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Integral Formulations
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Efficient boundary integral formulations based on stream functions for solving eddy current problems in thin conductors, which
are modeled by the orientable combinatorial two-manifold with boundary, need generators of the first relative cohomology group
to make the problem well defined. The state-of-the-art technique is to compute directly the relative cohomology generators with
a combinatorial algorithm having linear worst-case complexity. In this paper, we propose to compute the relative cohomology
generators from the homology generators, introducing a novel and general algorithm whose running time is again linear in the
worst case. The advantage is that one may use an off-the-shelf software to compute the homology generators and implement only
a simple and cheap procedure to obtain the required relative cohomology generators. Although the presented applications relate to
ac power systems, the proposed technique is of general interest, and may be used for other applications in computational science

and engineering.

Index Terms—Boundary integral (BI) formulation, eddy currents, homology, relative cohomology generators, stream function.

I. INTRODUCTION

DDY current problems in thin conducting sheets can

be solved by employing efficient boundary integral (BI)
formulations based on stream functions [1]. By modeling
the conducting sheet as an orientable combinatorial two-
manifold  with boundary o/C [2], such BI formulations
require the relative cohomology generators H'(K,6K) to
make the problem well defined [3], [5]. For a formal introduc-
tion of algebraic topology, see [2]. Informal presentations for
electrical engineers may be found, for example, in [3] and [4].
How to compute the required relative cohomology generators
for a general two-manifold is non-trivial and remained an
open issue for a long time [6]-[8]. Nowadays, the state-
of-the-art technique in the context of BI formulations is to
compute directly the relative cohomology generators, e.g., the
combinatorial algorithm introduced in [5], which is general
and exhibits a linear worst case complexity. Yet, a different
approach has also been considered in literature: the relative
cohomology generators may be obtained from the homology
generators in post-processing.

Let us always assume that the two-manifold is oriented,
and each input representative h of the homology generator
is not self-intersecting, and that its support |h| is a loop of
edges. This is the case for the representatives of the homology
generators produced by the algorithms that compute homology
with interdigitated spanning trees [9] on the primal and dual
complexes. The idea, introduced in [9], is to construct a
representative of the cohomology generator by taking as its
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support all the edges lying on one side of |h|. If K is without
boundary, the algorithm produces absolute cohomology
generators H ' (K).

A practical advantage of the homology-based technique
with respect to [5] is that one may use the off-the-shelf
software to compute homology generators and then build
the required relative cohomology generators with a simple
and cheap procedure. In fact, there are many codes available
for computing homology, whereas computing cohomology—
especially the relative one—is much less explored, and as
far as we know, no efficient implementation with linear time
complexity is available as open-source software, yet.

This is exactly the philosophy followed recently in [10] in
which the authors claim to have extended the algorithm pre-
sented in [9] to the general case of two-manifolds with bound-
aries and handles. However, in Section III, we present some
examples that show the lack of generality of this approach.

The main aim of this paper is thus to introduce a novel
algorithm to produce the relative cohomology generators
from the homology generators of the arbitrary orientable
two-manifolds that does not suffer from such shortcomings.
Apart from the application to the BI formulations for eddy
currents, there are many others that would benefit from
such an algorithm. For example, it can be used for the
computation of the harmonic fields for post-processing and
volumetric parametrization, and for the generation of a relative
cohomology basis for volumetric integral formulations or for
finite element method—boundary element method.

The paper is organized as follows. Section II discusses
whether absolute or relative cohomology should be employed
in eddy currents BI formulations under standard boundary
conditions. Section III presents some critical examples for
an algorithm presented in literature to compute the rela-
tive cohomology generators from the homology generators.

0018-9464 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Support of the representative h! of the H'(K, oK) generator
for an annulus. ¢; (dashed edges, blue in the color version of this paper)
is the support of a chain non-trivial in H{(IC, 0K). (b) Support of the
representative al of the absolute H'(K) generator for the annulus. Dotted
loop is the support |hj| of a representative h of the H{(K) generator.

