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Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many
parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for
operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though,
this is no longer the case, as in the most general case, analyzing the effect of the operation on the system
requires a full state tomography for which resources scale exponentially with the system size. Furthermore,
in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have
been used to enhance the capabilities of quantum-information processors, which additionally increases the
number of parameters that need to be controlled. For the optimization of the experimental system for a
given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient
observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to
optimize the encoding procedure for a small quantum error correction code in the presence of unknown but
constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum

computer, is readily applicable to other AMO platforms for quantum-information processing.

DOI: 10.1103/PhysRevX.6.031030

I. INTRODUCTION

The faithful execution of quantum algorithms, even on
small-scale prototype quantum computers, poses formi-
dable control requirements [1]. The influence of a multitude
of error sources and control parameters needs to be
characterized and minimized in order to enable overall
high-fidelity operations. Within the field of quantum
control and optimization, many techniques have been
developed [2—8] to characterize noise and decouple quan-
tum systems to the highest possible degree from their
environment. This allows one to increase the fidelity of
desired target quantum operations under the remaining,
ultimately unavoidable, residual sources of imperfections.

In particular, in a bottom-up approach to building
quantum-information hardware, one usually optimizes
the performance of individual building blocks such as,
e.g., single- and two-qubit gate operations. In principle,
imperfections in few-qubit operations can be characterized
by full quantum process tomography. However, it is much
more practical to use prior understanding of the dominant
underlying noise processes to design an efficient protocol
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to characterize, validate, and finally reduce the resulting
error sources.

In the following, we will separate the imperfections into
a nonreversible coupling to a larger environment [9,10],
including fluctuations of control parameters on the one
hand and unknown but constant unitary operations on the
other hand. The latter errors can, in principle, be compen-
sated by measuring the unknown operation and applying
the inverse operation onto the system. Simple laboratory
examples are the systematic single-qubit phase shifts,
which arise, e.g., if the frequency of the field driving the
qubit does not perfectly match the qubit transition fre-
quency [11]. This transforms an initial state a|0) + f|1)
into a|0) + Be'®|1) with an unknown but constant phase ¢.
The phase shift ¢ can be measured systematically with
Ramsey-type experiments [12,13] and furthermore com-
pensated for by applying one single-qubit rotation
Ucomp = €xp(ihZ/2), where Z denotes the third Pauli
matrix [14]. This Ramsey-based phase detection and
compensation technique can be extended to certain classes
of multiqubit states, such as, e.g., n-qubit GHZ states,
a|0)®" + Bei®|1)®" [14].

More general unitary errors can only be characterized by
full quantum state tomography, which scales exponentially
with the number of qubits. Thus, it is highly desirable to
design protocols that allow one to efficiently and precisely
determine specific systematic errors. An important class of

Published by the American Physical Society
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such errors are unknown, though systematic, relative
phases between the components of more complex quantum
states. It should be noted, that the propagation of single-
qubit phase shifts through complex algorithms cannot be
measured efficiently with generic methods that are algo-
rithm independent.

In this work, we introduce and experimentally demon-
strate a method that allows one to compensate systematic,
unknown, but constant phase-shift errors that arise in the
encoding procedure of small quantum error correcting
codes [15]. We theoretically outline the protocol, numeri-
cally study its performance, and discuss how it was
successfully used in a recent experimental realization of
a seven-qubit quantum error correcting code with trapped
ions [16]. The iterative optimization protocol does not rely
on full quantum state tomography [14,17], and further-
more, it is found to converge very rapidly for small
quantum error correcting codes. As a consequence, the
method can be experimentally applied “in situ”; i.e., it can
be applied in real time to optimize the experimental
performance. In fact, in the experiments of Ref. [16], the
measurements and feedback steps required by the algo-
rithm to optimize the overall performance of the whole
encoding circuit were performed within a total time of a few
minutes. This is short compared to typical time scales on
which systematic parameter drifts take place [18]. Here, we
apply the protocol to a case where the encoding of logical
states was achieved by a circuit of unitary gate operations.
However, similar scenarios where systematic, constant
phase shifts will arise in measurement-based encoding
protocols can be addressed by the proposed technique
[19,20]. Furthermore, the method is readily applicable to
other physical platforms for quantum-information process-
ing, such as, e.g., Rydberg atoms [21-23] in optical lattices
[24-26] or tweezer arrays [27,28].

