
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

2D Materials

                              

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa32195

_____________________________________________________________

 
Paper:

Mukhopadhyay, T., Mahata, A., Adhikari, S. & Asle Zaeem, M. (2017).  Effective elastic properties of two dimensional

multiplanar hexagonal nanostructures. 2D Materials, 4(2), 025006

http://dx.doi.org/10.1088/2053-1583/aa551c

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa32195
http://dx.doi.org/10.1088/2053-1583/aa551c
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

E�ective elastic properties of two dimensional multiplanar

hexagonal nanostructures

T. Mukhopadhyaya, A. Mahatab, S. Adhikaria,∗, M. Asle Zaeemb

aCollege of Engineering, Swansea University, Swansea, UK
bDepartment of Materials Science and Engineering, Missouri University of Science and Technology,
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Abstract

A generalized analytical approach is presented to derive closed-form formulae for the elas-

tic moduli of hexagonal multiplanar nano-structures. Hexagonal nano-structural forms

are common for various materials. Four di�erent classes of materials (single layer) from a

structural point of view are proposed to demonstrate the validity and prospective appli-

cation of the developed formulae. For example, graphene, an allotrope of carbon, consists

of only carbon atoms to form a honeycomb like hexagonal lattice in a single plane, while

hexagonal boron nitride (hBN) consists of boron and nitrogen atoms to form the hexago-

nal lattice in a single plane. Unlike graphene and hBN, there are plenty of other materials

with hexagonal nano-structures that have the atoms placed in multiple planes such as

stanene (consists of only Sn atoms) and molybdenum disul�de (consists of two di�erent

atoms: Mo and S). The physics based high-�delity analytical model developed in this ar-

ticle are capable of obtaining the elastic properties in a computationally e�cient manner

for wide range of such materials with hexagonal nano-structures that are broadly classi�ed

in four classes from structural viewpoint. Results are provided for materials belonging to

all the four classes, wherein a good agreement between the elastic moduli obtained using

the proposed formulae and available scienti�c literature is observed.
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1. Introduction

The fascinating properties of graphene has initiated an enormous interest among the

scienti�c community for exploration of prospective alternative two-dimensional materials

that could possess exciting electronic, optical, thermal, chemical and mechanical char-

acteristics [1�3]. The intense research in quasi-two-dimensional materials started with

feasible isolation of the single layer carbon atoms [4]. Over the last decade the interest in

this quasi-two-dimensional family of materials has expanded from hexagonal boron nitride

(hBN), BCN, graphene oxides to Chalcogenides like MoS2, MoSe2 and other two dimen-

sional materials like stanene, silicene, sermanene, phosphorene, borophene etc. [5, 6]. It

is however necessary to study these materials at nano-scale as most of the fascinating

characteristics are in atomic scale and single layer forms [7]. Among di�erent such ma-

terials, as discussed above, hexagonal nano-structure is a very prominent structural form

[2]. The common practises to investigate these materials are �rst principle studies/ ab-

initio [8�10], molecular dynamics [11] and molecular mechanics [12], which can reproduce

the results of experimental analysis with an expense of economically expensive and time

consuming supercomputing facilities. Analytical models leading to closed form formulae

are presented by many researchers for materials having hexagonal nano-structures such

as graphene [13, 14] and hBN [15]. An informative study is recently reported considering

analytical mechanical characterization of di�erent such hexagonal monoplanar structural

forms [16]. This approach of mechanical property characterization is computationally

very e�cient, yet accurate. However, the analytical models for hexagonal nano-structures

developed so far are limited to monoplanar structural forms, where all the atoms stay in

a single plane. Most of the quasi-two-dimensional materials, as discussed above, posses a

structural form where the atoms are found to be placed in multiple planes as shown in

�gure 1. From the �gure it is quite evident that even though the nano-structure has a

hexagonal top view, two di�erent atoms (indicated by two di�erent colors) are placed in

di�erent planes (three planes can be clearly identi�ed and the top and bottom planes are

symmetric with respect to the mid-plane). Thus there is a strong rationale to develop a

generalized compact analytical model leading to closed-form and high �delity expressions

for characterizing the mechanical properties of hexagonal multiplanar nano-structures.
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Figure 1: (a) Three dimensional view of multiplanar hexagonal nano-structures along with side views
from two mutually perpendicular directions (b) Top view of multiplanar hexagonal nano-structures

Figure 1 shows a generalized material nano-structure with hexagonal top view, wherein

two di�erent atoms are placed in di�erent planes (such as MoS2). There is a di�erent

class of materials which has same atoms in the hexagonal nano-structure, but placed in
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Table 1: Structural-con�guration based classi�cation of hexagonal nano-materials

Material Type Structural con�guration Description of nano-
materials

Class A
Characteristic property
from structural point of
view : All the constituent
atoms are same and they
are in a single plane (e.g.
graphene [4, 13])

