter. This comparison 

clearly indicates strong correlation between the predictions, with L=3 and L=5 settings, and the Boger 

experimental results, providing a tight window of capture of the experimental pressure drop data. In 

particular, one notes the close agreement at larger flow-rates equivalent to De>4, against the L=5 

setting. Overall, such findings demonstrate that the hyperbolic contraction flow is well capable of 

detecting elastic properties of the fluid and that numerical simulations are indeed able to evaluate 

the flow response of such test fluids (Stading and Bohlin 2000, 2001). Beneficially, the hyperbolical 

contraction flow technique is straightforward and simple to perform - the Hencky strain can be set by 

changing contraction ratio, non-homogenous fluids can be tested, and one can directly determine 

the degree of elastic behaviour of the fluid. However, the lower the fluid shear-viscosity, the harder it 

becomes to extract accurate data, and where fluctuations of the measured loads may be 

encountered. As a consequence, the current measuring range for the pressure drop is limited to that 

equivalent for the load cell. 

5. Conclusion 

In this study, the hyperbolic contraction flow method (HCF) has been evaluated by means of both 

numerical prediction and experimental measurements. Numerical solutions have been analysed for 

steady-state, viscoelastic flow through three different hyperbolic nozzles with different contraction 

ratios. Through various choices of constitutive model, the influence of shear and normal stress 

differences on such flows has been studied. The numerical results have also been compared to 

experimental measurements on corresponding model fluids at the highest contraction ratio. On 

correcting the measured pressure drop, by subtraction of the exit and entry pressure drop 
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contributions (excess pressure drop), a more realistic measure of the elastic properties has been 

achieved. The numerical predictions are shown to reflect the complex flow in the contraction and 

predict the increase in pressure drop with increasing deformation rate. The predictions show an 

influence of shear on the pressure drop, but it is still relatively small. Similar trends have been shown 

between the numerical predictions and experimental results, but the increase in predicted pressure 

drop was not as strong as detected within the experiments.  

The numerical results presented in this paper show a minor influence of shear in the flow through 

the hyperbolical nozzle.  Still, analysing the pressure drop over the contraction nozzle for the LPTT-

model, a decline in pressure drop is observed through the hyperbolic contraction, which indicates an 

influence of shear in the flow. By increasing the contraction ratio, a higher extensional deformation 

was achieved, but also a higher influence of shear, revealing vortex formation for the highest 

contraction ratio. Vortex formations tend to lower the level of excess pressure drop (epd). This 

decline is, however, not as pronounced as in an abrupt 90O-corner contraction; nevertheless, it 

should be taken into account and compensated for during measurement.  

The numerical predictions were compared to experimental data for a Boger and a shear-thinning 

model fluid through the 15:1 contraction. Compared to the Newtonian model fluid findings, the 

elastic Boger fluid showed a clear increase in pressure drop, confirming that the measuring system 

can indeed effectively detect the extensional properties for such a test fluid. Moreover, this finding 

lies in close agreement with the numerical predictions, which provide a tight window of capture of 

the Boger experimental pressure drop data. This result has demonstrated that the hyperbolic 

contraction flow is indeed able to detect such elastic fluid properties, and that numerical predictions 

are well able to evaluate the flow response of the test fluids, as required. Moreover, the hyperbolical 

contraction flow technique is straightforward and simple to perform - the Hencky strain can be set by 

changing contraction ratio, non-homogenous fluids can be tested and one can directly determine the 

degree of elastic behaviour of the fluid. For the shear-thinning fluid, which lies in contrast to the 

constant-viscosity Boger fluid, a decline in pressure drop could also be observed.  This decline 

indicates a counteracting suppressive and negative influence of shear-thinning on the pressure drop, 

which again, is in agreement with numerical predictions As such, these numerical predictions can 

thus be utilized to calculate a correction for shear. The predictions have also shown that the 

Binding/Bohlin correction for shear influence is a reasonably good approximation for highly shear-

thinning fluids, but inadequate for fluids without strong shear-thinning behaviour.  