In the following two sections, we first briefly review
some basic properties of the implemented seven-qubit
quantum error correcting code [29,30] and then present,
in some detail, the experimental procedure used for the
encoding of logical quantum states. The latter discussion
aims at illustrating under which conditions the systematic
phase-shift errors that our protocol tackles arise in the
particular experiment of Ref. [16]. Similar errors are
expected to occur in other atom- or solid-state based
architectures [31-36], in particular, those that exploit
multilevel systems to enhance the systems’ capability.

A. Ideal encoding of a seven-qubit quantum
error correcting code

In Ref. [16], a seven-qubit quantum error correcting code
has been demonstrated. This particular code corresponds to
the seven-qubit Steane code [29] and also represents the
smallest instance of a 2D topological color code [30]. Since
the realized quantum error correcting code belongs to the
class of CSS codes [14,37], the code space is generated as

the simultaneous +1 eigenspace of a set of mutually

commuting stabilizer operators S,@ and Sgi), which are
the product of Pauli X and Z operators, respectively,
associated with subsets {i} of qubits; see Fig. 1(a). Each

generator is of X or Z type so that S |y), = S |y), =
+|y), holds for all subsets {i} and any encoded logical
state |y), . A seven-qubit code with subsets as illustrated in
Fig. 1 represents the minimal instance of a 2D color code.
There, each plaquette involves four physical qubits and
hosts one four-qubit X- and Z-type stabilizer.

Encoding of a logical state |y), thus amounts
to preparing the system of physical qubits in the +1
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FIG. 1. Schematics of the implemented seven-qubit quantum
error correcting code and the encoding sequence. (a) One logical
qubit is encoded in seven physical qubits forming a two-
dimensional triangular planar structure of three plaquettes. The
code space is defined as the simultaneous +1 eigenspace of a set
of six four-qubit stabilizer operators associated with the plaque-
ttes. (b) Physical qubits are encoded in (meta)stable electronic
states of a string of seven “°Ca* ions. The computational sub-
space of each physical qubit is spanned by the two electronic states
428, (m; = —1/2) (|1)) and 32 D55 (m; = —1/2) (|0)). Another
pair of states [32Ds),(m;=-5/2) and 3’Ds,,(m;=-3/2)] is
used to spectroscopically decouple individual ion qubits. Red
arrows indicate sequences of pulses that are applied to realize this
coherent decoupling (see Ref. [16] for more details). Decoupled
ions [indicated by dashed lines in (c)] ideally will not participate in
subsequent dynamics, until they are recoupled, i.e., coherently
transferred back into the computational subspace [solid lines in
(c)]. This technique enables the application of entangling gate
operations, which, in this setup, are implemented by illuminating
the entire ion string by a global laser beam [18], to subsets of four
qubits belonging to a given plaquette. (c) The logical qubit is
encoded by coherently mapping the product input state [1010101)
onto the logical state |0); [see Eq. (1)]. The quantum circuit
combines spectroscopic decoupling and recoupling operations
(white boxes) with plaquette-wise entangling operations that
effectively create GHZ-type entanglement between qubits belong-
ing to the same plaquette.
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eigenspace of all stabilizers. The logical state |0),, for
instance, being a +1 eigenstate of the six plaquette
generators as well as of the logical Z operator,
Z, =11j-1 Z;, is explicitly given by the following super-
position of 2° = 8 computational basis states:

1
= ——=(/0000000) + |0110110) + 1111000
) = 75 (10000000} +[0110110) +[1111000)

+[1001110) + [0011011) 4 [0101101)
+ [1100011) 4 [1010101)). (1)

B. Experimental encoding and origin of systematic
phase shifts

In Ref. [16], the outlined seven-qubit quantum error
correcting code was realized using a string of seven trapped
40Ca* ions in a linear Paul-trap-based quantum computing
architecture [18]. Each of the ions hosts one physical qubit
encoded in the computational subspace spanned by two
(meta)stable, electronic states, as shown in Fig. 1(b).