Class B
Characteristic property
from structural point of
view : The constituent
atoms are not same but
they are in a single plane
(e.g. hBN [15, 17], BCN
[18])

Class C
Characteristic property
from structural point of
view : The constituent
atoms are same but they
are in two di�erent planes
(e.g. silicene [19, 20],
germanene [21], phospho-
rene [22], stanene [20, 23],
borophene [24])

Class D
Characteristic property
from structural point of
view : The constituent
atoms are not same and
they are in two di�erent
planes (e.g. MoS2 [25], WS2
[26], MoSe2 [27], WSe2 [26],
MoTe2 [28])
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di�erent planes (such as stanene). Other classes of materials have di�erent atoms in the

hexagonal nano-structure placed in a single plane (such as hBN) and same atom in the

hexagonal nano-structure placed in a single plane (such as graphene). Thus based on

nano-structural con�gurations, the materials with hexagonal nano-structure (top view)

can be divided into four classes as presented in Table 1. From structural point of view,

the other classes of materials are basically special cases of the materials of Class D. Aim of

the present work is to develop generalized closed form analytical formulae for the elastic

moduli of such hexagonal multiplanar nano-structures that can be applicable for wide

range of materials (Class A to Class D). This paper hereafter is organized as follows:

analytical formulae for the elastic moduli of materials with multiplanar hexagonal nano-

structures are derived in section 2; results and discussion on the proposed analytical

approach is provided in section 3 along with validation of the developed formulae for four

di�erent materials belonging to four di�erent classes (graphene, hBN, stanene and MoS2);

and �nally conclusion and perspective of this work is presented in section 4.

2. Elastic properties of hexagonal nano-structures

Generalized closed-form analytical formulae for the elastic moduli of hexagonal multi-

planar nano-structures are developed in this section that is applicable to all the materials

from Class A to Class D (refer to Table 1). The equivalent elastic properties of atomic

bonds are described �rst, and thereby the closed-form expressions of elastic moduli for

generalized multiplaner hexagonal nano-structures are derived. The approach for ob-

taining the equivalent elastic properties of atomic bonds is well-established in scienti�c

literature [12, 14, 29]. Therefore, the main contributing of this work lies in the later part

of this section concerning development of analytical formulae for elastic moduli of mul-

tiplanar hexagonal nano-structures. In this context, it can be noted that the mechanics

of honeycomb-like structural form is investigated extensively in micro and macro scales

based on principles of structural mechanics [30�34].

2.1. Equivalent elastic properties of atomic bonds

In nano-scale investigations concerning atomic level behaviour of materials, the total

inter-atomic potential energy of a system can be expressed as the sum of di�erent indi-
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Figure 2: (a) Top view of hexagonal nano-structures (b) Bond structure in hexagonal nano-materials and
associated energy components (c) Energy component associated with out-of-plane bending (Direction 1
and 2 are indicated in the �gure. Direction 3 is perpendicular to the 1-2 plane.)

vidual energy terms related to bonding and non-bonding interactions [12]. Total strain

energy (E) of a nano-structure is the sum of energy contributions from bond stretching

(Es), bending (Eb), torsion (Et) and energies associated with non-bonded terms (Enb)

such as the van der Waals attraction, the core repulsions and the coulombic energy (refer

to �gure 2).

E = Es + Eb + Et + Enb (1)

Among all the above mentioned energy components, e�ect of stretching and bending are

predominant for small deformation of such nano-structures [14, 29]. However, for the

hexagonal nano-structures where the atoms are not in a single plane (materials belonging

to Class C and Class D as per Table 1), the strain energy due to bending has two com-

ponents. Typically the atoms stay in two di�erent planes (/ two symmetric planes with

respect to the middle layer) in such material structures and the total bending energy (Eb)

consists of in-plane component (Ebi) and out-of-plane component (Ebo). Thus the total
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inter-atomic potential energy (E) can be expressed as

E = Es + Eb

= Es + Ebi + Ebo

=
1

2
kr(∆l)

2 +
1

2
kθ(∆θ)

2 +
1

2
kθ(∆α)2

(2)

where ∆l, ∆θ and ∆α denote the bond elongation, change in in-plane and out-of-plane

Figure 3: (a) Strain energy due to bond stretching (b) Strain energy due to in-plane angle variation (in
1-2 plane) (c) Strain energy due to out-of-plane angle variation (in 1-3 and 2-3 planes)

angle respectively, as shown in �gure 3. kr and kθ are the force constants associated

with bond stretching and bending respectively. The �rst term in the above expression of

total inter-atomic potential energy corresponds to strain energy due to stretching (Es),

while the second and third terms represent the strain energies due to in-plane (Ebi) and

out-of-plane (Ebo) angle variations respectively.