Section IV introduces a novel algorithm that does not suffer
from this lack of generality. Section V shows the performances
of the new algorithm on a few practical benchmarks. Finally,
Section VI draws the conclusion.

II. ABSOLUTE OR RELATIVE COHOMOLOGY?

Let us consider a conductive sheet, which is an annulus
covered by a triangular mesh [in Fig. 1(a) (gray)] whose
topology is encoded in the cell complex K. We denote as G
the incidence matrix between edges and node pairs. To prevent
current from flowing out of the sheet, the coefficients of the
stream function O-cochain ¥ related to the boundary nodes
have to be set to zero. This way, the current 1-cocycle I defined
as GV vanishes on the boundary of the conductor.

A problem in simply defining I = GW arises when an
independent current i; [7] flows around the annulus. This
current, in fact, cannot be represented by the stream function
alone, given that the evaluation of GW¥ on any 1-cycle
non-trivial in H{(K,0K) [e.g., ¢; in Fig. 1(a)] vanishes.
Indeed, such evaluation is the difference of the scalar potential
on the ending and starting node of the one cycle, and these
two potentials are both zero in the case of c¢;. A fool-proof
solution of this issue involves the use of cohomology theory.
By definition, a l-cochain a' is non-trivial in the first
(absolute) cohomology group H!(K) if it achieves the
following.

1) Itis a l-cocycle, i.e., a curl-free discrete field such that
Ca' = 0, where C is the matrix that stores the incidence
between polygons and edges.

2) It is not a l-coboundary, i.e., it cannot be written as
a! = Gp, where p is an arbitrary 0-cochain.

The support of a non-trivial element a! of H'(K) for the
annulus is represented in Fig. 1(b).

The absolute cohomology group is not suitable for the
BI formulations in general. In fact, the support of 1-cycles
non-trivial in H'(K) may involve edges on the boundary of
the conductor, as it happens in al in Fig. 1(b). This would
violate the boundary conditions, as it will be evident soon.
That is the reason why we need the cocycles to have zero
coefficients on 0/C. A 1-cocycle non-trivial in the first relative

Fig. 2. (a) Thick blue dotted loop represents the support of the represen-
tative hy of the homology generator. The edges on one side of the loop are
the support of the representative h! of the relative cohomology generator.
(b) It is clear that the technique proposed in [10] cannot work in this case.

cohomology basis H'(KC, aK) fulfills the two aforementioned
properties, and it also avoids boundary edges in its support. For
example, the support of a non-trivial element h! of H!(IC, 5K)
for the annulus is represented in Fig. 1(a).

The generators of H'(C, 3K) are by definition a minimal
set of non-trivial elements of H'(K, 8K), such that an arbi-
trary current 1-cocycle I may be written as a linear combina-
tion of them plus the coboundary of the scalar potential

L1(K)
I=GV+ Z irh*
k=1

(1

where f1(K) is the first Betti number of K and {ik}fl:(l’C )is a
set of independent currents [7].

In the annulus example of Fig. 1(a), it is clear that with def-
inition (1), the current through every relative 1-chain homol-
ogous to ¢; is going to be always i1. It should be now clear
why absolute cohomology generators [as the representative a'
in Fig. 1(b)] are not the right choice in this setting. Note that
the generator in [10, Fig. 1] is a representative of a relative
cohomology generator, even if in this paper only the absolute
cohomology generators are discussed.

III. COHOMOLOGY FROM HOMOLOGY: CRITICAL CASES

This section discusses the possible issues related to the
extension of the algorithm presented in [9] to the case of
orientable combinatorial two-manifolds with general topology.
The idea behind the algorithm can be seen in Fig. 2(a). The
triangles represent the mesh of an annulus. The algorithm
starts from the given representative h; of the homology gener-
ator, whose support |h;| is the set of thick blue dotted edges.
The support of the representative of the relative cohomology
generator may be retrieved as all edges that lie on one side
of the loop |h;| and have exactly one node in their boundary
in common with the support of the loop (black thick edges).
This is the procedure performed by the algorithm in [10].
We remark that, thanks to Lefschetz—Poincare duality [2], the
homology generators can be put in one to one correspondence
to a relative cohomology generator

H{(K) = HY(K, 0K). 2)
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Fig. 3. Mesh of an annulus represented in gray. The thick dotted cycle
represents the support of the shortest representative h3 of the homology
generator.