Arbitrary operations can be applied to the quantum
register with the following universal set of operations:
Single-qubit rotations can be realized by a tightly focused
laser beam illuminating single ions of the string, whereas
collective (nonentangling) rotations can be implemented by
a beam that collectively and homogeneously illuminates the
entire string of n ions (see Ref. [18]). In addition, a
bichromatic laser field, illuminating the entire string of
ions, is used to implement a collective, n-qubit Mg@lmer-
Serensen (MS) entangling gate operation [38,39]. Any
arbitrary unitary operation can be realized by a sequence of
these operations that can be found using refocusing
techniques originally developed in NMR [40] or numerical
optimization routines [41].

It is possible to extend the experimental toolbox by using
more electronic levels than only the two electronic states of
the qubit. This allows one to realize entangling operations
on subsets of ions with less overhead than any known
optimized sequence. lons hosting physical qubits that are
not supposed to participate in a given entangling operation
are coherently transferred to an additional set of metastable
electronic states that do not couple to the field that
generates the operations, as shown in Fig. 1(b). The
quantum state of these decoupled ions will ideally remain
unaffected by the operation of the globally applied,
bichromatic laser field driving the qubit transition and
implementing the collective entangling MS gate operation.
Subsequently, decoupled ions can be recoupled by coher-
ently mapping their state back into the qubit subspace.

This extended set of operations was used in Ref. [16] to
realize the encoding of an initial logical state, say |1),, by a
unitary circuit: There, the seven-ion system was initially
prepared in a product state, say |1010101), thus being
already a +1 eigenstate of the set of three Z-type stabilizer
operators. Preparation of the seven-qubit system in the +1

eigenspace of the X-type stabilizers was then realized by a
sequence of three entangling operations, each acting on
subsets of four qubits belonging to the three plaquettes of
the code, respectively [see Fig. 1(c)]. Each of the effective
four-qubit MS gates creates GHZ-type entanglement
between the four qubits belonging to a given plaquette.
The entangling gates were interspersed by a series of on-
the-order-of-hundred single-ion pulses (see Ref. [16] and
supplemental material therein for details) to spectroscopi-
cally decouple and subsequently recouple ions that are not
supposed to participate in the action of a four-qubit
plaquette-wise entangling operation.

Along the application of this encoding sequence, unde-
sired systematic phase shifts on all ions are generated, and
they accumulate. These can be of various physical origins
and unknown magnitude, arising, e.g., from off-resonant
light shifts on ions residing in the decoupled electronic
states during the application of the MS gate operations.
Note that, in the present experiment, these phase shifts do
not vary significantly even over long data accumulation
times of several minutes or longer, as the laser light causing
these ac-Stark shifts is well stabilized to ensure proper
operation of the entangling operations [18]. Other possible
origins of such shifts are differential magnetic shifts
between the different electronic states used to define the
computational subspace and the decoupling of qubits, and a
detuning of the control fields from the qubit transition
frequency due to a slowly varying laser frequency.
Measuring and compensating for such a qubit detuning
can be performed using techniques developed in the context
of quantum metrology [42]. It is important to note that the
MS entangling gate operation commutes with systematic
phase shifts in the sense that the essential part of the
complex circuit, namely, the three entangling gate oper-
ations, still generates a final quantum state that is locally
equivalent to the ideal encoded state of Eq. (1), however,
with a set of unknown, relative phases {¢,}:

1 . .

1y = —— (|0000000) + ¢1]0110110) + 421111000
) = 575 (10000000) + ¢ [0110110) + ¢%*[1111000)
+¢3]1001110) + €/?+|0011011) + ¢5|0101101)

+ €/ 1100011) + €#7[1010101)). (2)

In order to maximize the fidelity of the encoded state, these
phases need to be characterized and compensated for. There
is no simple Ramsey-type experiment to determine these
phases; hence, we need to find a protocol to measure them
without full quantum state tomography.

II. PROPOSED METHOD

Some of the error sources in a quantum state preparation
process, such as in the encoding discussed in the previous
sections, result in “true” decoherence, which cannot be
reversed by a subsequent application of unitary operations.