The force constants (kr and kθ) of the bonds between two atoms can be expressed in

terms of the member sti�ness [35]. According to the standard theory of classical structural

mechanics (refer to �gure 4), strain energy of a uniform circular beam with cross-sectional

area A, length l, Young's modulus E, and second moment of area I, under the application

of a pure axial force N can be expressed as

Ua =
1

2

∫ L

0

N2

EA
dl =

1

2

N2l

EA
=

1

2

EA

l
(∆l)2 (3)

The strain energies due to pure bending moment M can be written as

Ub =
1

2

∫ L

0

M2

EI
dl =

1

2

EI

l
(2∆φ)2 (4)

Comparing Equation 3 with the expression for strain energy due to stretching (Es) (refer

Equation 2), it can be concluded that Kr =
EA

l
. For bending, it is reasonable to assume

that 2∆φ is equivalent to ∆θ and ∆α for in-plane and out-of-plane angle variations re-
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spectively (refer to �gure 4(b)). Thus comparing Equation 4 with the expressions for the

strain energies due to in-plane (Ebi) and out-of-plane (Ebo) angle variations, the following

relation can be obtained: kθ =
EI

l
. On the basis of the established relationship be-

tween molecular mechanics parameters (kr and kθ) and structural mechanics parameters

(EA and EI), the e�ective elastic moduli of multiplanar hexagonal nano-structures are

obtained in the following subsections.

Figure 4: (a) A structural element subjected to pure tension (b) A structural element subjected to pure
bending

2.2. Young's modulus in direction-1 (E1)

One hexagonal unit cell is considered to derive the expression for Young's moduli of

the entire hexagonal periodic nano-structure as shown in �gure 5. Because of structural

symmetry, horizontal deformation of the unit cell can be obtained by analysing the mem-

ber AB only. The total horizontal deformation of the member AB (horizontal de�ection

of one end of the member with respect to the other end) under the application of stress

σ1 has three components: axial deformation (δaH), bending deformation due to in-plane

loading (δbHi) and bending deformation due to out-of-plane loading (δbHo).

δH11 = δaH + δbHi + δbHo

=
Hl cos2 ψ cos2 α

AE
+
Hl3 sin2 ψ

12EI
+
Hl3 cos2 ψ sin2 α

12EI

(5)

where A =
πd2

4
, I =

πd4

64
and H = σ1tl(1 + sinψ) cosα. l and d represent the length and

diameter of the member AB respectively. t is the thickness of single layer of such periodic

structural form. The three parts of Equation 5 are derived by considering the respective

deformation components in direction-1. Figure 5(a) and �gure 5(b) show the member AB

using top-view and side-view respectively, wherein the horizontal load H acts at the node

A in the 1-2 plane. Inclination angle of the member AB in the 1-2 plane and 1-3 plane are
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ψ and α respectively, as shown in �gure 5(e). From �gure 5(a) it can be understood that

the horizontal force H has two components: Hsinψ (acting in a direction perpendicular

to the member AB in the 1-2 plane) and Hcosψ (acting in a direction perpendicular to

the force Hsinψ in the 1-2 plane). The Hsinψ component will cause a bending de�ection

∆Hi. The component of ∆Hi in direction-1 is denoted as δbHi in Equation 5. Using the

standard formula of structural mechanics (bending de�ection of one end of a beam with

respect to the other end: δ =
PL3

12EI
, where L is the length of the beam, P is the applied

point load across the beam length [36]) the component δbHi can be expressed as

δbHi = ∆Hisinψ =
Hsinψl3

12EI
sinψ =

Hl3sin2ψ

12EI
(6)

The Hcosψ force can be resolved in two di�erent components in the plane perpendicular

to the 1-2 plane. The component Hcosψcosα causes axial deformation of the member

AB, while the other component Hcosψsinα results in the bending deformation ∆Ho (as

indicated in �gure 5(b)). The horizontal component of ∆Ho in the 1-2 plane is denoted

as δbHo in the Equation 5. Thus we get

δbHo = ∆Hosinαcosψ =
Hcosψsinαl3

12EI
sinαcosψ =

Hl3cos2ψsin2α

12EI
(7)

The horizontal axial deformation component in the 1-2 plane caused by the forceHcosψcosα

is denoted as δaH in the Equation 5. Thus we get

δaH =
Hcosψcosαl

AE
cosψcosα =

Hlcos2ψcos2α

AE
(8)

Using the relationship between molecular mechanics parameters (kr and kθ) and struc-

tural mechanics parameters (EA and EI), form Equation 5, the expression for strain in

direction-1 (due to loading in direction-1) can be written as

ε11 =
δH11

l cosψ cosα

=
σ1tl(1 + sinψ)

l cosψ

(
l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

) (9)

On the basis of the basic de�nition of Young's modulus (E1 =
σ1
ε11

), the closed-form

expression for Young's modulus in direction-1 can be obtained as
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Figure 5: (a) Free body diagram of member AB for in-plane deformation under the application of
horizontal force (b) Free body diagram of member AB for out-of-plane deformation under the application
of horizontal force (c) Free body diagram of member AB for in-plane deformation under the application
of vertical force (d) Free body diagram of member AB for out-of-plane deformation under the application
of vertical force (e) Three dimensional view of a multiplanar hexagonal nanostructure along with top and
side view indicating the in-plane angle (ψ) and out-of-plane angle (α)
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E1 =
cosψ

t(1 + sinψ)

(
l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

) (10)

In the above expression ψ = 90◦ − θ

2
, where θ is the bond angle as shown in �gure 5.

