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Abstract

By using the local dimension-free Harnack inequality established on incomplete
Riemannian manifolds, integrability conditions on the coefficients are presented for
SDEs to imply the non-explosion of solutions as well as the existence, uniqueness and
regularity estimates of invariant probability measures. These conditions include a class
of drifts unbounded on compact domains such that the usual Lyapunov conditions can
not be verified. The main results are extended to second order differential operators
on Hilbert spaces and semi-linear SPDEs.

AMS subject Classification: 60H15, 60J45.
Keywords: Non-explosion, invariant probability measure, local Harnack inequality, SDE,
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1 Introduction

In recent years, the existence and uniqueness of strong solutions up to life time have been
proved under local integrability conditions for non-degenerate SDEs, see [6, 25, 22, 44, 45|
and references within. See also [14, 15, 16, 39, 41, 42] for extensions to degenerate SDEs and
semi-linear SPDEs.

As a further development in this direction, the present paper provides reasonable integra-
bility conditions for the non-explosion of solutions, as well as the existence, uniqueness and
regularity estimates of invariant probability measures. An essentially new point in the study
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is to make use of a local Harnack inequality in the spirit of [32]. With this inequality we are
able to prove the non-explosion of a weak solution constructed from the Girsanov transform,
see the proof of Lemma 3.1 below for details. Moreover, we use the hypercontractivity of the
reference Markov semigroup to prove the boundedness of a Feyman-Kac semigroup induced
by the singular SDE under study, which enables us to prove the existence of the invariant
probability measure as well as a formula for the derivative of the density, see (4.3) and the
proof of Lemma 4.2 below for details. To explain the motivation of the study more clearly,
below we first recall some existing results in the literature, then present a simple example
to show how far can we go beyond.

Let W, be the d-dimensional Brownian motion on a complete filtration probability space
(2, F ,{F:}+>0,P). Consider the following SDE (stochastic differential equation) on R¢%:

(1.1) dX, = b(X,)dt + V20 (X,)dW,,

where b : R? — R? is measurable and o € W (R? — R?®R?; dz) such that () is invertible
for every x € R%. According to [45, Theorem 1.1] (see also [6, 25, 22, 44] for earlier results),
if |b] + ||Vo|l € L .(dz) for some p > d, then for any initial point z the SDE (1.1) has a
unique solution (X7 )ejo,c=y up to life time ¢(*. We note that in [45] the global integrability
and the uniform ellipticity conditions are assumed, but these conditions can be localized
since for the existence and uniqueness up to life time one only needs to consider solutions

before exiting bounded domains. On the other hand, the ODE

does not have pathwise uniqueness if b is merely Holder continuous (for instance, d = 1 and
b(x) := |z|* for some a € (0,1)). So, the above result on SDE indicates that the Brownian
noise may “regularize” the drift to make an ill-posed equation well-posed.

Next, sufficient integrability conditions for the non-explosion have also been presented in
[44]. For instance, if o is bounded and

(1.2) || < C+ F for some constant C' > 0 and F' € LP(dx) for some p > d,

then the solution to (1.1) is non-explosive. As the Lebesgue measure is infinite, this condition
is very restrictive. So, one of our aims is to replace it by integrability conditions with respect
to a probability measure, see Theorem 2.1 and Corollary 2.2 below.

We would like to indicate that when the invariant measure p is given, there exist criteria
on the conservativeness of non-symmetric Dirichlet forms, which imply the non-explosion of
solutions for p-a.e. initial points, see [31] and references within. However, in our study the
invariant probability measure is unknown, which is indeed the main object to characterize.
In general, to prove the existence of invariant probability measures one uses Lyapunov (or
drift) conditions. For instance, if there exists a positive function W; € C?(R%) and a positive
compact function W5 such that

[eS) d
(13) LW1 = Z(Ucr*)ij&-ajwl + Z b,@le S C - WQ
i,7=1 =1
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holds for some constant C' > 0, then the associated diffusion semigroup has an invariant
probability measure p with u(Ws) < C, see for instances [23, 8, 10, 12]. Obviously, this
condition is not available when b is unbounded on compact sets. Our second purpose is
to present a reasonable integrability condition for the existence and uniqueness of invariant
probability measures, which applies to a class of SDEs with locally unbounded coefficients.

Moreover, we also intend to investigate the regularity properties of the invariant proba-
bility measure. Recall that a probability measure z on R? is called an invariant probability
measure of the generator L (denoted by L*u = 0), if

(1.4) u(Lf)i= [ Lfdu=0. feCr®,

Obviously, an invariant probability measure p of the Markov semigroup P, associated to (1.1)
satisfies L*u = 0. In the past two decades, the existence, uniqueness and regularity estimates
for invariant probability measures of L have been intensively investigated in both finite
and infinite dimensional spaces, see the survey paper [8] for concrete results and historical
remarks. Here, we would like to recall a fundamental result on the regularity of the invariant
probability measures. Let T, (dx) be the class of functions f € L}, (dx) such that

loc
» f(z)(divG)(z)dx = — /Rd<G, F)(z)dz, G e CPR—RY)

holds for some F € L} (RY — R% dx), which is called the weak gradient of f and is denoted

loc

by F' =V f as in the classical case. For any p > 1, let
WP (dz) = {f € Wy, (dz): f,|Vf] € LP(dx)}.

oc

Consider the elliptic differential operator L := A + b -V on R? for some locally integrable
b: RY — R It has been shown in [9] that any invariant probability measure p of L with
11(]b]?) == [ra [b]?dp < 00 has a density p := S such that /p € W?!(dz). In addition,

1
(1.5) / ]V\/ﬁ|2dx§—/ b2 dp.
Rd 4 R4

Since the invariant probability measure p of L is in general unknown, the integrability
condition p(|b|?) < oo is not explicit. As mentioned above that to ensure the existence of
p one uses the Lyapunov condition (1.3) for some positive function W; € C%(R?) and a
compact function Ws, and to verify u(]b]*) < oo one would further need [b]* < ¢ + W,
for some constant ¢ > 0. As we noticed above that these conditions do not apply if the
coefficients merely satisfy an integrability condition with respect to a reference probability
measure.

In conclusion, we aim to search for explicit integrability conditions on b and o with respect
to a nice reference measure (for instance, the Gaussian measure) to imply the non-explosion
of solutions to the SDE (1.1); the strong Feller property of the associated Markov semigroup;
the existence, uniqueness and regularity estimates of the invariant probability measure. We
also aim to extend the resulting assertions to the infinite-dimensional case.
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The main results of this paper will be stated in Section 2. Their proofs are then presented
in Sections 3-6 respectively. Finally, in Section 7 we present a local Harnack inequality which
plays a crucial role in the study.

To conclude this section, we present below a simple example to compare our results with
existing ones introduced above.

Example 1.1. Consider, for instance, the following SDE on R%:
dX, = {Z(X,) — N X Yt +V2dW,,

where \g € R is a constant and Z : R* — R? is measurable.
(1) By Theorem 2.1 below for ¢(x) = |z|, if

(1.6) / 12@F="1eP qp < 00 for some e € (0, 1),
Rd

then for any initial value the SDE has a unique strong solution which is non-explosive,
and the associated Markov semigroup P; is strong Feller with a strictly positive density.
Obviously, there are a lot of maps Z satisfying (1.6) but (1.2) and the Lyapunov condition
does not hold. For instance, it is the case when

00 0
(1.7) Z(x) = l‘g{ Zlog(l + |z — nx0|_1)}
n=1
for some zy € R* with |zo| = 1 and 6 € (0, 1].
(2) When Ao > 0, we let po(dz) = Ce=F1*Pdz be a probability measure with normal-
ization constant C' > 0. It is well known by Gross [21] that the log-Sobolev inequality in
Assumption (H1) holds for k = /\lo and 8 = 0. By Theorem 2.3, if

1
(1.8) / NZ@P=F1eP 4z < 00 for some A > —,
R4 2/\0

then P, has a unique invariant probability measure pu(dz) = p(x)dz such that

A 2
\V4 2) « 0 A Z|
/’LO(| \/IB| ) — 4)\A0_210gl’1/0(e ) < 00,

1o (1V log p|”) < ol 2P) < oc.

Obviously, for any 6 € (0, %), condition (1.8) holds for Z defined by (1.7), but the Lyapunov
condition (1.3) is not available.

2 Main results

In the following four subsections, we introduce the main results in finite-dimensions and their
infinite-dimensional extensions respectively. To apply integrability conditions with respect
to a reference measure py, we regard the original SDE as a perturbation to the corresponding
reference SDE whose semigroup is symmetric in L2 ().
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2.1 Non-explosion and strong Feller for SDEs

Let 0 € C*(R? — RY‘®@R?) with o(z) invertible for z € R? and denote a = 00* = (a;;)1<i j<a-
For V € C?(R%), define

d

ZO = Z{ajaij — aijﬁjV}ei,
1,7=1

(2.1) ) )
LO = tI‘(GVQ) + ZO -V = Z Gijaiaj + Z<Zo, ei>8¢,

i,j=1 i=1

where {e;}¢, is the canonical orthonormal basis of R?, and 9; is the directional derivative
along e;.
By the integration by parts formula, Lo is symmetric in L?(jg) for po(dz) := e V@ dax :

to(fLog) = —po((aV £, Vg)), f.g€ CFRY.

Then
(gaO(f7 g) = MO((anv Vg))? fag € Hg,l(MO)

is a symmetric Dirichlet form generated by Ly, where H>'(u) is the closure of C§°(R?)
under the norm

1112y = {101+ 10"V f[2)} 2.

When o = I (the identity matrix), we simply denote H>' (o) = H**(po).
Let W; be the d-dimensional Brownian motion as in Introduction. Consider the reference

SDE
(2.2) dX; = Zo(X,)dt + V20 (X,)dW,.

Since o and Z are locally Lipschitz continuous, for any initial point x € R¢ the SDE (2.2)
has a unique solution X7 up to the explosion time ¢®. Let P? be the associated (sub-)Markov
semigroup:

P f(z) = E{licesn f(X])}, f € Bp(RY),t >0, € R
When pio(dz) := eV ®dz is finite and 1 € H>' (1) with &(1,1) = 0, we have P°1 = 1 y-
a.e. Since PP1 is continuous (indeed, differentiable) for ¢ > 0, we have P’1(z) = 1 for all
t > 0 and x € R% Therefore, in this case the solution to (2.2) is non-explosive for any initial

points. By the symmetry of PP in L?(ug), po is PP-invariant.
Now, for a measurable drift Z : R? — R?, we consider the perturbed SDE

(2.3) AX, = {Z + Zo}(X))dt + V20 (X;)dW,.