Other major findings from this work may be summarised concisely as follows: 

(i) A higher level of epd is achieved in larger contraction ratio instances, due to elevation in 

deformation rate. 

(ii) It is apparent that increasing ηe has a strong elevating effect on epd. Yet, the level of 

shear-thinning has a larger effect on epd-levels, when compared to the influence of ηe 

level. 

(iii) With all three constitutive models tested (Oldroyd-B , FENE-CR and LPTT), a lower solvent 

fraction (β-factor, increase in polymeric content) produces considerably steeper epd-rise. 

As such, consistent decline in epd-level is observed with adjustment in solvent fraction 

from β=1/9 to β=0.9.  
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(iv) The intercepts between the Oldroyd-B epd(β=0.9)-curve, and first that for FENE-

CR(De~11), and subsequently for LPTT(De~9), indicate in each case, respectively, the 

precise switch-over stage at which epd is dominated by extensional normal-stress 

influence, as opposed to that from shear normal-stress influence. 
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 Table 1. Material constants of the constitutive models: β 

denotes the solvent fraction, ε is the model parameter of the 

LPTT model and L denotes the extensibility parameter in the 

FENE-CR model 

Table 2. Rheometrical functions; shear viscosity ( )  , extensional viscosity e ( )  , and first normal stress 

difference 1( )  . 
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Model fluid Polymer Solvent 

Newtonian fluid - 6 % water in 

glucose syrup 

Boger fluid 500 ppm 

PAA 

6 % water in 

glucose syrup 

 

 

 

Geometry r0 [ 

mm] 

r1 [mm] H [mm] εH 

1 10 2.15 15 ≈ 1.54 

2 15 1 30 ≈ 2.71 

 

 

 

 

Model fluid Zero Shear 

viscosity η 

[Pas] 

Shear-

thinning 

factor 

Power law index 

n 

[dimensionless] 

Flow 

consistency 

index K [Pa∙sn] 

Relaxation 

time λ [s] 

Newtonian 

fluid 

6.4 1 1 6.6 - 

Boger fluid 8.0 0.9 1 7.9 1.40 

      

 

 

 

 

 

 

Table 3. Characteristics of the model fluids 

Table 4. Geometry dimensions, where r0 is the inlet and r1 is the 

outlet radius, H is the length of the contraction region and εH 

denotes the total Hencky strain 

 

Table 5. Rheological properties of test samples 
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Fig. 1. Triangular mesh discretisation for axisymmetric hyperbolic:  a) 4:1 contraction, b) 8:1 

contraction c) 15:1 contraction with nozzle lengths of 15  
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Fig. 2. Material functions: a) shear viscosity (η), b) extensional viscosity (ηe) , c-e) first normal stress 

difference (N1) for different constitutive models 
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Fig. 3. Schematic diagram of the Hyperbolic Contraction Flow (HCF) 



 
 

27 

 

 

 

a)

De = 0.1

b)

De = 5.0

c)

De = 0.1


peak

= 0.00008

d)

De = 5


peak

= 0.00008

 

e)

De = 0.1


peak

= 0.012
1.0

f)

De = 5.0


peak

= 0.012
2.7

 

 

g)

De = 0.1


peak

= 0.00001

h)

De = 5.0


peak

= 0.0002
2.58
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Fig. 5. Contour plots for FENE-CR, L=5, De=5 model of radial stress and axial normal stress 
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Fig. 7A. In extension, z along symmetry centreline: First normal stress difference 1( )  , strain 

rate   and extensional viscosity ( )   are displayed, for three different contraction ratios; 

fixed flow rate (a,c,e) and increasing flow rate (b,d,f); FENE-CR(L=5) 
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Fig. 14. Total Pressure drop versus prediction, with increasing Deborah numbers, measured 

for a Boger fluid (experimental) through 15:1 contraction, and FENE-CR (L=3, 5, 10)  

 

Fig. 13. Pressure drop with increasing volumetric flow rate (Q) for Newtonian (■) and Boger 

fluid (●) through 15:1 contraction ratio, together with numerical Newtonian and FENE-CR, 

L=5 prediction (dashed lines) 
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