2.3. Young's modulus in direction-2 (E2)

Total vertical deformation of the unit cell under the application of σ2 is consisted of

the deformation of member AB (δV 1) and member BE (δV 2) in direction-2. De�ection of

joint A in direction-2 with respect to joint B has three components: axial deformation

(δaV 1), bending deformation due to in-plane loading (δbV 1i) and bending deformation due

to out-of-plane loading (δbV 1o).

δV 1 = δaV 1 + δbV 1i + δbV 1o

=
V l sin2 ψ cos2 α

AE
+
V l3 cos2 ψ

12EI
+
V l3 sin2 ψ sin2 α

12EI

(11)

where V = σ2tl cosψ cosα. As the member BE is parallel to the 2-3 plane, de�ection of

joint B with respect to the joint E has two components: axial deformation (δaV 2) and

bending deformation due to out-of-plane loading (δbV 2o). It can be noted that the force

acting on the member BE is 2V as there are similar unit cells adjacent to the one being

analysed.

δV 2 = δaV 2 + δbV 2o

=
2V l cos2 α

AE
+

2V l3 sin2 α

12EI

(12)

Replacing the expressions of V , A, I, AE and EI, the total deformation in direction-2

can be obtained from Equation 11 and 12 as

δV 22 = δV 1 + δV 2

= σ2tl cosψ cosα

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

))
(13)
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From Equation 13, the strain in direction-2 (due to loading in direction-2) can be expresses

as

ε22 =
δV 22

(l + l sinψ) cosα

=
σ2t cosψ

1 + sinψ

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (14)

On the basis of the basic de�nition of Young's modulus (E2 =
σ2
ε22

), the closed-form

expression for Young's modulus in direction-2 can be obtained as

E2 =
1 + sinψ

t cosψ

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (15)

In the above expression ψ = 90◦− θ
2
, where θ is the bond angle as shown in �gure 5. Thus

the Young's moduli of a material with hexagonal nano-structure can be predicted using

the closed-form formulae (Equation 10 and 15) from molecular mechanics parameters (kr

and kθ), bond length (l), bond angle (θ) and out-of-plane angle (α), which are available

in the molecular mechanics literature.

2.4. Poisson's ratio ν12

Poisson's ratio for the loading direction-1 (ν12) can be obtained as

ν12 = −ε12
ε11

(16)

where ε12 and ε11 are the strains in direction-2 and direction-1 respectively due to loading

in direction-1. The expression for ε11 is given in Equation 9. Derivation for the expression

of ε12 is provided next. The deformation in direction-2 due to loading in direction-1 can be

obtained by considering one hexagonal unit cell as shown in �gure 5. Because of structural

symmetry, deformation in direction-2 of the unit cell due to loading in direction-1 can be

obtained by analysing the member AB only. The total deformation in direction-2 of the

member AB (de�ection in direction-2 of one end of the member with respect to the other

end) under the application of stress σ1 has two components: bending deformation due to
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in-plane loading (δbV i1) and bending deformation due to out-of-plane loading (δbV o1).

δH12 = δbV i1 + δbV o1

= −Hl
3 sinψ cosψ

12EI
+
Hl3 sinψ cosψ sin2 α

12EI

= −Hl
3 sinψ cosψ cos2 α

12EI

(17)

Using the relationship between molecular mechanics parameter kθ and structural me-

chanics parameter EI, form Equation 17, the expression for strain in direction-2 (due to

loading in direction-1) can be written as

ε12 =
δH12

(l + l sinψ) cosα

= −Hl sinψ cosψ cosα

12kθ (1 + sinψ)

(18)

On the basis of the basic de�nition of ν12 as shown in Equation 16, the closed-form

expression of Poisson's ratio for the loading direction-1 can be obtained as

ν12 =
sinψ cos2 ψ cos2 αl2

12kθ (1 + sinψ)

(
l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

) (19)

In the above expression ψ = 90◦ − θ

2
, where θ is the bond angle as shown in �gure 5.