By Ito’s formula, the generator of the solution is L := Lo+ Z-V. According to [45, Theorem
1.1], if | Z| € L} (dx) for some p > d, then for any initial point x € R?, the SDE (2.3) has a

loc

unique solution X7 up to the life time ¢*. We let P; be the associated (Dirichlet) semigroup:
Pf(z) = E[l{t«w}f(Xf)}) zeRYE>0,f € BRY).
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If P(C* = 00) = 1 for all z € R? the solution is called non-explosive. In this case P; is a
Markov semigroup. More generally, for any non-empty open set & C R, let

T; =C¢" ANinf{t € [0,¢") : X7 ¢ 0}, inf() := co.
Then the associated Dirichlet semigroup on &' is given by
Pl f(x) =E[lyersy f(X])], z€0,t>0,f € B(0).
Let p, be the intrinsic metric induced by o as follows:

po(z,y) == sup {|f(z) = f(y)|: feCPRY),|o*Vf| <1}, xy R
We have the following result.

Theorem 2.1. Let 0 € C*(R? — R? @ R?Y) with o(x) invertible for v € RY, and let V €
C?*(RY) such that

(2.4) / <|0*Vw(:c)!2 + e€|("_1z)(x)‘2)e*V(x)*E_lp"(O’x)de < 00
Rd

holds for some constant ¢ € (0,1) and a local Lipschitz continuous compact function 1 on
R?. Then (2.3) has a unique non-explosive solution for any initial points, and the associated
Markov semigroup P, is strong Feller with at most one invariant probability measure. More-
over, for any non-empty open set 0 C R and t > 0, P/ is strong Feller and has a strictly
positive density p¢ with respect to the Lebesque measure on O.

Remark 2.1. (1) Typical choices of ¢ include |z|,log(1+4|z|), log log(e+|z|)... For instance,

with 9 (z) := loglog(e+|z|) one may replace the term |o*V)(z)|? in (2.4) by (e+\a:|)|2|?1(:g)(‘f+|:c|)}2'

So, if V =0 and [, e () dz < co for some A > 0, the condition (2.4) holds provided

lo|”

(e+]-)*{log(e +[-[)}

for some constant C' > 0 and some function f with e/~ '#+(0)* ¢ L1(dz) for some ¢ € (0,1).
(2) Let o(r) = supy,—, [|o(x)]| for r > 0. Then

log 5 + 1ot Z2 < C(1+ ps(0,)* + f

o gy
ps(0,2) > Ul(x) ::/0 %, r € R

So, in (2.4) we may replace p,(0,-) by the more explicit function U.

(3) The condition o € C?*(R? — R? ® R?) is stronger than o € W2 (R? — R? @ R?; dx)
for some p > 1 as required for the existence and uniqueness of solutions according to [45,
Theorem 1.1]. This stronger condition is introduced because it together with the invertibility
of o implies the local Harnack inequality (see Theorem 7.1 below), which is a crucial tool
in our study. If the local Harnack inequality could be established under weaker conditions,

6



this condition would be weakened automatically. Indeed, under an additional assumption,
this condition will be replaced by o € I/Vf;cl (R? — R ® RY; dr) for some p > 1, see Theorem
2.4 below for details.

Intuitively, the non-explosion is a long distance property of the solution. So, it is natural
for us to weaken the integrability condition (2.4) by taking the integral outside a compact
set. But under this weaker condition we are not able to prove other properties included in
Theorem 2.1.

Corollary 2.2. Let 0 € C*(R? — R? ® R?) with o(x) invertible for x € R%, and let
V € C*(R?) such that

(2.5) / (IJ*V@D(x)P + eel(“ﬂz)(””)‘Q)e_v(”")_aflp"(o’xﬁdx <00
DC

holds for some compact set D C RY, some constant ¢ € (0,1), and some local Lipschitz
continuous compact function 1 on Rd If Z € LY (dz) for some constant p > d, then the
SDE (2.3) has a unique non-ezxplosive solution for any initial points.

2.2 Invariant probability measure for SDEs

To investigate the invariant probability measures for the SDE (2.3), we need the non-
explosion of solutions such that the standard tightness argument for the existence of in-
variant probability measure applies. To this end, we will apply Theorem 2.1 above, for
which we first assume that o is C%-smooth (see (H1) below) then extend to less regular o
by approximations (see (H1") below).

Assumption (H1)

(1) ¢ € C*(R? —» R? ® R?) with o(x) invertible for z € RY, V € C?(R%) such that
po(dz) := e~V@dx is a probability measure satisfying

(2.6) H2 (110) = Wt (o) == {f € Wi (dz) = f,]0"Vf| € L*(uo) }.

loc
(2) The (defective) log-Sobolev inequality

(2.7) po(f2log f2) < kpo(|o*V 1) + 8, [ € CFRY), po(f?) =1
holds for some constants x > 0, 5 > 0.

Since pig(dz) := e~V @ dx is finite, (2.6) implies 1 € H*! (o) with &(1,1) = 0, so that the
solution to (2.2) is non-explosive as explained above. We note that (2.6) holds if the metric
po is complete. Indeed, in this case the function p, (0, -) is compact with |0*Vp,(0,-)| = 1,
so that for any f € I/V2 (o) we have f, .= f{1A(n+1—p,(0,-)"} € H> (o) for n > 1,
and it is easy to see that f, — f in the norm [| - || 2.1,

7



There are plentiful sufficient conditions for the log-Sobolev inequality (2.7) to hold. For
instance, if co* > ol and Hessy > K for some constants «, K > 0, then the Bakry-Emery

criterion [5] implies (2.7) for k = % In the case that K is not positive, the log-Sobolev

inequality holds for some constant x > 0 if y19(e* ) < oo for some € > —%, see [36, Theorem
1.1]. See also [13] for a Lyapunov type sufficient condition of the log-Sobolev inequality.

Theorem 2.3. Assume (H1) and that

(2.8) pio (M7 21 ::/ MNP 4y < 0

Rd
holds for some constant \ > %. Let P, be the semigroup associated to (2.3), and let L =
Lo+ Z -V for Ly in (2.1). Then:

(1) L has an invariant probability measure p, which is absolutely continuous with respect to
Lo such that the density function p == 3 is strictly positive with VP, logp € H2 (1)

duo
and
* 1 o
(2.9) 1o (|o*V/p?) < o /<;{ log pio(eMe 27 + B} < oo;
. ) c*V 2 3
(2.10) po(|o*V log p|?) := lim oVl dpo < po(lo™'Z%) < 0.

510 Jga (p+06)?
(2) The measure u is the unique invariant probability measure of L and P, provided

(2.11) 110(e°1°1*) < oo for some constant & > 0.

Remark 2.2. (1) Simply consider the case that ¢ = o0y = I. If Hessy > K for some
K > 0, then (H1) holds for kK = 2 and 8 = 0. So, when po(e*?”") < 0o holds for some

K
A > %, Theorem 2.3 implies that L and P, have a unique invariant probability measure u,
which is absolutely continuous with respect to i, and the density function satisfies p 1= -G

dpo
satisfies \/p, logp € H*'(po) with

K 2
1o(|V/pl?) < mbguo(e”m ) <00, po(|V1ogpl?) < po(|Z]7) < oo.
(2) Under (H1), if the super log-Sobolev inequality

po(f2log f2) < ruo(|o*V 12 + B(r), r>0,f € CERY), uo(f?) =1

holds for some 3 : (0,00) — (0,00), then Theorem 2.3 applies when (2.8) holds for some
A > 0, and in this case (2.9) reduces to

uo(|o*Vy/p?) < inf !

T A>0,,€(0,40) AN — 71

{log A B(r)} < oo.
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According to e.g. [28, Theorems 2.1(1) and 2.3(2)] for M = R? the super log-Sobolev
inequality holds provided a > ol for some constant a > 0 and Hessy is bounded below with
w(eM?) < oo for any A > 0. In particular, it is the case when a = I,V (z) = ¢; + co|z|? for
some constants ¢; € R, ¢y > 0 and p > 2. See [18, 21, 35| and references within for more
discussions on the super log-Sobolev inequality and the corresponding semigroup property.

(3) To illustrate the sharpness of condition (2.8) for some A > %, let us consider o =
oo = I and V(z) = ¢ + 3|z|?* for some constant ¢ € R, so that (H1) holds for £ = 2 and
f=0. Let Z(z) = re = 5V| - [*(x) for some constant r > 0. It is trivial that L has an

invariant probability measure if and only if » < 1, which is equivalent to jo(e?? |2) < oo for

K1
some)\>4—2‘

Now, we extend Theorem 2.3 to less regular ¢ by using the following assumption to
replace (H1).

Assumption (H1')

(1) 0 € WPHR? - R @ R% dz) for some p > d, o(z) is invertible for every z € RY, and

loc
a:=oo* > ol for some constants o > 0.

(2) V € C?(R?) such that j(dz) := eV @) dz is a probability measure satisfying (2.6) and

(2.12) po(f2log f2) < K uo(IVFI?) + 8, f e CRY), po(f*) =1
for some constants ' > 0,5 > 0.

(3) There exists a constant p > 1 such that a;; € H*'(ug) N L* () for any 1 < 4,5 <d
2p
and |VV| € L1 ().
Let L and P, be in Theorem 2.3 associated to the SDE (2.3).

Theorem 2.4. Assume (H1') and let pio( exp[A|Z]*]) < oo hold for some A > %. Then L
and P, have a unique invariant probability measure p(dz) := p(x)uo(dz) for some strictly
positive function p such that \/p, logp € H*'(pg) with

1 2
2.13) o (19 /A?) < i {Tog o ("7F) + 5} < o0
4ol — Kk
2 . |VP|2 1 2
. = < — .
(2.14) Ho(|V log p*) = lim i (p o) B0 s —ahol|Z]7) < o0

2.3 Elliptic differential operators on Hilbert spaces

We first consider the invariant probability measure of second order differential operators on a
separable Hilbert space, then apply to semi-linear SPDEs. We will take a Gaussian measure
as the reference measure.



Let (H, (-,-),|-|) be a separable Hilbert space, let (A, Z(A)) be a positive definite self-
adjoint operator on H having discrete spectrum with all eigenvalues (0 <)\ < Ap <
counting multiplicities such that

(2.15) d N <o
=1

Let {e;};>1 be the corresponding eigenbasis of A. Let 1o be the Gaussian measure on H with
covariance operator A~'. In coordinates with respect to the basis {e;};>1, we have

ad N el
(2.16) po(dx) = H “em 2 day ), = {me),i > 1.
i=1 ( V2 >

For any n > 1, let H,, = span{e; : 1 <i < n} and define the probability measure

p$ (dz) = ﬁ(\/ﬁ )on HL,,.

We have ,ué") = pg o m, ! for the orthogonal projection 7, : H — H.,.

Let (Z(H),| - ||) be the space of bounded linear operators on H with operator norm
| - ||, and let Z;(H) be the class of all symmetric elements in .Z(H). For any a € Z;(H) let
a;; = (ae;, e;) for i,5 > 1. We make the following assumption.