Despite its apparent simplicity, this algorithm may fail.
As a first example, consider Fig. 2(b) in which the repre-
sentative of the homology generator touches both connected
components in the boundary of the two-manifold. In this
case, the implementation of the algorithm in [10] will fail
because there is no room on either side of the support of the
representative hy of the homology generator to accommodate
the support of the representative of the relative cohomology
generator. Yet, the representative hy is in the same homology
equivalence class as hj, and since the code producing the
homology generators is supposed to be a black box, there
is nothing one can do to avoid this situation in general.
One may try to solve this issue by considering the shortest
basis of homology generators. Nonetheless, also this approach
will fail in some cases, e.g., the counter-example in Fig. 3.
Special techniques can be devised to address these problems;
however, the resulting algorithm will not be as simple as in
its original spirit.

IV. NOVEL TWO-SIDED ALGORITHM

A general and robust novel algorithm to compute the
relative cohomology generators from the homology generators
is presented in this section. The proposed two-sided (TS)
algorithm is based on the idea of perturbing the loop |h| into
a neighboring dual loop (i.e., a loop made of dual edges).
Thus, this dual loop is the support of a 1-cycle ¢ on the
dual complex K. Such perturbation is performed locally for
every node of |h| by adding a suitable topologically trivial
surface. This guarantees that the homology class of h and ¢
is the same. First, consider the node n; in Fig. 4(a). Pick the
dual face f] dual to ny. Such dual face is always partitioned
into two surfaces by cutting it across the edges in |h].
We note that there are always two of such edges, since |h]| is
not self-intersecting. Pick the boundary of one of such surfaces
(for example, the red one referring to the color version of the
paper), and add it to h to obtain as supporting the thick dotted
loop in Fig. 4(a). Not always we can choose between two
surfaces. For example, once we consider the local modification
of ny in Fig. 4(b), due to the presence of the boundary of /C,
only one of the two surfaces is suitable for our purpose (again,
the red one in the color version of the paper). So these are
the only two cases that may happen. In fact, there is always
at least one of such good surfaces due to the fact that C is a
manifold with boundary.
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Fig. 4. Mesh of an annulus represented in gray. The thick dotted loop
represents the support |h| of the given representative h of the homology
generator. Example of the local modifications of |h| for the nodes (a) nj
and (b) n.

Fig. 5. Two possible configurations in the neighborhood of node nj. (a) Two
adjacent surfaces are chosen on the same side with respect to the |h| loop.
(b) Two adjacent surfaces are chosen on the opposite side with respect to the
[h| loop.

In principle, by choosing the surface to be added randomly,
one may treat each node of |h| in parallel, since each local
modification does not rely on what happens in the neighboring
nodes. We note that two cases may arise, once we consider
the superposition of effects of the two local modifications
(see Fig. 5). In the first case [Fig. 5(a)], two adjacent surfaces
are chosen on the same side with respect to |h| loop, whereas
in the second case [Fig. 5(b)], the surfaces are chosen on the
opposite side. In the first case, the two portions of dual edge
cancel out (since the dual loop |¢| goes in the middle point
of the edge, and then goes back through the same dual edge)
leaving a piece of path on the dual complex. In the second
case, the two portions are added to form an entire dual edge
that crosses |h]|.

Once all the nodes in |h| have been treated, we obtain a
dual I-cycle €, which is in the same homology class as h
[see Fig. 6(a)]. ¢ may be represented with an array of integer
coefficients, one for each dual edge. Thanks to (2) and the
duality between the primal and dual complex, if we interpret
the same array as the coefficients of a 1-cochain on the primal
complex, we get the representative ¢ = D(€) of a H'(K, 6K)
generator [see Fig. 6(b)], where D is the map between the
corresponding elements of the primal and dual complex.
The basis property of the obtained H!(/C, 9K) generators is
inherited from the homology basis provided as input.