2.5. Poisson's ratio ν21

Poisson's ratio for the loading direction-2 (ν21) can be obtained as

ν21 = −ε21
ε22

(20)

where ε21 and ε22 are the strains in direction-1 and direction-2 respectively due to loading

in direction-2. The expression for ε22 is given in Equation 14. Derivation for the expression

of ε21 is provided next. The deformation in direction-1 due to loading in direction-2 can be

obtained by considering one hexagonal unit cell as shown in �gure 5. Because of structural

symmetry, deformation in direction-1 of the unit cell due to loading in direction-2 can be

obtained by analysing the member AB only. The total deformation in direction-1 of the

member AB (de�ection in direction-1 of one end of the member with respect to the other

end) under the application of stress σ2 has two components: bending deformation due to
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in-plane loading (δbHi2) and bending deformation due to out-of-plane loading (δbHo2).

δH21 = δbHi2 + δbHo2

= −V l
3 sinψ cosψ

12EI
+
V l3 sinψ cosψ sin2 α

12EI

= −V l
3 sinψ cosψ cos2 α

12EI

(21)

Using the relationship between molecular mechanics parameter kθ and structural me-

chanics parameter EI, form Equation 21, the expression for strain in direction-1 (due to

loading in direction-2) can be written as

ε21 =
δH21

l cosψ cosα

= −V l sinψ cosα

12kθ

(22)

On the basis of the basic de�nition of ν21 as shown in Equation 20, the closed-form

expression of Poisson's ratio for the loading direction-2 can be obtained as

ν21 =
sinψ (1 + sinψ) cos2 αl2

12kθ

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (23)

In the above expression ψ = 90◦ − θ

2
, where θ is the bond angle as shown in �gure 5.

2.6. Remark 1: Reciprocal theorem

From the Equation 10, Equation 15, Equation 19 and Equation 23, it can be noticed

that the reciprocal theorem is obeyed for multiplanar hexagonal nanostructures

E1ν21 = E2ν12 =

sinψ cosψ cos2 αl2
(

l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

)−1

12kθt

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

))
(24)

The above equation implies that only (any) three of the four elastic moduli E1, E2, ν12

and ν21 are independent.

2.7. Remark 2: Non-dimensionalization

The physics based analytical formulae developed in this article are capable of providing

an in-depth understanding of the behaviour of multiplanar hexagonal nano-structures.

14



Non-dimesional quantities in physical systems can cater to an insight for wide range

of nano-scale materials. The expressions for the two Young's moduli (as presented in

Equation 10 and 15) and the two Poisson's ratios (as presented in Equation 19 and 23)

can be rewritten in terms of non-dimensional parameters as

Ẽ1 =
cosψ

(1 + sinψ)
(
λ
(
sin2 ψ + cos2 ψ sin2 α

)
+ cos2 ψ cos2 α

) (25)

Ẽ2 =
1 + sinψ

cosψ
(
λ
(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+ cos2 α

(
sin2 ψ + 2

)) (26)

ν̃12 =
sinψ cos2 ψ cos2 αλ

(1 + sinψ)
(
λ
(
sin2 ψ + cos2 ψ sin2 α

)
+ cos2 ψ cos2 α

) (27)

ν̃21 =
sinψ (1 + sinψ) cos2 αλ(

λ
(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+ cos2 α

(
sin2 ψ + 2

)) (28)

where λ (=
l2

12

kr
kθ
) is a non-dimensional aspect ratio measure of the bonds that is found

to vary in the range of 0.4 to 2.8 for common materials with hexagonal nano-structures.

It is interesting to notice that λ reduces to
4

3

(
l

d

)2

using the de�nition of kr and kθ,

where l and d are the bond length and bond diameter respectively. Thus the parameter

λ is a measure of the aspect ratio of the bonds in hexagonal nano-structure. Ẽ1 =
E1t

kr

and Ẽ2 =
E2t

kr
are non-dimensional representation of the Young's moduli. ν̃12 (= ν12)

and ν̃21 (= ν21) are the non-dimensional Poisson's ratios. Thus it is interesting to notice

that the non-dimensional elastic moduli depend on the aspect ratio of the bond, in-plane

angle and out-of-plane angles only. Results are presented in section 3 considering the

non-dimensional quantities for in-depth mechanical characterization of hexagonal nano-

structures.

2.8. Remark 3: Special cases

For the hexagonal nano-structures belonging to Class A and Class B, α = 0. Thus

Equation 10 and 15 for the materials of Class A and Class B reduce to

E1 =
cosψ

t(1 + sinψ)

(
l2

12kθ
sin2 ψ +

cos2 ψ

kr

) (29)
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E2 =
1 + sinψ

t cosψ

(
l2

12kθ
cos2 ψ +

(
sin2 ψ + 2

)
kr

) (30)

However, for regular hexagonal nano-structures (such as graphene), the bond angle (θ) is

120◦. Thus replacing ψ = 30◦, the Equation 29 and 30 yield to

E1 = E2 =
4
√

3krkθ

t

(
krl

2

4
+ 9kθ

) (31)

The above expression matches with the formula provided by Shokrieh and Ra�ee [14] for

graphene.