Assumption (H2)
(1) aij € C*(H) for i,j > 1, and a > al for some constant a > 0.

(2) For n > 1 and o, := \/(aij)1<i,j<n, H2 (1 W“( ) holds.

(3) For any ¢,j > 1, there exists ¢;; € (0, 1) such that

(2.17) sup/ exp [5ij\aij|1+5ij]du(()n)

n>1

We note that
/ €xp [gijlaij|1+€ij}du(n) /HeXp [5ij|aij © 7Tn|1+€”]d/v00~

As mentioned above that H>! (ugn)) W2 ”)) is implied by the completeness of the
metric on R™ induced by o, and the later holds if for any 4,7 > 1 there exists ¢;; > 0 such
that

1
(2.18) |%uﬂ§;ﬂ+mw,xeﬂ

]
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The condition (2.17) will be used for finite-dimensional approximations in the end of the
proof of Theorem 2.5(1) below. According to (2.15) and the definition of ,ué”), the conditions
(2.17) and (2.18) hold provided for any 7, j > 1 there exists a constant }; € (0,1) such that

Jai ()] < o (1+!x|)”5 :
Let 0; be the directional derivative along e;,7 > 1. For a measurable drift Z : H — H,
consider the operators

(219) L= L() + Z - V, LO = Z <aij8iaj + {@-aij — aij)\j}&'),
ij=1
which are well defined on the class of smooth cylindrical functions with compact support:
eggcgo = {H 2T = f(<x7€1>7"' ><x7€n>) tno2 17f S Cgo(Rn>}

It is easy to see that Lg is symmetric in L*(j):

to(fLog) = —po((aV £, Vg)), f,g€ FC.

Let H*'(pp) be the completion of .ZCg° with respect to the inner product

(f, 9 r21(u0) = 10(f9) + o((V f, Vg)).

A probability measure p on H is called an invariant probability measure of L (denoted by
L*u = 0), if for any f € FC§° we have Lf € L'(u) and pu(Lf) = 0.

Theorem 2.5. Assume (2.15) and (H2)

(1) If pio(eMN??) < o0 for some > 5vo3, then L has an invariant probability measure pu,
which s absolutely continuous wzth respect to g, and the density function p = iﬁ‘o

satisfies \/p, logp € H*'(po) with

A
2 Ho([VVAL) < gy =g ogm(@ ) < oo
and
7 2

(2) If moreover ||a||s < 00, then (L, FCg®) is closable in L*(1) and the closure generates
a Markov Cy-semigroup Ty on L'(p) with p as an invariant probability. Moreover,
there exists a standard Markov process {Px}eru{@} on H U {9} which is continuous
and non-explosive for &*-q.e. x, such that the associated Markov semigroup P; is a
p-version of Ty; that is, Pif = Tif p-a.e. for allt >0 and f € %B,(H).
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For readers’ convenience, we would like to recall here the notion of standard Markov
process involved in Theorem 2.5(2). Let 0 be an extra point and extend the topology of H
to HU {0} by letting the set {0} open. A family of probability measures {P;},cnuay on

Q= {w:[0,00) > HU {0} :if w; = O then w, = 9 for s >t}

equipped with the o-field % = o(w; : t > 0) is called a standard Markov process, if
P.(wp = ) = 1 and the distribution P,(x,dy) of Q@ > w — w; under P, gives rise to a
Markov transition kernel on H U {0}. When the process is non-explosive, i.e.

P, (inf{t >0:w, =0} =00) =1, z€H,

the sub-family {P, },em is a standard Markov process on H. In this case, the process (or the
associated Markov semigroup F;) is called Feller if P,Cy(H) C Cy(H) for all t > 0, and is
called strong Feller if P,%,(H) C C,(H) for all ¢ > 0. If moreover P,(C([0,00) — H)) =1

holds for all x € H, then the process is continuous.

Next, we extend Theorem 2.4 to the infinite-dimensional case, for which we need the
following assumption.

Assumption (H2')

(1) a > ol for some constant o > 0, and for every n > 1 there exists a constant p > n
such that a, € WP (R* — R" @ R"; dz).

loc

(2) For any 4, j € N there exists ¢;; € (0, 1) such that (2.17) and ,ué”)(\Vaij oT,|?TE) < 0o
hold for any n > 1.

Theorem 2.6. Under (2.15) and (H2'), assertions (1) and (2) in Theorem 2.5 hold.

2.4 Semi-linear SPDEs

We intend to investigate the existence, uniqueness and non-explosion of the SPDE corre-
sponding to L in (2.19), and to show that the probability measure in Theorem 2.5 is the
unique invariant probability measure of the associated Markov semigroup. For technical
reasons, we only consider the case that a = I, for which the corresponding SPDE reduces to
the standard semi-linear SPDE

(2.22) dX; = {Z(X;) — AX; }dt +V2dW,,

where Z : H — H is measurable, W, is the cylindrical Brownian motion, i.e.

W= Bei, t20
i=1

12



for a sequence of independent one-dimensional Brownian motions {3;};>;. An adapted con-
tinuous process X; on H is called a mild solution to (2.22), if

t t
X, =e X, + / e A9 7(X,)ds + / e~ E=94qmy,, ¢ > 0.
0 0

We assume

(H3) >, 57 < oo for some 6 € (0,1), and 110(eMN?P) < oo for some constant A > 0.

According to the recent paper [15], (H3) implies the existence and pathwise uniqueness
of mild solutions to (2.22) for ug-a.e. starting points. Below we intend to prove the weak
uniqueness of (2.22) for any initial points. A standard continuous Markov process on H
is called a weak solution to (2.22), if it solves the martingale problem for (L,.#Cg°). In
this case one may construct a cylindrical Brownian motion W; on the probability space
(C([0,00) — H); #,P,), where F := o({w +> w; : t > 0}), such that the coordinate process
Xi(w) := wy is a mild solution to (2.22) with Xy = z. See e.g. [24, Proposition IV.2.1] for
the explanation in the finite-dimensional case, which works also in the present case as the
cylindrical Brownian motion is determined by its finite-dimensional projections.

Theorem 2.7. Assume that (H3) holds.

(1) There exists a standard continuous Markov process {P,}rem solving (2.22) weakly for
every initial point, and the associated Markov semigroup P, is strong Feller having a
strictly positive density with respect to pyg.

(2) If Z is bounded on bounded sets, then there ezists a unique standard Markov process
solving (2.22) weakly for every initial point such that the associated Markov semigroup
15 Feller.

(3) If Z is bounded on bounded sets and po(eM?”") < oo holds for some X > ﬁ, then P, has

a unique tnvariant probability measure p, which is absolutely continuous with respect
to po and the density function p = 5% is strictly positive with \/p,logp € H?Y (1)

such that estimates (2.20) and (2.21) hold for o = 1.

Remark 2.3. Unlike in the finite-dimensional case where Z € L (dx) for some p >
d implies the pathwise uniqueness of the solution for any initial points, in the infinite-
dimensional case this is unknown without any continuity conditions on Z. It is shown in
[39] (also for the multiplicative noise case) that if Z is Dini continuous then the pathwise
uniqueness holds for any initial points.

3 Proof of Theorem 2.1

The main idea is to show that the solution to the reference SDE (2.2) is a weak solution to
(2.3) under a weighted probability, so that the non-explosion of (2.2) implies that of (2.3).

13



To this end, we will apply the local Harnack inequality (3.2) below to verify the Novikov
condition for the Girsanov transform. To realize the idea, we first consider the case that

(3.1) / ElETID@P-VE 1y < 0o
Rd

holds for some € > 0, then reduce back to the original condition (2.4).

Lemma 3.1. Assume that (3.1) holds for some constant € > 0 and 1 € H2'(uo) with
éo(1,1) =0, then all assertions in Theorem 2.1 hold.

Proof. Obviously, (3.1) implies that po(dz) := e”V(®dz is a finite measure. Since the co-
efficients in (2.2) is locally Lipschitz continuous, it is classical that the SDE has a unique
solution up to the explosion time. Since 1 € H2!(ug) with &(1,1) = 0, as explained after
(2.2) that the solution to (2.2) is non-explosive and yq is PP-invariant. Moreover, since the
drift in (2.3) is locally bounded, according to [44], this SDE has a unique solution for any
initial points. So, it remains to show that the solution is non-explosive, and the associated
Markov semigroup P, is strong Feller with at most one invariant probability measure.

A crucial tool in the proof is the following local Harnack inequality. Consider R? with
the C?-Riemannian metric

(u,v)y := (oo*u,v), u,v € R

and let A,, V, be the corresponding Laplace-Beltrami operator and the gradient operator.
Then Ly can be rewritten as B
Lo=A,+V,V

for some V' € C?(R?). Since the intrinsic distance p, is locally equivalent to the Euclidean
distance, according to Theorem 7.1 below, for any p > 1 there exists positive ®, € C(R?)
such that

|z —y|
At

B2 (A7) < (P ew o (14 52| nyer ool < o

~ ()
holds for all ¢ > 0 and f € &, (R?) := {f € B,(R?): f > 0}.

(a) Non-explosion. It suffices to find out a constant ty > 0 such that for any initial
points, the solution to (2.3) is non-explosive before time ;. To this end, we construct a weak
solution by using the reference SDE (2.2). We intend to find out tq > 0 such that for any
initial point z, the solution to (2.2) for Xy = z is a weak solution to (2.3) for ¢ € [0, ¢o]. So,
by the weak uniqueness of (2.3), which follows from the strong uniqueness, we conclude that
the strong solution to (2.3) is non-explosive before ty. To this end, we verify the Novikov
condition

1 [t
(3.3) E exp {1/ (07 2)(X,)|?ds| < 00, Xy =2 € RY
0
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so that Q := exp[-= f (c712)(X,),dW,) —
In this case, by the Glrsanov theorem

L5671 Z)(X,) PP is a probability measure.

t

Wy =W, — (6712)(X,)ds, t €0,

1
V2 Jo
is a Brownian motion under Q. Thus, rewriting (2.2) as

AdX, = (Z + Zo)(Xy) + V20(X)dW,, t € [0,t],

we see that (X, V~Vt)te[07t01 is a weak solution to (2.3) under the probability measure Q.
To prove (3.3), we use the Harnack inequality (3.2) for p = d + 1 to derive
[(EAMET I DEPANLET _ (( pOA(o ™ ZPAN) (1)1
1
Pqr1(x)

< PPl ZEAN) (g )earn @ UHE=v0 @ (0,1], N > 0, |y — 2] <

Since pg is PP-invariant, for B, := {y Cy — x| < ‘I’d = \/_} this implies

d+1

{Eexp [M(I(e™'2)(X0)[* A )] uo<Bx,t>e-2%+l<f>

o 2
< / (EOGA(\U’12|2AN))d+1(x) exp [— Par1(w) <1 + M)]MO(dy)
Bz,t t

S/ PRl DM ZEAN) (4 1 (dy) < pig(e17 ) < 00, € (0,1],)1 € (0,—di 1]
Ba:t

Since o has strictly positive and continuous densidty e~V with respect to dz, there exists

G € C(R? — (0,00)) such that uo(B,;) > G(z)t> for t € (0,1] and z € R% By taking

A =¢/(d+1) and letting N — oo in the above display, we arrive at

H{(x)
Vit

for some positive H € C(R?). Therefore, by Jensen’s inequality, we have

[ —1
Eexp{ /| 2ds} < /Ee“”"'( DX g
rJo

2H (x
<1 ) gt = ()<oo,m€Rd,r€(0,1],7€<0, ° }

1 Jo ﬁ VT (d+1)r

This implies (3.3) by taking v =1 and to =r =1A d4+€1

Eearlle DR < < oo, te(0,1],z e R?