031030-3
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The question of whether a given source of imperfections
results in systematic, coherent errors that can be calibrated
out, or in decoherence, depends strongly on the origin of
the noise and is related to the noise fluctuation time scale as
compared to the data acquisition time. For instance, phase
shifts that vary over the (short) times required to execute an
individual run or a few runs of a quantum circuit result in
dephasing that the quantum error correcting procedure
itself will take care of. In contrast, phase shifts that do
not change their nature over (long) data acquisition times
give rise to systematic coherent shifts that can be detected
and compensated for. In the presented experiments, phase
shifts are predominantly of this latter type, as they are
mainly caused by ac-Stark shifts originating from entan-
gling operations that are performed on neighboring qubits.
These do not vary significantly over the data acquisition
time required to implement the proposed phase optimiza-
tion technique. The algorithm we propose aims at deter-
mining and undoing systematic unitary errors such as
relative phase shifts in a simple, iterative manner without
full state reconstruction. A simple model to outline the
working principle of the proposed phase compensation
technique is the formulation of the resulting final exper-
imental state in the form of a Werner-type state,

; (3)

where the part proportional to the identity operator,
representing a completely mixed state, stands for a
white-noise component, accounting for irreversible
decoherence processes (dim =27 = 128 in the present
case). The second term corresponds to the state |w)
[see Eq. (2)] containing a set of unknown phase shifts,
which will be compensated for by the application of
corrective unitary phase shifts, in order to transform this
component into the ideal encoded logical state |y,) of
Eq. (1). The parameter p € [0, 1] quantifies the magnitude
of the irreversible noise component, interpolating between
the ideal target state (up to the unitary phase shifts) for
p =0 and a fully mixed state in the limit p = 1.

For simplicity, we start by discussing the working
principle of the phase compensation method for an inter-
mediate state in the full encoding sequence shown in Fig. 1.
The state we will optimize is the one that is reached after the
application of the four-qubit entangling operations to the
first and the second plaquettes of the planar, three-plaquette
quantum error correcting code [see Fig. 1(a)]. The ideal
target state at this stage of the encoding sequence is
given by

P
dim

p=——T4(1=p)lw)(wp

1
[wo) = 5(10000000) + [0110110)
+[1111000) + [1001110)). (4)

It maximizes the value of the generating X-type
stabilizer operators on the first and second plaquettes,

Sﬁl) = X X,X53X, and Sﬁf) = X,X3X5Xg, as well as of
the stabilizer operator formed by the product of both,

s\sP:

(wol S o) = (ol S¥wo) = (wolSY S o) = 1. (5)

The state |y;,) containing unknown phase shifts accumu-
lated up to this point then reads

1 4
[vh) = 5 (10000000) + ¢#1{0110110)
+ ¢ |1111000) + €3[1001110)).  (6)

In order to compensate the relative phase shifts, we may
apply single qubit Z rotations to three of the six qubits, for
instance,

. ) . 1
€121 10222 010525 |y 1y — 5 (/0000000)

+ €l +2(0:405)110110110)
+ ¢l +201+0)] | 1111000)
+ el 20505)111001110)),  (7)

where we have discounted the global phase factor
e~{(01+0:+05)  The problem is to find the correct set of
values @ = [0, 0,,05] that compensates the phases, and
transform the state |y, into ). This can be viewed as an
optimization problem, as it is equivalent to finding the point

0 that is simultaneously a maximum of <S,(C1)>, <S§2)>, and

<S§1)S§C2>>. Note that under the application of Z-type
rotations, Z-type stabilizer expectation values remain
unchanged.

Experimentally, an exhaustive search to determine the set
of values of the three phases @ that maximize the X-type
stabilizers is impractical, as the number of possible phase
configurations grows exponentially with the number of
phases. Instead, we may apply the following iterative
protocol:

(1) Fixing of the phase-to-stabilizer correspondence:
For each X stabilizer, an associated control param-
eter 6; that controls the compensation unitary
exp(i0;Z;), acting on ion i, is chosen. The particular
assignment of stabilizer operators to phases 6 is
somewhat arbitrary; however, it is important that a
given X stabilizer associated with a given phase
depends on the application of the corresponding Z;
rotation. This is the case if and only if the X
stabilizer under consideration contains the Pauli
matrix X; corresponding to the ion i, and thus does
not commute with a Z; rotation. Note that once a
particular phase-to-stabilizer assignment is chosen,
this should not be altered during subsequent steps of
the optimization algorithm. Here, we choose 8, for