Similarly, for the hexagonal nano-structures belonging to Class A and Class B, the

Poisson's ratios can be expressed as (substituting α = 0 in Equation 19 and 23)

ν12 =
sinψ cos2 ψl2

12kθ (1 + sinψ)

(
l2

12kθ
sin2 ψ +

cos2 ψ

kr

) (32)

ν21 =
sinψ (1 + sinψ) l2

12kθ

(
l2

12kθ
cos2 ψ +

(
sin2 ψ + 2

)
kr

) (33)

However, for regular hexagonal nano-structures (such as graphene), the bond angle (θ) is

120◦. Thus replacing ψ = 30◦, the Equation 32 and 33 yield to

ν12 = ν21 =
1

1 +
36kθ
krl2

(34)

It can be noted that the analytical expressions of Poisson's ratios, even for graphene-like

hexagonal structures, are �rst provided in Equation 34 that can be applicable to the

materials of Class A and Class B.

3. Results and discussion

Four di�erent materials with hexagonal nano-structures are considered (graphene,

hBN, stanene and MoS2) that belong to four di�erent classes as categorized in Table 1.

To validate the analytical formulae of elastic moduli derived in the preceding section, the

results are compared with previous studies reported in scienti�c literature (experimental,
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ab-initio, molecular dynamics and molecular mechanics, as available). The proposed ex-

pressions for elastic moduli are generalized in nature and they can be applicable for wide

range of materials with hexagonal nano-structural forms by providing respective struc-

tural parameters as input. Comparative results for the two Young's moduli are presented

in Table 2 as Ē1 = E1 × t and Ē2 = E2 × t (tensile rigidity), where t is the single layer

thickness [12, 15]. Thus the values of Young's moduli (E1 and E2 in TPa) can be ob-

tained by dividing the presented values (Ē1 and Ē2 with unit TPa-nm) by the respective

single layer thickness (t in nm). Single layer thickness of the four considered materials

are indicated in the following paragraphs. Comparative results for the two Poisson's ratio

are presented in Table 3. Good agreement between the results obtained using the derived

closed-form formulae and the results from scienti�c literature for all the four classes of

material corroborates the validity of the proposed analytical approach.

Graphene belongs to the Class A according to structural con�guration, wherein all the

atoms are carbon and they are in a single plane. The molecular mechanics parameters

kr and kθ can be obtained from literature using AMBER force �led [37] as kr = 938 kcal

mol−1nm−2 = 6.52 × 10−7 Nnm−1 and kθ = 126 kcal mol−1rad−2 = 8.76 × 10−10 Nnm

rad−2. The out-of-plane angle for graphene is α = 0 and the bond angle is θ = 120◦

(i.e. ψ = 30◦), while bond length and thickness of single layer graphene can be obtained

from literature as 0.142 nm and 0.34 nm respectively [13]. The value of Young's moduli

obtained using the proposed expressions are: E1 = E2 = 1.0419 TPa, which is quite in

good agreement with available literature [10, 12�14, 38�44] (refer to Table 2).

Hexagonal boron nitride (hBN) belongs to the Class B according to structural con�gu-

ration, wherein two di�erent atoms B and N form the material structure but they are in a

single plane. The molecular mechanics parameters kr and kθ can be obtained from litera-

ture using DREIDING force model [73] as kr = 4.865×10−7 Nnm−1 and kθ = 6.952×10−10

Nnm rad−2 [17]. The out-of-plane angle for hBN is α = 0 and the bond angle is θ = 120◦

(i.e. ψ = 30◦), while bond length and thickness of single layer hBN can be obtained

from literature as 0.145 nm and 0.098 nm respectively [15]. The value of tensile rigidity

(Young's modulus multiplied by thickness) obtained using the proposed expressions are:

Ē1 = Ē2 = 0.2659 TPa-nm, which are quite in good agreement with available literature
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Table 2: Results for Young's moduli of single layer materials with four di�erent classes of nano-structure
as described in Table 1 (results are presented as Ē1 = E1 × t and Ē2 = E2 × t, where t is the single layer
thickness of a particular nano-material)

Material Present Results
(TPa-nm)

Reference results from literature (Ē1 = Ē2) (TPa-nm)

Graphene
(Class A)

Ē1 = 0.3542

Ē2 = 0.3542

Experimental: 0.34 ± 0.034 [38], 0.272�0.306 [39]

Ab initio: 0.350 [40], 0.357 [10], 0.377 [41], 0.364 [42]

Molecular Dynamics: 0.357 [43], 0.343 ±0.01 [44]

Molecular Mechanics: 0.354 [14], 0.3604 [12]

hBN
(Class B)

Ē1 = 0.2659

Ē2 = 0.2659

Experimental: 0.251±0.015 [45]

Ab initio: 0.271 [40], 0.272 [46]

Molecular Dynamics: 0.236 [47], 0.278 [48]

Molecular Mechanics: 0.269 [49], 0.322 [50]

Stanene
(Class C)