(3.4)

(b) Strong Feller of P, and uniqueness of invariant probability measure. Ac-
cording to [7, Theorem 4.1], the Markov semigroup P? is strong Feller. For any x € R?, we
let X7 solve (2.2) with initial point z and define

T __ i " 0_—1 T _1 ' 0_—1 T\ |2 s r
B = | s [ z0n.am) - [e 2P, e bl
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By (3.3) and the Girsanov theorem, we have
Pf(z) =E[f(X])R], t€[0,t),f € By(R?),z € R™.

Then for any ¢t > 0,2 € R? and f € %,(R?), the semigroup property of P, and the strong
Feller property of P? imply

limsup | P, f(y) — P.f ()| = limsup | P, (P— f)(y) — Pr(Pi—r f ) ()]

= limsup [E[RYP . f)(XY) — Ry (P [)(X7)]]
< timsup { | FA(P1)(0) ~ PP @) + E(RE 11+ |77 1))

< sup E(|RY—1|+|R; —1]), re(0,t).

yily—a|<1

Noting that E|RY — 1|? = E(RY)? — 1 for small 7 > 0, then the strong Feller property follows
provided

(3.5) limsup sup E(RY)?*<1

r—=0  yly—z|<1

To prove this, we let M, = % Jo {(c71Z)(XE),dW;). Then for small r > 0

E(RY)? = () < (BetM300))} (Reslinr)F — (e s I(e 200y

So, applying (3.4) with v = for small » > 0, and using Jensen’s inequality, we obtain

@

limsup sup {E (RY) } < limsup sup Eed Jo (071 2)(X7)|ds

r—=0  yly—z|<1 r—=0  yly—z|<1

= 1.

(QH(y) 3(d2—1)7‘
\/F

- . R
<limsup sup (]EeV Jo It 1Z)(Xs)|2ds) » < limsup sup
r—0  y:|ly—z|<1 =0 yly—z|<1

This implies (3.5).

Next, as already mentioned above, every invariant probability measure of P, has strictly
positive density with respect to the Lebesgue measure, so that any two invariant probability
measures are equivalent each other. Therefore, the invariant probability measure has to be
unique, since it is well known that any two different extremal invariant probability measures
of a strong Feller Markov operator are singular each other.

(c) The assertion for P?. Due to the semigroup property ensured by the pathwise
uniqueness, it suffices to prove for small enough ¢ > 0. Let T be the hitting time of X}’ to
the boundary of &'. By the Girsanov theorem we have

(3.6) B f(x) = [1{Tz>t}f(Xx)Rx}a fe%(0),xel.

Let P7°f(z) = E[1i7z > f(X7)] be the Dirichlet semlgroup associated to (2.3). Since o is
invertible, by the C%-regularity of o and V we see that Pt is strong Feller having strictly
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positive density with respect to the Lebesgue measure (see [4] for gradient estimates and
log-Harnack inequalities of Ptﬁ’o). Then the strong Feller property can be proved as in (b)
using P7? in place of Pp.

Next, by (3.4) we have E{(R?)™'} < oo for small ¢ > 0. Then for any measurable set A
such that PZ14(z) = 0, (3.6) implies

/1@ = (B [Lrgon 1a(XD]} < (P L) (R '} = 0,

Thus, the measure Ptﬁ’oldz(x) is absolutely continuous to the measure Pf14,(x). Since P
has a strictly positive density, so does PZ. O

Proof of Theorem 2.1. Since |0*Vp,(0,-)| = 1, for any § > 0 the function p,(0,-) can be
uniformly approximated by smooth ones f, with [c*V f,| < 1+ §. In particular, we may
take p € C%(R?) such that |p,(0,-) — p| < 1 and |0*Vj|* < 2, so that (2.4) holds for some
e € (0,1) if and only if

(3.7) / (|J*V¢(x)|2 + eEK"_lZ)(“)'Q)e*V(I)’E_lﬁ(@de < 00
]Rd

holds for some € € (0,1).
To apply Lemma 3.1, we take

B e—V(a:)—Qa*lﬁ(azﬁdx
fio(dz) := fRd e—V(@)—2e"15(x)2 ’

which is a probability measure by (3.7). Let
Zo(x) = Zo(z) — 2e a(x)Vp(z)?, Z(z) = Z(x) + 2e a(x) V().
By (3.7) we have fig(|0*V1|?) < oo, so that f, := (n — )" A1 —11in L?*(f1o) and
lim fio(|o*V f,[*) = lim 0" V| *dfig = 0.
n—00 n—00 1n>>n

Thus, 1 € H2'(jip) and &(1,1) = 0. Then by Lemma 3.1 for (Zy, Z, fiy) in place of (Zo, Z, uo),
and due to (3.7), it remains to prove fig(e?'l7 2"} < 0o for some &’ > 0. Since |0*V | < 2,
we have

o1 Z)2(z) < 207 Z2(x) + 8 2|(0"Vp(2)?*(z) < 201 Z*(x) + 642 p(x)?.

By (2.4), for ¢’ € (0, 5] we have

64
15 1 . o 1
— o172 2e' |07 Z|? (x)+64e’ e 72 p(x)2—V () —2c 1 p(x)?
Flo(e ) S Ve E e /Rde ' T
1 —172 —15(.)2
< _ eflo ™ 21 (@) =V (@)= ()" 1 <« oo,
— f]Rd e~ V(@)—2e715(2) /Rd

Therefore, the proof is finished. ]
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Proof of Corollary 2.2. Let n > 1 such that B, := {|- | < n} D D. It suffices to show that
for any [ > n+1 and any = € S := {| - | = {}, the solution X} to (2.3) is non-explosive. Let

¢“ = lim inf{t >0:|X*|>m}, of=inf{t>0:|X;|<n}, m>I>n+1,2€S8.
m—0o0
Let X7 solve the SDE (2.3) for Z1p in place of Z. Due to (2.5), Theorem 2.1 applies to
X;. In particular, X} is non-explosive, i.e.

(3.8) (= lim inf{t > 0:|X7| > m} = oo,
m—0oQ

where and in the following, inf () := co. Moreover, since |Z| € L} (dz) for some p > d, [45,

Theorem 1.1] implies the pathwise uniqueness of the SDE (2.3). So,
X*=X* t<o'

Then

(3.9) 0% =52 :=inf{t > 0:|X"| <n}
and

(3.10) ¢*=("if ¢ <ot

Obviously, for
0r .= inf{t > o : |X[| >}
we have
(3.11) {on <Cp={0 <}
By (3.8), (3.11) and the strong Markov property ensured by the uniqueness (see [24, Theorem
5.1]), we have

P((*<T)=P(*<T,05 >C")+P("<T, 0, <()

SP(C"<T)+ P07 < (" <T) =E[lips<ryP(0% < (" < T|Fps)]

= E[lgz<{P(¢* < T — §)|s=tz =Xz, H

<P, <T)supP(¢* <T) <P(o, <T)supP(¢* <T), T>0,z€89.

ZES) 2€5;
Combining this with (3.9) we obtain
(3.12) supP(¢* <T) < { sup P(a,, < T)} supP(¢* <T), T>0.
TES] z€S] €S

Let ﬁ’tﬁ be the Dirichlet semigroup of X,; for 0 = B;,. By applying Theorem 2.1 for Z1pg. in
place of Z, we obtain

PGE<T)=1-PGE*>T)=1-Pfl(z) <1
and that P(6% < T) is continuous in x € €. So,

er :=supP(o, <T) < 1L
€S

This together with (3.12) implies P(¢* < T') =0 for any 7" > 0 and z € S;. Since [ > n + 1
is arbitrary and the solution is continuous, we have P((* = oo) = 1 for all z € R O
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4 Proofs of Theorem 2.3 and Theorem 2.4

Since the uniqueness of invariant probability measure is ensured by the irreducibility and the
strong Feller property, we only prove the existence and regularity estimates on the density.
The new technique in the proof of the existence is to reduce the usual tightness condition
to the boundedness of a Feyman-Kac semigroup, which follows from the hypercontractivity
of P? under the given integrability condition. Moreover, to estimate the derivative of the
density, the formula (4.3) below will play a crucial role.

Lemma 4.1. Let V. € Wh'(dz) and 0 € WL (R — R? @ R%: dx) such that po(dz) =
e”V@dx is a probability measure satisfying (2.6) and the Poincaré inequality
(4.1) po(f?) < Cpo(|o*V 1) + uo(f)?, f € C5E(RY)

for some constant C > 0. Let Ly be in (2.1) and let L := Lo+ Z -V for some measurable
Z :RY — R4 If Z has compact support and |Z|+|Va| € LP(dz) for some p € [2,00)N(d, o0),
then any invariant probability measure jv of L is absolutely continuous with respect to g with

density p = (?7‘2 € H>' (1) satisfying

(4.2) po(p? +10"Vpl?) < (C+ 1) po(p?lo™Z[?) < 0.

Moreover,

(4.3) [ oV Vi = [ (2.9 du f € H2 (o).
R R

e(dx) for
some p € [2,00) N (d,00), by the local boundedness of Zy so is |Z + Zy|. Then according
to [8, Corollary 1.2.8], for any invariant probability measure p of L, u(dz) = p(x)dz holds
for some p € WP (dz). Since po(dz) = e™V@dz and V € CH(R?), this implies p = ppqo for

some p € VVzicl (dz). In particular, we may take a continuous version p which is thus locally

bounded. By the integration by parts formula,

/ (0"Vp, o™V f)dpo = —/ pLo fdpo
Rd Rd

Proof. Let p be an invariant probability measure of L. Since |Z| + |Vo| is in L}

(4.4)
:—/ Lfd,u—i—/ <Z,Vf>du:/ (072 Z, 0"V fipduo, f € C(RY).
R4 Rd Rd

Since Z has compact support with |Z| € L?*(dz), and p + |[[c™!]| is locally bounded, (4.4)
implies

< 1o(p?lo ™ Z1) 2 o (|0*V f2)2 < 00, f € CF(RY).