Sj(cl), 05 for Ssz), and 6, for S}(CUSSCQ), respectively.
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(2) Choose an initial configuration for the set of rotation by scanning 65, while keeping the other control
parameters () = [9(10)’950), 920)}. parameters at their previously determined values,

ie., 6, = 9<21) and 0, = 950). Fix 05 to the value

05 = le), which maximizes (S,(Vz)). o

Finally, apply a similar optimization for s,

(3) Experimentally optimize S,(Cl): The mean value of

S)(cl) depends on control parameter 6, in the follow- 5
ing sinusoidal form, &)

(s805%) =2 {coslis +2(6, +65)]

+coslpy — ¢, +2(65 - 6,)]}, (10

i.e., scan over 6; at fixed values 0, = Ggl) and
0s = 921), to find the value of 0, = 9(11) that max-

imizes (S,(CI)SSCZ)>. This step completes one update

(517) = 2 {cosls + 20, +0,)
+coslpy — 3 +2(6, - 0,)]}. (8)

Scan 0, over the interval [0, 2z], while keeping 8, =
950) and 05 = 920) fixed. Measure all qubits in the X

. . I
basis to determine and fix 6, to the value 6, = Hg ) round for the set of control parameters
for which the measured mean value <S§1)> is 0 — [9(10>,9é0)’920)] = [951)"9&1)’921)].
max1m1zed.' o @) (6) Iterate until convergence is reached: Repeat steps
(4) Next, experimentally optimize S, 3-5 n times, obtaining iteratively updated sets of

values (") = [9(1"), 9<2”), 9;">], until the set of phases

1
(S)(CZ)) = E{cos[qb] +2(0, + 05)] 0 does not—within experimental resolution—
change any further. For large enough values of n,
+ cos|gy — 3 +2(6, = 05)]},  (9) the method converges to the maximal values of

-

s Ll s % 1 o

© . +(2) =}

g sy || 505

§ : 2 c

T 20
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FIG. 2. Experimental implementation of the phase optimization protocol. Here, the algorithm was applied to the intermediate state in
the encoding sequence, which results from the application of the first two entangling operations acting on the qubits of the first (red) and
second (blue) plaquettes of the planar seven-qubit quantum error correcting code. The resulting state (a), before the application of the
iterative phase optimization technique, is characterized by positive values of Z-type plaquette stabilizer expectation values, which are
maximal within the experimentally achieved accuracy of the encoding circuit [16]. On the other hand, X-type stabilizer expectation
values have arbitrary values (positive on the first, negative on the second plaquette), indicating the presence of undesired, unknown
relative phase shifts [see Eq. (6)]. In the first step of phase optimization (b), a Z rotation of variable magnitude is applied to qubit 2,

which results in a sinusoidal behavior of the expectation values of the stabilizers <S§(l)) and <S,(C2)) [cf. Egs. (8) and (9)], whereas the

expectation value (SSCI)S)@) not containing X, remains constant. For each scan, the stabilizer that takes part in the optimization procedure
is highlighted by the bold line, and the corresponding maximum value is marked via the orange circle. After reading off and fixing 6, to

the value that maximizes <S§cl)) (orange circle), a Z rotation is applied to qubit 5 (c). This scan is used to fix 65 to the value that
maximizes (Sfcz)). Whereas, in principle, at this point one would proceed with the optimization of <S§CI)S,<C2>> by a Z,-rotation scan, the
data show that all three stabilizers, within experimental resolution, have already reached the maximum, indicating convergence of the
protocol. This is also reflected by both X-type plaquette stabilizers now being positive and maximal (d), while the expectation values of
Z-type stabilizers and of the logical Z operator have remained unchanged over the application of the algorithm—compare (a) and (d).
Experimental parameters: In each scan, different values for the phases characterizing the single-qubit rotations were applied with an

elementary step size of 2z/10. For each phase value, the experiment was repeated 200 times.
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<S§Cl)>, (SECZ)}, and (S§1)5§2)>. Thereby, the compo-
nent of the final state corresponding to |y() of
Eq. (6) is transformed, as desired, into the correct
one |yq) [see Eq. (4)].

If systematic phase-shift errors were the only
experimental source of imperfections, these maximal
values would all be equal to 1, corresponding to the
case p =0 in the model of Eq. (3). In practice,
decoherence processes are significant (p > 0), and
they reduce the experimentally attainable maximal
values of the set of stabilizer operators.