In the algorithm that we are about to describe, our aim
is to get the representative ¢ from h. Let us fix two edges
E|,E; € K such that E{ N Ey # (. Let us define the
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a) b)

Fig. 6. (a) Once all the nodes are treated, one obtains a dual cycle ¢ whose
support is |€| (in red in the color version of the paper). (b) Edges of K dual
to the edges in |¢| form the support of the relative cohomology generator c.

Fig. 7. (a) For the configuration represented in the figure, the propagation
edges Pg g, are py, pp, and p3. The associated collection of 2-cells is Tp,
T1, T», and T3. (b) Sets Z and O for the same configuration.

propagation edges Pg, g, between E| and E» as any collection
of edges pi,..., pm (without repetitions), such that there
exists a collection of 2-cells Ty, T1, ..., T, such that Eq,
p1 € 0Ty, pi,piv1 € 0T; fori € {1,...,m — 1} and
Pm, E2 € 0Ty, [see Fig. 7(a)]. Note that since K is a manifold
with boundary, for every two l-cells E£1 and E; such that
E1NEy # (), there is at least one and at most two collections
of the edges in Pg, E,.

Given n = E| N E3, let us now introduce the propagation
cochain pg, g, as the l-cochain whose eth coefficient is
defined as follows:

Gle,nl, Ve€ Pg,
PE,.E,le]l = %G[e, n], fore=E;, E 3)
0, elsewhere.

The TS algorithm works as follows. By h[e], we denote the
coefficient of the 1-chain h related to the edge e. For every
node n in the loop |h| and for every pair of edges £ and E; in
|h| such that E1N Ey = n, first, the algorithm finds pg, g, , for
example with a standard local breadth-first search. For each
computed pg, g,, we also need to know which side of the
loop |h| we are in (see Fig. 5).

To get this information, let us observe that, given a
consistent orientation on the top-dimensional cells of
and an oriented loop |h|, the set of 2-cells (S such that
0S| N |h] # @) can be partitioned into two sets: the ones
where 0S[|6S]| N |h|] = h[|6S]| N |h|], called Z, and the ones
where dS[|0S| N |h|] # h[|6S|N|h|], called O [see Fig. 7(b)].

IEEE TRANSACTIONS ON MAGNETICS, VOL. 52, NO. 10, OCTOBER 2016

Algorithm 1 Pseudocode of the TS Algorithm

Require: two-manifold with boundary I,
intersecting, 1-cycle h in K

1: ¢, l-cocycle, initially all zeros

2. N = UEeIhI oE

3:foralln e N do

4:  Find pg, g, with E1, E> € |h| and n € 6E1 N OE>

5: o =C[Tp, E1]-h[E{]

6: ¢c=C+0 -PEE,

7: end for

8: Return ¢
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Fig. 8.  (a) Input mesh of a shield. Dashed lines: support of the five
representatives of a H{(K) basis. (b) Thick edges are the support of the
representatives of the H ](IC, oK) generators.

It is easy to verify that the 2-cells from Z and O lie on
the opposite sides of |h|. The TS algorithm will orient the
constructed cocycle toward the 2-cells of Z. To do that, we
need to keep track of which side of the loop |h| we are on, and
pick the orientation of the propagation cochain accordingly.
This information is given by o, which is computed in line 5 of
Algorithm 1, where Ty, as in the definition of the propagation
edges, is the first 2-cell in Pg, g, and C is a sparse matrix,
which contains the incidence between faces and edge pairs. For
example, in the configuration presented in Fig. 7(b), 0 = —1.
This way, if the local modifications to adjacent pairs of edges
in |h| are on the opposite sides of |h| [as in Fig. 5(b)], the
two half edges that result from (3) will add up to 1 or —1;
otherwise, [if they are, as in Fig. 5(a)] they will cancel each
other out.
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Fig. 9. (a) Input mesh of a shield part of a fusion device. Dashed lines:
support of the 103 representatives of a Hy (/) basis. (b) Thick edges are the
support of the representatives of the H Lk, 0K) generators.