/ (0"Vp, 0™V f)dpo
Rd

Hence, 10(|0*Vp|?) < po(p?lo™1Z|?) < co. This and (2.6) imply p A N € H>' () for any
N € (0,00). By the Poincaré inequality (4.1) we obtain

po((p AN)?) < Cpo(|o*V(p A N)P) + po(p)? < Cro(|o*Vpl?) +1 < 00, N € (0, 00).
By letting N — oo we prove p € H>'(pg) and (4.2), so that (4.3) follows from (4.4). O
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Below we will often use the following version of Young’s inequality on a probability space
(E, B, v) (see [3, Lemma 2.4]):

(4.5) v(fg) <logr(e!) +v(glogg), f,9>0,v(g)=1.

The next lemma ensures the existence of invariant probability measure of P, for bounded
~1
o 4.

Lemma 4.2. Assume (H1). If 077 is bounded then the Markov semigroup P, associated
to the SDE (2.3) has a unique invariant probability measure.

Proof. According to (b) in the proof of Lemma 3.1, P, has at most one invariant probability
measure. So, it suffices to prove the existence. Letting poP; be the distribution at time
t of the solution to (2.3) with initial distribution o, we intend to show that the sequence
{% J: On poPrdt},>1 is tight, so that the weak limit of a weakly convergent subsequence provides
an invariant probability measure of P,. To this end, it suffices to find out a positive compact
function F on R such that

1 n
0

holds for some constant C' > 0.
According to Gross [21], (H1) implies the hyperboundedness of P?. Precisely, by [21,
Theorem 1] (see for instance also [35, Theorem 5.1.4]), we have

1 1 at
A7) I hunguossnoge S 0 [5(5 = 5] ¢ 00> La(®) =1+ (g = e
Since fi is a probability measure, there exists a compact function W > 1 such that uo(W) <
0. Letting F' = /log W which is again a compact function, we have ji(e"”) < co. We now
prove (4.6) for this function F'. To this end, we consider the Feyman-Kac semigroup

P f(2) = B[ f(X7)eb PO 4> 0,0 € RY
Since po(eF”) < co, PF is a bounded linear operator from LP (1) to L'() for every t > 0
and p > 1. We first observe that P[" is bounded on LP(pg) for any ¢ > 0 and p > 1. Let

q = /p- For any non-negative f € LP(p), by Schwarz’s and Jensen’s inequalities, and that
o is Pl-invariant, we have
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MO(‘PtF.ﬂp) = /

5 (E [f(Xf)efé F(Xz)ds] )puo(dx)

Z\ds q_l a
< / d ({Ef%Xf)}{Eeq rho P )Mo(dx)
R
1 [t ot q(g—1)
:/ (ptOfQ)Q{—/ Psoeq—les} dpio
Rd t 0
a(t)qa(g—1) a(t)—q

_a_ 1 [t qt q(t)—q a(t)
< {NO((Ptofq)Q(t))}q(t) { / (; / Psoequd8> d,U«o}
Rd 0

a(t)—q

(1)t 0) _at_ a(g—1)
< HPOHLq (po)—La® MO),UO({fq} ) max { <ﬂ0 (e Q(t>qu>> ¢ , (,UO (eq—1F>) }

a1yt (w();)q gt q(q—1)
= ||PO||LQ(uo)—>Lq(t)(#O) max { (HO <e Q(t)_qF)> " ) (NO (eq71F>> }Mo(fp)7 t > 0.

By po(e”) < oo and (4.7), this implies ||[P||1s(.,) < oo for any ¢ > 0, and moreover,
limsup, o | Pf || zr(ue) < 1. Since F' > 0 implies PF'1 > 1, we have limy o | P/ || zr(uo) = 1. In
particular, by taking p = 2 and using the semigroup property, we obtain

n w
(4.8) Eelo 7% = MO(Pfl) < ||PnF||L2(HO) < HPlFHZQ(MO) =:¢y <00, n=>1,

where X} is the solution to (2.2) with initial distribution po. Now, define
1 " 1 /M
fo=ep | o5 [Mom 200, amy - [Me k], nzo
V2 Jo 4 Jo

Since 0~!Z is bounded, by Girsanov’s theorem we have
po(PF) E{F (XI)R, } € [0, n].
Then (4.5) and (4.8) imply
1 [ 1 [
—/ po(PF)dt = —/ E{F(X{°)R,}dt
(4.9) ' Jo " Jo
1 n 1 1
< —logBelo P | “RIR, log R} < ¢+ —E{R,log R,}.
n n n
Since by Girsanov’s theorem
t

Wy =W, — (671Z)(XH)ds, t e [0,n]

1
V2 Jo
is a d-dimensional Brownian motion under the probability Q,, := R,P, we have

E{R,log R,} = Eg, log R,
1Z 2
_E@n<\/_/ (071 Z)(Xt0), dW,) / (0 2)( X“°)|2d> —"HU I

Combining this with (4.9), we prove (4.6), and hence finish the proof. O
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Proof of Theorem 2.3(1). By Lemma 3.1, (H1) implies that (2.3) has a unique non-explosive
solution and the associated Markov semigroup F; is strong Feller with at most one invariant
probability measure. To apply Lemma 4.1, we first consider bounded Z with compact
support, then pass to the general situation by using an approximation argument.

(a) Let Z be bounded with compact support. By Lemma 4.2, P, has a unique invariant
probability measure p. In particular, L*u = 0, so that by Lemma 4.1(1) we have p = pug
for some p € H?'(j10) such that (4.3) holds.

Since p € H>' (wo), f :=log(p +d) € H2'(uo) for all 6 > 0. Taking this f in (4.3) we
obtain

o*Vpl?
/'p+§'d </{|a 0"V log(p + 8)|} du
Rd

B B % *Vp|2 %
- 17| 0"V 1 5V pdug < / AR /Ld
[ o211 tosto + bocn < ([ sl 2P ) ([ AT ang
3 7 |2 3
< </ plO"lZ\Qduo) (/ V) dm) , 0>0.
R4 R4 p+6

Since fig ('U VoY < oo due to p € H2 (1), this implies

|‘7*VP‘2 / —1~2
Z°d 6 > 0.
/Rd s [ plo 2P

By letting 6 — 0 we obtain

(4.10)

1
< —/ plo™ Z2dpg < oo
Rd 4 Rd

since 017 is bounded and po(p) = 1. So, /p € H?' (1) by (2.6), and the log-Sobolev
inequality (2.7) implies

(4.11) p(plogp) < %/d 0"V /o] dpo + 8.
R

Combining this with (4.10) and the Young inequality (4.5), we obtain

—1 2 1
* < _1 Ao=12Z| - 1
(!0 Vvol?) < o log o (e )+ 4/\M0(P 0g p)
< No—12|2 K * 2 5‘
<5 L log (e )+ otollo" Vo) + 45

This and (4.10) imply (2.9).
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Similarly, p € H?'(ug) implies f = (p+6)~' € H>' (o) for 6 > 0, so that by (4.3) we
have

a*Vpl? _ N _
| e < [ Aolo 211006
(plo~"2|)2 >1</°kapP )5
< A — T d
'—<Ad<p+®2 1)\ Jea (p+ 0210
0"V pl? f
-1712 d , 0>0.
M0(|0 | )(/Rd (p~|—5)2 Ho
Therefore, (2.10) holds.

Finally, by [9] the density function p is strictly positive, so that by (2.10) and H>! () =
W2 (o) we have logp € H2'(uo) if log p € L*(pg). To prove po(|log p|?) < oo, we use the
Poincaré inequality. As explained above that the defective log-Sobolev inequality implies
that the spectrum of Lg is discrete, by the irreducibility of the Dirichlet form we see that Lg
has a spectral gap, equivalently, the Poincaré inequality

o(f?) < Cuo(|o*V fI?) + u(f)?, f e HZ (o)

holds for some constant C' > 0. Since p is strictly positive, we take ¢ € (0,1) such that
to(p < €) < 3. By (2.10) and po(p) = 1, for any 6 > 0 we have log(p + §) € H2 (o).
Moreover, by the Poincaré inequality, (2.10) and [log(p + )| < p+d + loge™! for p > ¢,
there exist constants C7,Cy > 0 such that

IN

po(|log(p + 6)1?) < Co(|o™Vlog(p + 6)?) + po(log(p + 4))?
< C1 + 2p0(log(p + 0)1p<ey)® + 2p0(log(p + 0) 1 (psc})?
< Gy + 2p0([1og(p + 0)[*)polp < ) + 2p0(p + 6 +loge™)?

1
2#0(“08?(/)"‘5” )+ Ca, 6 €(0,1).

Since u(]log(p + 0)|?) < oo, this implies
u(|og pI*) = lim (| log(p + 6)[*) < 2C < oc.
(b) In general, for any n > 1 let

Zn(®) = Yaltiz@|<n 2 (2), Ln = Lo+ Zy- V.

By (a) and |07'Z,| < |07'Z|, L, has an invariant probability measure dju, = p,djuo such
that

ol V) < g {oaie ) 1 gy < o
010" Lok pu2) < i~ 212 <
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Then the family {\/pn}n>1 is bounded in H2'(po). Moreover, the defective log-Sobolev in-
equality (2.7) implies the existence of a super Poincaré inequality, and hence the essential
spectrum of Ly is empty, see [33, Theorem 2.1 and Corollary 3.3]. So, H?!(pg) is compactly
embedded into L?(py), i.e. a bounded set in H>! (1) is relatively compact in L?(pg). There-
fore, for some subsequence 1, — oo we have |/p,, — /p in L?(p) for some nonnegative p
which satisfies (2.9) and (2.10). In particular, p,, — p in L*(ug) so that p := ppyg is a proba-
bility measure. Moreover, by using the Poincaré inequality as in (a), we prove log p € L?(uo)
so that log p € H>'(110). It remains to show that L*u = 0.

Since (L, )*tn, = 0, for any f € C5°(R?), there exists a constant C' > 0 and a compact
set D such that

/Rd Lfdu‘ = '/Rd (PLf = puy Ly ) dpto

(4.12)
<C [ {12 Zulo+ 1+ 12Dlow, ~ ol b
D

Since po(e)” ' 4P) < oo, we have |Z,| < |Z| € LY (dz) for any ¢ > 1. Then uo(1p|Z —
Zn|?) — 0 as n — oo holds for any ¢ > 1. Moreover, the local Harnack inequality (see
8, Corollary 1.2.11]) implies that {p,,, p}r>0 is uniformly bounded on the compact set D.
Combining these with 1i0(|pn, — p|) — 0, we may use the dominated convergence theorem
to prove u(Lf) = 0 by taking k — oo in (4.12). Therefore, L* = 0. Then the proof is
complete. O

Proof of Theorem 2.3(2). By Theorem 2.1, the SDE (2.3) has a unique solution and the
associated semigroup F; is strong Feller having at most one invariant probability measure.
So, it suffices to prove that the above constructed probability measure p is the unique
invariant probability measure of L and P,. This can be done according to [29] and [8] as
follows.