Ē1 = 0.0545

Ē2 = 0.0643

Experimental: �

Ab initio: 0.0528 [51]

Molecular Dynamics: �

Molecular Mechanics: �

MoS2
(Class D)

Ē1 = 0.1073

Ē2 = 0.2141

Experimental: 0.211±0.012 [52], 0.1629±0.0603 [53]

Ab initio: 0.141 [54], 0.262 [55]

Molecular Dynamics: 0.150 [56]

Molecular Mechanics: �
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Table 3: Results for Poisson's ratios of single layer materials with four di�erent classes of nano-structure
as described in Table 1

Material Present Results Reference results from literature

Graphene
(Class A)

ν12 = 0.2942

ν21 = 0.2942

Experimental: 0.165 [57]

Ab initio: 0.12�0.16 [58], 0.186 [59], 0.34 [60]

Molecular Dynamics: 0.17 [61], 0.41 [62]

Molecular Mechanics: 0.11�0.12 [63], 0.195 [64],
0.653�0.848 [13], 1.129�1.1441 [65]

hBN
(Class B)

ν12 = 0.2901

ν21 = 0.2901

Experimental: �

Ab initio: 0.2�0.3 [66], 0.211 [67], 0.2�0.24 [66], 0.13�
0.16 [68]
Molecular Dynamics: �

Molecular Mechanics: 0.384�0.389 [69], 0.400�0.405
[69], 0.384�0.389 [69], 0.211 [69], 0.053 [69], 0.2�0.4
[70]

Stanene
(Class C)

ν12 = 0.1394

ν21 = 0.1645

Experimental: �

Ab initio: �

Molecular Dynamics: �

Molecular Mechanics: �

MoS2
(Class D)

ν12 = 0.0690

ν21 = 0.1376

Experimental: �

Ab initio: 0.21 [71]

Molecular Dynamics: 0.29 [72]

Molecular Mechanics: �

19



[15, 40, 45�47, 49, 50, 74�77] (refer to Table 2).

Stanene belongs to the Class C according to structural con�guration, wherein all the

atoms are Sn but they are in two di�erent planes. The molecular mechanics parameters kr

and kθ can be obtained from literature as kr = 0.85× 10−7 Nnm−1 and kθ = 1.121× 10−9

Nnm rad−2 [51, 78]. The out-of-plane angle for stanene is α = 17.5◦ and the bond

angle is θ = 109◦ (i.e. ψ = 35.5◦), while bond length and thickness of single layer

stanene can be obtained from literature as 0.283 nm and 0.086 nm respectively [51, 78�

80]. Published studies concerning the Young's moduli of stanene is very scarce in scienti�c

literature. Thus the presented values of Young's moduli in this paper can serve as future

references. The in-plane sti�ness of stanene reported by Modarresi et al. [51] is 0.04 TPa-

nm irrespective of any direction. However, it should be noted that the in-plane sti�ness

of a material having hexagonal nano-structure depends on the direction of applied stress

according to its de�nition. In-plane sti�ness of a material can be de�ned as follows:

F =
EA

L
∆L = k∆L, where k (=

EA

L
) is the in-plane sti�ness. Here L and ∆L represent

the length of the material along the direction of applied stress and elongation in that

direction respectively. E denotes the Young's modulus along the direction of applied

stress. A is the cross-sectional area for applied stress. Thus, considering the unit cell

shown in �gure 5, the in-plane sti�ness in direction-1 and direction-2 (refer to �gure 2 for

directions) can be expressed as: k1 = E1t
(a
b

)
= Ē1

(a
b

)
and k2 = E2t

(
b

a

)
= Ē2

(
b

a

)
respectively. For stanene the parameters a and b can be calculated from the bond length

and in-plane angle as: a = 0.61 nm and b = 0.46 nm. The value of Young's moduli from

the proposed expressions are: E1 = 0.3166 TPa and E2 = 0.3736 TPa, thereby the tensile

rigidity (Young's modulus multiplied by thickness) in the two directions can be obtained

as: Ē1 = 0.0545 TPa-nm and Ē2 = 0.0643 TPa-nm. As per the above discussion, the

in-plane sti�ness can be obtained from the proposed expressions as: k1 = 0.0723 TPa-nm

and k2 = 0.0484 TPa-nm. Thus the in-plane sti�ness in direction-2 calculated using the

present formulae is quite close to the values provided by Modarresi et al. [51], wherein

the results are reported presumably considering the direction-2 (refer to Table 2).

Molybdenum disul�de (MoS2) belongs to the Class D according to structural con�g-

uration, wherein two di�erent atoms Mo and S form the material structure and they are
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in two di�erent planes. The molecular mechanics parameters kr and kθ can be obtained

from literature as kr = 1.646 × 10−7 Nnm−1 and kθ = 1.677 × 10−9 Nnm rad−2, while

the out-of-plane angle, bond angle, bond length and thickness of single layer MoS2 are

α = 48.15◦, θ = 82.92◦ (i.e. ψ = 48.54◦), 0.242 nm and 0.6033 nm respectively [25, 81�85].