The 1-cochain ¢ produced by the TS algorithm is a
I-cocycle, since for every 2-cell S € Pk, g,, |0S|N]|c| consists
of two edges that are oriented both as sources or both as
sinks with respect to the node n. Therefore, they have opposite
incidence with respect to the boundary of S. Moreover, since
the 1-cycle dual to ¢ is in the same homology class as h, ¢ is
the representative of a H!(C, 8KC) generator.

V. NUMERICAL EXPERIMENTS

In this section, we present the validation of the TS algorithm
on some benchmarks of practical interest. The algorithm
has been implemented in C++, and all computations have
been run on a Intel(R) Core(TM) i7-6500U CPU running
at 2.50 GHz with 8 GB of RAM memory. For homology
computation, we used the dual version of the efficient tech-
nique described in [5]. Yet, we remark that one may use
any black box software that computes the first homology
group generators. The output of this computation is fed to the
TS algorithm. We remark that the running time of the imple-
mented TS algorithm is always well under one second, even
on the meshes of millions of triangular elements; therefore, the
possible parallelism of the algorithm has not been exploited.

Fig. 8(a) shows a mesh of a part of a shield for a three-
phase ac component, homeomorphic to a twofold torus with
two holes, inspired by [6]. Dashed lines represent the support
of the five representatives of a H1(K) basis, while in Fig. 8(b),
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Fig. 10.  (a) Computational time, in milliseconds, required by the TS

algorithm on the example of Fig. 8, with respect to the number of millions
of edges in the mesh. (b) Computational time, in milliseconds, required for
the TS algorithm on the same example, but with respect to the size of the
support of the 1-homology generators (the number of nodes is equal to the
number of edges, since the input is a set of loops).
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Fig. 11. Eddy currents induced in the first shield by a three-phase busbar
system where the source ac currents at 50 Hz flow through the cylinders. The
mesh consists of 6500 triangular elements and 3301 nodes.

the thick edges belong to the support of the correspondent
representatives of relative cohomology generators.

Fig. 9(a) shows a mesh of another shield, part of a fusion
device, i.e., homeomorphic to a torus with 102 holes. Dashed
lines represent the support of the 103 representatives of
a Hi(K) basis, while in Fig. 9(b), the thick edges belong to
the correspondent representatives of the H' (K, 0K) generators
(101 due to holes and two due to the handle of the torus). For
the sake of clarity, we show a coarse mesh with 11593 trian-
gles and 6187 nodes. We tested the procedure on a finer mesh
with 794 802 triangles and 399 589 nodes. The running time of
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Fig. 12.  Eddy currents induced in the second shield by a uniform field
(B=1T and f =100 Hz). The mesh consists of 11593 triangular elements
and 6187 nodes.

the TS algorithm on such refined mesh is still a mere 30 ms.
Instead, in Fig. 10, we show how the computational times
behave with respect to increasing the number of elements in
the input mesh and the consequent increase of the support of
the input.

Finally, Figs. 11 and 12 validate the TS algorithm by
computing the eddy currents that are induced on the shields
and by verifying that they are the same, up to linear solver
tolerance, as the ones obtained as described in [5]. To solve
the problem with a BI formulation on the refined meshes,
full matrices have been sparsified according to the technique
described in [11].

VI. CONCLUSION

This paper introduces a TS algorithm to produce the relative
first cohomology group generators from a first homology
group basis provided as input that may be obtained with any

IEEE TRANSACTIONS ON MAGNETICS, VOL. 52, NO. 10, OCTOBER 2016

black box software. The TS algorithm is general, and shows
an optimal computational complexity, which should spread its
use in industrial applications.
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