Let by = Zg+aVlogpand b = Z+Zy. Then L = tr(aV?)+b-V, and Lo = tr(aV?)+by-V
is symmetric in L?*(u). Obviously, (H1) and (2.8) imply that conditions (1.1')-(1.3’) and
(1.4) in [29] hold for U = RY; that is, a;; € W2 (dx), a is locally uniformly positive definite,

loc

and b € L} (dx). Moreover, by the Young inequality (4.5), (2.9), (2.8), (2.11) and (4.11),

loc
for small enough r > 0 we have

pllall + 16 = bol) < mo(plZ| + llell - "V ol + pllo]|*)

1 _ .
< Sho(p(lo™' 21" +3]l01%) + po(lloll - 107V o)

1 1 r 0_71 2 o 2
< o-tio(plog p) + - log pg(en7 #1171 +2y/molpllo |20V /5P2)

1 ]_ —1 2 2
<Xl i r(lo=1Z[2+3||o]|2)
< 2Tuo(p ogp) + 5 og fio(e )

2T o (ploxp) = logmo( ) (|9 y3l7) <

Therefore, by [29, Theorem 1.5, Proposition 1.9 and Proposition 1.10(a)], (L, C§°(R?)) has a
unique closed extension in L'(x) which generates a Markov Cy-semigroup T} in L*(u) such
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that p is an invariant probability measure. Then, according to [8, Corollary 1.7.3], u is the
unique invariant probability measure of L.

On the other hand, according to [29, Theorem 3.5], there is a standard Markov process
{Px}xeRdu{@ which is continuous and non-explosive for p-a.e. x, such that the associated
semigroup P, satisfies

00 t
/ e_)‘tptfdt:/ e NTHfdL, p-ae.
0 0

holds for any f € %,(R?) and A\ > 0. So, for any f € %B,(R?), P,f = T}'f holds dt x p-a.e.
By the continuity of the process and the strong continuity of T} in L*(u), P.f = T/'f p-a.e.
for any ¢t > 0 and f € Cy(R?), and hence also for f € L'(u) since Cy(R?) is dense in L'(p).
That is, P, is a p-version of T}, In particular, u is P-invariant and the probability measure

P, := /Rd P.u(dz) on Q:= C([0,00) — RY)

solves the martingale problem of (L,C§°(R%)), so that under this probability space the
coordinate process X;(w) := @&, for t > 0 and @ € Q is a weak solution to (2.3) with initial
distribution u (c.f. [24, Proposition 2.1} or [30, §5.0]). By the uniqueness of solutions, this
implies (P, f) = u(P,.f) for t > 0 and f € %,(R?). Therefore, p is an invariant probability
measure of P;. O

Proof of Theorem 2.4. Obviously, the proof of Theorem 2.3(2) also works if we replace (H1)
by (H1"). So, we only need to prove assertion (1). Next, by repeating (b) in the proof of
Theorem 2.3(1), we may and do assume that Z is bounded having compact support, and
only prove that L has an invariant probability measure du = pduy with p satisfying the
required estimates (2.13) and (2.14). Here, the only thing we need to clarify is that in the
right hand side of (4.12) the term (1 + |Z]|) should be replaced by (1 + |Z| + |Vo|) since
Vo is no longer locally bounded. This does not make any trouble since |Vo| € L2 (dz) by
(H1"), and (pn, — p)1p is uniformly bounded according to [8, Corollarty 1.2.11].

Now, we assume that Z is bounded with compact support. Let V & C>(R%) with
|V —=V|s < 1, and let P, be the Markov semigroup generated by A —VV. Then H>' () =
H>'(e7V®dg), so that (H1') together with the smoothness and positivity-preserving of P,
implies
13 Qp = ﬁ%anz(Rd%Rd@@Rd), an > al,

( ' ) and (&n)” — Qg in H2’1(ILLQ) N LZP(ILL()), 1< 1,7 < d.

Let L,, be defined as L for a, in place of a; that is,
) d
Ly = t2(@nV?) + Y {Zi + 0(an)ij — (an)i;0;V }es.
ij=1

By Lemmas 4.1 and 4.2, L, has an invariant probability measure ji,(dz) := p,(dz)uo(dz)
with p, € H*!(ug) such that

10 (% + 1V 5ul?) < Crg(3212]2) < oc.
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According to [8, Corollarty 1.2.11], {f,,}»>1 is uniformly bounded on the compact set D :=
supp Z, so this implies that {5, },>1 is bounded in H*!(pg), and hence p,, — p in L*(po)
for some subsequence ny, — oo and some p € H*'(ug). In particular, u(dz) := p(z)dz is a
probability measure. We intend to prove L*u = 0.

For any f € C3°(R?) there exists a constant C(f) > 0 such that

Lnf = Lf| < C(N)(IVan = Val| + [VV] - |an — al]),
Lo f| < Cf)(IVan|| + llall - [VV]).

By (4.13), |[VV] € L%(,uo) included in (H1'), pn, — p in L*(uo), and L% fi, = 0, we are
able to use the dominated convergence theorem to derive

(L) = Y |u(Lf) = fin (Lo )| < limsup pio(ILf = Lo, f1p+ | L, 1+ 17, = pl) = 0.

k—o0

So, L*u = 0.
Since (5.3) and @, > ol imply (2.7) for (v/@, %) in place of (o, k), by Theorem 2.3 we
have
)

oz,uo(|V\/,5_nk|2> < o (‘ \/d_nkv\/ﬁ_nk

aX(an, )~1/227|2 « 2
< T (e ) g < o {log o (X 7F) + 5,

- o -2 1
apto(|V10g pn, ) < o ([(@n,) ™2V log on |7) < ~p1o(12]7).

By using p,, + ¢ to replace p,,, and letting first & — oo then 0 | 0, we prove (2.13) and
(2.14) from these two inequalities respectively. ]

5 Proofs of Theorem 2.5 and Theorem 2.6

The following Sobolev embedding theorem is crucial in the proof. This result can be deduced
from existing ones, for instance, [26, Corollary 1.4] in the framework of generalized Mehler
semigroup. We include below a brief proof by using the dimension-free Harnack inequality
for the O-U semigroup.

Lemma 5.1. Let (2.15) hold. Then H*'(uo) is compactly embedded into L*(pg); i-e. bounded
sets in H*(uo) are relatively compact in L*(pg).

Proof. Consider the linear SPDE
(5.1) dX, = —AX,dt +2dW,,

By (2.15), for any initial point x this equation has a unique mild solution
t
XP=e M 4+V2 / e~ AE=qW,, t >0,
0
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and the associated Markov semigroup
P f(z) =Ef(X7"), t>0,f € B(H),r € H
is symmetric in L?(pg) with Dirichlet form

gO(fa g) = M0(<va v9>)7 fag € HQ,l(#O)?

see for instance [17]. So, by the spectral theory, H*! (1) is compactly embedded into L?(p)
if and only if P? is compact for some (equivalently, all) ¢ > 0, both are equivalent to the
absence of the essential spectrum of the generator. By [38, Theorem 3.2.1] with b = 0 and
o =+2sothat K =0 and \ = %, PP satisfies the Harnack inequality

(5.2) (P f(2))* < (PP ()W, > 0,2,y € H, f € B(H),

which implies that P has a density with respect to the invariant probability measure g
(see [38, Theorem 1.4.1]). Next, it is well known that the Gaussian measure p satisfies the
log-Sobolev inequality (see for instance [21])

(5.3) po(f?log %) < %Mo(WfIQL fe H* (no), mo(f?) = 1.

This, together with the existence of density of P? with respect to pg for any ¢ > 0, implies
that P is compact in L*(pg) for all ¢t > 0, see [20, Theorem 1.2], [34, Theorems 1.1 and 3.1]
or [37, Theorem 1.6.1]. O

Proof of Theorem 2.5(1). For any n > 1, let H,,y = {z € H : (z,e;) = 0,1 < i < n}
be the orthogonal complement of H, := span{e,---,e,}. Let m, : H — H, and 7, :

H — M, be orthogonal projections. For convenience, besides the orthogonal decomposition
H = H, ®H,) we may regard H as the product space H = H,, x H,), so that po = ,ugn) X ué">
for ,u(()") = ppom," and ,u(<)"> = Jig © 7r<_nl> being the marginal distributions of yo on H, and

H,y respectively. Let

(5.4) an(x) = mha(x), Z,(x) = 7Tn/ Z(w,y),uén> (dy), x € H,.
H¢

n)

By (H2) we have
(5.5) {a,v,v) > alv]?, v € H,,
and due to Jensen’s inequality,

a2l
(5.6) uén)(e)‘lz”P) < / o i 12 ko (dy),uén)(dx) < / MNPy < 00, n > 1.
H

n

Let V() = 13" \a? and L0 = L + Z, - V on H,, where

— 2
n

Ly’ =>" (aijaiaj +{0ja;; — aijajvn}ai>-

i,7=1
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Noting that (5.3) and (H2) imply

2
(5.7) po(f*log f?) < —uo(<an V), f€H* (o) mol(f?) =1,
and that (5.5) implies a\aﬁl/QZnP < |Z,]?, we may apply Theorem 2.3(1) to L, on R"* = H,
for Kk = /\1%, B =0 and Ao in place of A, to conclude that L™ has an invariant probability

measure /i, with density function p, = j“i:; satisfying \/p € H 2’1(uén)) and
Ho n

1 A ola 2
u§ (9VB,[) < o (VA ovoe) < Jopg i loaug (X 2F)
(5.8) A
< 1 1 (n) (A Znl?y < 1 NHE >1
= 40!2)\1)\ . 2 OgMO (e ) — 4@2)\ )\ Ogﬂ ( ) < OO, n = 9

where the last step is due to Jensen’s inequality and the definitions of Z,, and ,u(()"). Moreover,

n 1 o,
5 1V 10g pal?) < 5" 1/ V log pu )
n —1/2 n
o (a2, _ 2 _ ol 2P

« - o? - o?

Letting p, = p, o m,, (5.8) implies that {\/p, }n>1 is bounded in H*!(yg). By Lemma 5.1,
there exists a subsequence n, — oo and some positive p € L' (o) with /p € H*'(po) such
that \/pn, — /p in L*(uo), (2.20) and (2.21) hold. Then logp € H*'(110) as shown in the
end of the proof of Theorem 2.3(1) using the Poincaré inequality. In particular, u := puo is
a probability measure on H. It remains to show that L*u = 0.