The value of tensile rigidity (Young's modulus multiplied by thickness) obtained using the

proposed expressions are: Ē1 = 0.1073 and Ē2 = 0.2141 TPa-nm, which are quite in good

agreement with available literature [52�56, 86] (refer to Table 2).

The results for Poisson's ratios obtained from the proposed analytical formulae are

provided in Table 3 along with reference values from literature. The reported values

in literature for graphene and hBN show wide range of variability, while the reference

values of Poisson's ratios for stanene and MoS2 are very scarce in the scienti�c literature.

The results obtained using the proposed formulae agree well with majority of the reported

values for Poisson's ratios. However, it is noteworthy that for graphene and hBN ν12 = ν21,

while for stanene and MoS2 ν12 < ν21. The reciprocal theorem is satis�ed perfectly for all

the four classes of materials.

The physics based analytical formulae presented in this article are capable of provid-

ing a thorough insight regarding the behaviour of multiplanar hexagonal nano-structures

representing wide range of materials. Variations of the two non-dimensional Young's

moduli (Ẽ1 and Ẽ2) and the two Poisson's ratios with in-plane and out-of-plane angles

(θ and α) for di�erent values of the aspect ratio measure (λ) are presented in �gure 6

and 7 using the non-dimensional parameters as described in subsection 2.7. The aspect

ratio measure of the bonds (λ) varies in the range of 0.4 to 2.8 for common materi-

als with hexagonal nano-structures (speci�cally in case of the four considered materials:

λ = 1.2507, 2.495, 0.5061, 0.479 for graphene, hBN, stanene and MoS2 respectively). It is

observed that the sensitivity of the out-of-plane angle is lesser compared to in-plane angle

for both the non-dimensional Young's moduli on the basis of the slopes in two perpendicu-

lar directions of the surface plots. Such plots can readily provide the idea about the elastic

moduli of any material with hexagonal nano-structure in a comprehensive manner; exact

values of the elastic moduli can be easily obtained using the proposed computationally

e�cient closed-form formulae.

21



λ Ẽ1 Ẽ2
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2.8

Figure 6: Variation of Young's moduli with in-plane bond angle (θ) and out-of-plane angle (α). Here

λ =
l2kr
12kθ

, Ẽ1 =
E1t

kr
, Ẽ2 =

E2t

kr
, where l and t are the bond length and single layer thickness.
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Figure 7: Variation of Poisson's ratios (ν̃12 = ν12 and ν̃21 = ν21) with in-plane bond angle (θ), out-of-plane

angle (α) and λ (=
l2kr
12kθ

)
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It is interesting to notice from the presented results that for graphene and hBN,

E1 = E2 and ν12 = ν21, while for stanene and MoS2, E1 < E2 and ν12 < ν21. In a broader

sense, materials having regular hexagonal nano-structures with θ = 120◦ and α = 0◦ (

Class A and Class B) have equal value of elastic modulus in two perpendicular directions.

However, for materials belonging to Class C and Class D, the elastic modulus for direction-

2 is more than that of direction-1, even though the di�erence is not signi�cant. Similar

trend is found to be reported for MoS2 by Li [87]. A major contribution of this article

is development of the generalized closed-form formulae for hexagonal nano-structures

having the atoms in multiple planes. Mechanical properties such as Young's moduli

and Poisson's ratios are of utmost importance for accessing the viability of their use in

various applications of nanoelectromechanical systems. The formulae for elastic moduli

presented in this article can serve as an e�cient reference for any nano-scale material

having hexagonal structural form.

4. Conclusion

Generalized closed-form analytical formulae for the elastic moduli of hexagonal mul-

tiplanar nano-structures are developed in this article. From the nano-structural point of

view, the materails having hexagonal structural forms are categorized in four di�erent

classes. The proposed analytical formulae are applicable to all the classes of material.

Four di�erent materials belonging to the four di�erent classes (graphene, hBN, stanene

and MoS2) are considered to present results based on the analytical approach. Good

agreement in the results obtained from the derived analytical expressions and scienti�c

literature corroborates the validity of the proposed formulae. The physics based analyti-

cal formulae developed in this article are capable of providing a comprehensive in-depth

insight regarding the behaviour of such multiplanar hexagonal nano-structures. The ef-

fect of variation in in-plane and out-of-plane angles to the elastic moduli of materials are

investigated using the closed-form formulae based on non-dimensional parameters. An

attractive feature of the analytical approach is that it is computationally e�cient and

easy to implement, yet yields accurate results. As the proposed formulae are general

in nature and applicable to wide range of materials with hexagonal nano-structures, the
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present article can take a crucial role for characterizing the material properties in future

nano-materials development.
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