By the definition of Z,, we have Z, := Z, om, = mauo(Z|m,), where po(-|m,) is the
conditional expectation of pgy given 7,. Since ug(|Z|*) < oo, by the martingale converges
theorem, pio(Z|m,) — Z in L*(up), and hence, Z, — Z in L?(p) as well. By the continuity
of a, a, := a, om, — a pointwise. Noting that for any f € .ZC§° there exist [ € N and a
constant C'(f) > 0 such that

(L) = (L) = pn, (L nkf)!
< C(f)mo(pf|Z — anr+2| an)igl}) + C(f)n ({|an|+2|ank il 1o = Pl

i,7=1

(5.9)

<oo, n>1.

holds for ny > [, to prove ,u(L f)=0by using the dominated convergence theorem, it suffices
to verify the uniform integrability of {p,(|Z,| + |ai; o mn|) tns>1 in L (po) for every i,j > 1.
Obviously, for any ¢ € (0, 1) there exists a constant C'(¢) > 0 such that

(1Z0] + lasg 0 mal)pn < €717 4 eltueml™ 4 Cp {log(e + pa)} e, m > 1.
Since u(()n)( f)=po(fom,) for f € Ll( ) this implies the desired the uniform integrability
by (2.17), (5.6), (5.8) and

po(pn log pn) < )\—uo(!V\/p_n\ ) = —luo(lv\//)_n!2)
due to the log-Sobolev inequality (5.3). O
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Proof of Theorem 2.5(2). The desired assertion can be deduced from [29]. Since a is bounded
and (H2) holds, we have H>!(uo) = H?'(u0). Let p be a probability measure p on H such
that the form

E*(f,9) = p((aV [, V), fgeFCF

is closable in L?(u), and let (L*, Z(L")) be the generator of the closure (&*, H*!(1)). More-
over, let 8 € L?*(H — H; u) such that

(5.10) p((B8, V) =0, feH (u)

Then, according to Proposition 1.3, Theorem 1.9 and Proposition 1.10 in [29, Part II], we
have the following assertions for L := L* + - V:

(i) (L, #Cpe) is dissipative and hence closable in L' (1), whose closure (L, Z(L)) generates
a Markovian Cy-semigroup of contraction operators (7});>0 on L'(u), 2(L) C H*'(p),
and

(5.11)  p((Vf,B—aVg)) = p(gLf), fe€ 2(L)NB(H),g € H* (1) N By(H).

(ii) There exists a standard continuous Markov process {P,}.cn whose semigroup P; sat-
isfies

(5.12) / e MP,fdt :/ T, fdt, p-ae., \>0,f € %(H).
0 0

As shown in the proof of Theorem 2.3(2), (5.12) implies that P; is a u-version of T;.

Now, let L = Lo+ Z -V and u = pug be in Theorem 2.5. We intend to verify the above
conditions such that assertions (i) and (ii) hold.
Firstly, \/p € H*'(p10) implies Vlog p € L?() and

o(IV01) < 24/ 10(IVv/AI2)pin(p) < 00

Consider the operator
LV :=Ly+aVlogp, fe FCi.

By the symmetry of Ly in L?*(pg), the boundedness of a, Vlog p € L*(uo), Vp € L' (o) and
noting that H*! () is dense in H™ (), we obtain

p(fL*g) = p(f(Vlogp,aVg)) + po(fpLog)
= u(f(Vlogp,aVyg)) — u(V(fp),aVyg)) = —u((V f,aVyg)), f,g€ FC5.

Thus, the form (&*, ZC5°) is closable in L?(p) with generator extending (L*, ZCg°).
Next, let = Z —aVlogp. We have L = LF 4+ -V on FC§°. Since L*n = 0 and
1o((Vp, V) = —po(pLof) for f € FC5°, we have

1B, V1) = m((pZ —aVp,Vf))
= p({Z, V) + mo(pLof) = u(Lf) =0, feFCq
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Noting that (2.20) and the boundedness of a imply

u(|aV log pf*) < 4llal*uo(IV/pI*) < o0

while by the Young inequality (4.5) and the log-Sobolev inequality (5.3)

1 .1

w(|Z1?) = pmo(p|Z)?) < X log 1(eM?1%) + Xuo(plogp)
1

< XIOgNO(GMZ' ) + —MO(’V\/_’ )+ < 00,

we have u(|8]?) < oo for 8 := Z — aVlog p. So, (5.10) follows from (5.13).
In conclusion, the above assertions (i) and (ii) hold for the present situation. Combining
(5.10) with (5.11) for ¢ = 1 and T} f in place of f, we obtain

d

A Tf) = w(LLf) = p((VLf, B)) =0, f e FC®t = 0.

Therefore, p is an invariant probability measure of T}, and the proof is finished since P, is a
p-version of T;. ]

Proof of Theorem 2.6. Since V,(z) := 23" | \iz? on H, satisfies |[VV,| € Ll(,uo ) for all
g > 1, (H2') and (5.7) imply that (H1’) holds for (an,Vn,,uO ") in place of (a,V, jo) with

!/

K = a%l and 8 = 0. So, by repeating the proof of Theorem 2.5 using Theorem 2.4 in place
of Theorem 2.3(1), we prove the desired assertions. O

6 Proof of Theorem 2.7

We first prove the non-explosion of the weak solution constructed from the Girsnaov trans-
form of the linear SPDE (5.1), then prove the strong Feller property of the associated Markov
semigroup. The Feller property, together with the pathwise uniqueness for pg-a.e. starting
points due to [15], implies that the constructed Markov process is the unique Feller process
solving (2.3) weakly. Noting that in the present case we have d = oo, the estimate (3.4)
derived in the finite-dimensional case does not make sense. To construct the desired weak
solution we need to establish a reasonable infinite-dimensional version of (3.4). We will soon
find out that this is non-trivial at all. If we start from the Harnack inequality (5.2), it is
standard that ()
(Pof () < W o oo@)/t

for some constant ¢(z) > 0 and small ¢ > 0. The hard point is that fot e“@/P9)ds = oo for
any t > 0 and p > 1, so that the argument we used in the finite-dimensional case is invalid.
To kill this high singularity for small time ¢, we will use a refined version of the Harnack
inequality and make a clever choice of reference measure v; on [0, t] to replace the Lebesgue
measure.
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6.1 Construction of the weak solution

We first construct weak solutions to (2.3) using the Girsanov transform. For any = € H, let
X[ solve (5.1) with Xy = x. Let

(6.1) Rgt-—exp{f/ Z(X7),dW,) /]ZX‘”]dr} t>s>0.

By Girsanov’s theorem, if (Rf)i>0 := (R ,)i>0 is a martingale, then for any 7" > 0 the process

— 1 t

We =W, — —
' V2 e

is a cylindrical Brownian motion under the weighted probability Q% := R7P, so that

Z(X")ds, te€0,T]

(X7, vaf)te[o,ﬂ is a weak solution to (2.22) starting at x. To prove that (Rf):>o is a martin-
gale, it suffices to verify the Novikov condition

(6.2) Eet Jo® 12(X5)Pds oo, ve€H

for some ty > 0. Indeed, by the Markov property, this condition implies that (R, )ic(s s+]
is a martingale for all x € H and s > 0, and thus (RY);>o is a martingale for all x € H by
induction: if (R} )ico,nty) is @ martingale for some n > 1, then for any nty < s <t < (n+ 1)t
we have

E(R;|7;) = RJE(R,|F5) = R

Therefore, the condition (6.2) implies that (ng,’Wf)te[O,T} is a weak solution to (2.22) for
any 7> 0 and x € H. Let P;(x,dy) be the distribution of X} under Qf, and let

(6.3) Pf(z) = Bqs f(X7) = E{f(X])RT}, [ € By(H),t > 0,2 € H.

By the Markov property of X; under P, it is easy to see that P, is a Markov semigroup on
By(H), i.e. {Pi(z,dy):t> 0,2 € H} is a Markov transition kernel.

To verify condition (6.2), we introduce a refined version of the Harnack inequality (5.2).
For each i > 1 let P”" be the diffusion semigroup generated by Lo, f := f" — \if’ on R. By
[32, Lemma 2.1] for K = —); and g(s) = ¢ **, we have

p)‘i|x - y|2
2(p — 1)(e*t — 1)

(PP @)Y < (P ) | | t>0p> 17 c# Ry R

By regarding P" as a linear operator on PBy(H) acting on the i-th component x; := (z, ¢;),
we have P = Hl 1 Pto *. so that this Harnack inequality leads to

p = Az — yil?
(P < PP e |5 Y METE] es0g e i)y e H

i=1
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for any p > 1. Noting that s is an invariant probability measure of P2, by taking p = 2 we
obtain

0) (212 [Loxw| = 2 2ETH an) <l ), 0 € B> 0.1 € L)

Observing that

i@y —y;)? " Aiy? A(e?it 4 1) < 2z )2 n i}
e2 it — 1 2 o Q(GQAit _ 1) v e2hit ] e2\it | 1’

by (2.16) we have

=1
- \/)‘_z /\z(l‘z yz)2 )\’LyZQ
- H / XP |~ T e o dy;
el 27{' R et — 1 2

So, (6.4) reduces to

(6.5) PP f(x) < Vipo(f) Ta(t), = €H,t >0, f € L¥(u),
where due to (2.15),

o0

1 \ix? rret 41
Fx(t) = exp {QZ e2Nit |- 1} (H e2Nit _ 1)
=1 =1
1S, N > 13\ 7
iL;

Moreover, using the stronger condition > 22, ;% < oo for some 6 € (0, 1) included in (H3),
and noting that log(1 + r) < cr? for some constant ¢ > 0 and all 7 > 0, we obtain

U(t, ) ::/ log ', (s Z/ 622/\/\5x + log (1—1— ;S)ds}ds

{ /)\xez’\sds+)\9/7’_9dr}
0

21— e 4 Ot <00, t>0,2 € H

N

(6.6)

1
(6.7) < i

AN
N

‘M8HM8

=1
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for some constant C' > 0. For later use we deduce from this that

1 (o)
(6.8)  limsupsup ¥(t,y) < 5 lim sup sup { fo(l 2N 1z —y)? + Ctla} =0.

t—0 y—zx t—0 y—zx i—1

Since (6.6) implies I';(s) € (1, 00), for every ¢t > 0 we have

By(t) = /0 b (0,1,

Iu(s)
so that Lo (s)
[0,\S
U o(ds) = ————ds
' Bu(t)la(s )
is a probability measure on [0, ¢]. Noting that ’8‘”’“‘ fo $)vp.(ds) = 1 and log ( =(1) [.(s)) <

log I';(s), the Young inequality (4.5) yields

/ z0enpas =2 [ (3120008) (200 natas

< X log Vi (e 31Z2(X7)? ) + % /Ot {ﬁx(t) I'.(s)log (ﬁmt(t) Fz(s)> }Vt,x(dS)

t
2t « 2
< = 108 Vi 0 (e%IZ(X. )|2) + X\Il(t,x), t>0,r € H.

Combining this with (6.5) for f =22, (6.7) and uo(eM?"”) < 0o, we arrive at

2t

¢ , t ) 3
E exp {7/ \Z(Xf)ﬁds] gefq’(t’m)]E{/ e?Z(Xs)|2yt7x(ds)}
0

27t

2 A
<e 2y (t,x) /{PO \Z\ )}Vum(ds)}

e V(t2) {/ \/W )V o(ds) }A
( \/ e’\|Z|2)> = A(t,z,y) <oo, z€H,v>0,t¢€ (0,%].

By taking v = , we prove (6.2) for to = 2.

(6.9)

| /\

_%ta:)

6.2 Strong Feller and strictly positive density of P,

By the Harnack inequality (5.2), P? is strong Feller having strictly positive density with
respect to pg (see [40, Proposition 3.1(1)]). Then as in (b) and (c) in the proof of Lemma
3.1, we may prove the same property for P, using (6.3) and (6.9). To save space, we only
prove here the strong Feller property.
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For any ¢t > 0, by the semigroup group property of P;, (6.3), and the strong Feller property
of PP, we obtain

limsup | P f(x) — P f(y)| = limsup limsup |P.(F— f)(2) = P (Prer f) ()]

y—x r—0 Yy—x

610 < lim sup lim sup {|P£(Pt—rf)<x) — P (P f)(2)|
6.10 r—0 y—x
B[P AR~ 1) = (P XD (R = D]}

< || flso limsup limsup E(|RY — 1] + |RY — 1]).
r—0

Yy—x

Recalling that RY = Ry, by (6.1) we have

E|RY — 1] =E(RY)? — 1< (Ee?’foT'Z(Xi’)PdS)g —1, yeR.
So, according to (6.10), P, is strong Feller provided

(6.11) lim sup lim sup E exp {3/ ]Z(X§)|2ds] =1.
0

r—0 Yy—T

Recall that (3,(t) = fot %(SS) ds. By Jensen’s inequality and (6.7) we have

logﬁxt(t) — _log (%/Otrd—is)> < —%/Ot{log%(s)}ds:w.

Combining this with (6.8) and (6.9), we obtain

6r

lim lim sup A(r, y, 3) < lim lim sup ex *("%) (e%\y(r’y) uo(e)‘|z|2)> B

r—0 y— r—0 y—zT

o 12
= lim limsupe> Y% = 1.
r—0 Yoz

Combining this with (6.9), we prove (6.11).

6.3 Uniqueness of the Feller semigroup and invariant probability
measure

To prove that P is the unique Feller Markov semigroup associated to (2.22), we recall the
pathwise uniqueness for p-a.e. initial points. By [15, Theorem 1], there exists an po-null set
Hy such that for any = ¢ Hy, the SPDE (2.22) has at most one mild solution starting at = up
to life time. Combining this with the weak solution constructed in (a), we see that for any
initial point x ¢ Hy, the SPDE (2.22) has a unique mild solution X;* which is non-explosive
with distribution P;(z,dy). So, if there exists another Feller transition probability kernel
P,(z,dy) associated to (2.22), then P;(x,dy) = P,(x,dy) for ¢ Hj. Since H \ Hj is dense
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in H, by the Feller property these transition probability kernels are weak continuous in =z,
so that P;(z,dy) = Pi(x,dy) for all x € H.

Next, according to [40, Proposition 3.1(3)], to show that P, has at most one invariant
probability measure, it suffices to prove for instance the Harnack inequality

(612) (Ptf)6<x) S (Pth)(y)Ht(xay)v T,y € Ha f S ’%b(]HD

for some ¢ > 0 and measurable function H; : H?> — (0, 00). By (6.3) and (5.2), we have

— {B[f(X7)RY® < {P2f2(x)E(RY)?}
< {(P' 1))} E(R)® = {Ef (X)) [E(R)]
< {E[f ()R} - {B(R) T IE(RD)® = {Pf ()} - {E(RY) " HE(R)']

By (6.9) and the definition of R;, it is easy to see that when ¢ > 0 is small enough,
{E(RY)"'}E(R?)S] < Hy(z,y) holds for some measurable function H; : H? — (0, 00). There-
fore, (6.12) holds.

6.4 Pi-invariance of i and estimates on the density

Finally, we prove that p in Theorem 2.5 is an invariant probability measure of P;. Let
p and P, be in Theorem 2.5, according to the proof of Theorem 2.3(2) we conclude that
P, = [ P,p(dz) is the distribution of a weak solution to (2.22) with initial distribution p.
Since p is absolutely continuous with respect to pg, the uniqueness for pp-a.e. initial points
implies that the weak solution starting from p is unique, so that u(Pf) = u(P.f) for t > 0
and f € %,(H). Since p is P-invariant, it is P-invariant as well. Since Theorem 2.5 implies
VP € H* (1), (2.20) and (2.21), it remains to prove log p € H*! ().

By p(p) =1 and \/p € H*'(p), we have log(p+ &) € H*'(y) for all § > 0. Combining
this with (2.21) we conclude that log p € H2' (1) provided po(p > 0) = 1 with (] log p|?) <
0o. It is well known that the Gaussian measure p satisfies the Poincaré inequality

po(f*) < —mo(IVII) + mo(f)?, f € Hy'(po)-

Then, as shown in the last step in the proof of Theorem 2.3(1), uo(|logp|?) < oo follows
from (2.21) if po(p > 0) = 1. Thus, we only need to prove py(p > 0) = 1.

Recalling that Rf = Rg, for Rg, defined in (6.1), by (6.3) and (6.9) we may find out a
constant to > 0 and some function H € C(H — (0, 00)) such that for any f € %, (H),

(P2 f(2))* = (BA(XE))” < (BIAXE)RI)E[(RE) ]
= (Py*(«))E[(RE) ] < H(2)P, f*(z), = €H.

Then for any measurable set A C H with po(A) > 0, we have

(6.13) W(A) = u(Po1%) > u(%)
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On the other hand, by jo(P214) = po(A) > 0, there exists y € H such that P,14(y) > 0 so

that (5.2) implies
_ Cle—y|?
Pla(w) > (Pyla(y))’e © >0, z€H

Combining this with (6.13) and + > 0. Therefore, 1 is absolutely continuous with respect
to p and hence, po(p > 0) = 1.

7 Local Harnack inequality on incomplete manifolds

Let M be a d-dimensional differential manifold without boundary which is equipped with a
(not necessarily complete) C?-metric such that the curvature is well defined and continuous.
Let A and V be the corresponding Laplace-Beltrami operator and the gradient operator
respectively. Then for any V' € C?*(M), the operator L := A + VV generates a unique
diffusion process up to life time. Let (X[)icp,c(2) be the diffusion process starting at x with
life time ((z). Then the associated Dirichlet semigroup is given by

Ptf(x) = E{l{KC(m)}f(Xf)}, reMt>0,fe %b(M)
For any f € B, (M) :={f € B,(M) : f > 0}, define

Let p be the Riemannian distance. By the locally compact of the manifold we may take
R e C(M — (0,00)) such that

By(z,R(x)) == {y € M : p(x,y) < R(x)}

is compact for all z € M. When the metric is complete this is true for all R € C(M — (0, c0).
We will use this function R to establish the local Harnack inequality.

Theorem 7.1. There exists a function H € C(M — (0,00)) such that

1
), £50,6 > -0t e gt ().

(1) [VRf()| < 6Br(f)@) + H(w) (6 + ~ R(x)

1
S(tATL)

Consequently, for any p > 1 there exists a function F € C(M — (0,00)) such that for any
t>0 and f € B (M),

F(x)p(z,y)?
tAl

(7.2 (Ptf(ﬂf))pé(l%fp(y))exp[ +F<x>] 2.y € M uith p(,y) <

F(z)
Proof. According to [2], it is easy to prove (7.2) from (7.1). When the metric is complete,
an estimate of type (7.1) for all § > 0 has been proved in [3]. The only difference comes
from the incompleteness of the metric for which we can not take R(x) arbitrarily large as in
[3]. Below we figure out the proof in the present case.
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(1) To prove (7.1), we fix f € B;"(M). By using #(x) replace f, we may and do assume
that P, f(z) =1 at a fixed point z so that Ep,(f)(x) = P,(flog f)(x).

Now, let us check the proof of Theorem 1.1 in [3] (pages 3666-3667), where the part
before (4.5) has nothing to do with the completeness; that is, with the compact set D :=
B,(x, R(x)), all estimates therein before (4.5) apply to the present setting. More precisely,
letting

7(x) =inf{t > 0: X; ¢ D},

we have ((4.1) in [3])
(7.3) IVEf(o)] < I+ I,

where ((4.2) in [3])

J 1
(7.4) I, < (5]E{1{t<7(x)}(flogf)(Xf)} + E + C(l’) <1 + &), 0>0,t>0
holds for function C' € C'(M — (0,00)) depending only on d and curvature of the operator
L; and moreover ((4.5) in [3]),

0 9R(z)
(75) I, < 5E{1{T(w)§t<g(x)}(f log f)(Xf)} + g + dlog EG%T(I) + A(I‘)7 0>0,t>0

holds for A(z) := sup,-, {C(z)y/rlog(e+r) —r}, which is finite and continuous in z. Now,
due to the restriction of R(z), we have to take large enough 6 > 0 and can not replace ¢ by
d A1 asin (4.5) of [3]. This will lead to less harp estimate but it is enough for our study in
the present paper. More precisely, using § to replace a A 1 in the display after (4.5) of [3],

we have
160

R(z)
Combining the with (7.3)-(7.5), we prove (7.1) for some H € C'(M — (0, 0)).

(2) Since H, R are strictly positive and continuous, and B,(z, R(x)) is compact for every
'T’

9R(z) o0
E6W§1+9/ (u+ e ™ du =: A’ < oo, §>
0

H(z):= sup H and R(z):= inf R
( ) B, (z,R(x)) ( ) B, (z,R(x))

are strictly positive continuous functions in x. For any p > 1, let

1 .
G(z) = b A R(x), =€ M.

Then (7.1) implies

160
+5), y € B,(w,G(z)),d > =

R(x)

IVP.f(y)| <0Ep(f)(y) + H@)(ﬁ
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for f € B (M). So, letting v : [0,1] — M be the minimal geodesic from z to y with

95| = pla,y) for s € [0,1], letting B(s) = 1 + s(p — 1), and applying the above inequality
with § 1= 2= > 28 we obtain
po(z,y) — R(z)
d ? 1) Ep, (f°© P 5,
_{ log Ptfﬂ(S)}ms) _ pp — DER (/") n p(VP,fPe) 5 >(%)
ds ﬂ(S)z_Ptfﬁ(s) /B(S)Ptfﬁ(s)

. . . p*H
Integrating over [0, 1] with respect to ds, we prove (7.2) for F:= =V

pp(z,y) p—1 . )
= B () {ppmy)EPt(f ) = VRS N}m)

_ po(x,y) 7 () (P, £5) pp(z,y) p—1
2 B B ) {H( L ) (s TR y>)}

_H(x)<% + 1), s €[0,1], p(z,y) < G(x).

v
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