Figure 2 shows how the described phase optimization
algorithm works in experiment. Here, it was applied to
remove relative phase shifts in the ideal, intermediate state
Eq. (4) after the first two entangling operations.
Interestingly, the algorithm converges very quickly,
namely, already after performing two optimization steps
of stabilizers during the first round of iterations, n = 1.
Overall, this resulted in a time of ~7 minutes required for
the application of the phase optimization protocol, as
compared to about ~48 minutes necessary for a full six-
qubit state tomography under comparable conditions. Note
that the required time for full state tomography does not
include state reconstruction as well as phase optimization.

III. ANALYSIS AND PROPERTIES
OF THE METHOD

As already seen, the proposed phase optimization
method provides correct results with very fast convergence
for the two-plaquette case. Let us now analyze in more
detail its mathematical background and performance for
larger-dimensional optimization problems.

A. Connection to coordinate descent methods

To better explain the properties of the protocol and why it
works, let us first consider a function of @ = [0}, 6,, 0s]

defined as the sum of the stabilizer operators <S)(Cl)>, <S)(Cz)),

and <S§1)S)(C2>> given in Egs. (8), (9), and (10):
FO) = (87) + (7)) + (5787, ()

Instead of separately optimizing (S,(Cl)>, <S§2)), and
<S§1) S,(Cz)), we may maximize f(6) following the same
method as in steps 3—-5 above, i.e., fixing 8, = 9§0> and 05 =
9§0> and optimizing [0, 6’&0), Hgo)] to obtain 951), and then

|

repeating the procedure, now fixing 0, = 9(11> and 05 = 920),

and optimizing f [051), 0. 920)] to obtain 98), and so on.

This recipe is essentially a global version of coordinate
descent (ascent) methods for minimizing (maximizing)
functions of several variables; see Refs. [43,44]. It is global
in the sense that the optimization in every coordinate is
done by searching the global maximum instead of applying
gradient algorithms. It is clear from the very formulation of
the method that f will monotonically increase,

fOO) < f(OD) < f(OP) < ... (12)

Therefore, the only way that f might not converge to its
maximum point under this method is if it gets stuck in a
local (but not global) maximum at some step. Nevertheless,
one can show that the function f(@) in Eq. (11) only has
global maxima (see Appendix B), so the recipe is guaran-
teed to work. In this regard, note that the method can work
even for a function with local maxima as the optimization
in every individual coordinate is done by seeking the global
maximum instead of applying differential methods, which
can present problems with local extremal points.

This argument regarding convergence of the method for
f(0) does not entirely explain the convergence when
applied separately to <S§1)>, (S)(f)), and (S)(CUS,(CZ)) as in
steps 3-5 of the iterative algorithm outlined above.
Nevertheless, the latter, experimentally used algorithm
works as well because, on the one hand, the optimal point
0 for (S)((l)> is also optimal for <S§2)> and <S§CI>S§C2)>. In other
words, there exists a common optimum point for every term
contributing to the sum in f(@). On the other hand, despite
the fact that the maximization process of some stabilizer
will, in general, reduce the value of other stabilizers at
intermediate steps, the global optimization in every coor-
dinate rapidly overcomes this effect.

B. Optimization of the entire seven-qubit encoding:
The three-plaquette case

The practical applicability of the method has been tested
and benchmarked by applying it to the more complex case
of the entire encoding of the seven-qubit code. Here, the
aim is to determine and remove the 2° — 1 = 7 relative
phases of the state equation (2) in the preparation of the
logical |0), . The procedure works similarly as in the case of
two plaquettes discussed above; however, here we need to
apply Z rotations to all seven qubits,

7

, 1 :
[T %% wt) — 575 (]0000000) + e!l#1+2(02+0:+05+96)1|0110110)
i=1

5

+ ¢l 4200140404011 [ 111000) + !9 2(01+0:+05+65)1| 1001 110)

+ ei[(/)4+2(93+€4+96+97)]|0011011> + ei[f/’5+2(6'2+94+95+97)]|0101101>

+ ellPs+201+0:40+01)]| 110001 1) + eilhr+2(01+0:+05+61)111010101)), (13)
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to correct all phases by maximizing the seven expectation
values of plaquette operators <S§))>, (SECZ)), <S;(C3)>,
(s, (sPsPy, (s, and (sVsPsP)). The
explicit expressions of these expectation values showing

their dependence on the control parameters € = [0, ..., 0;]
are given in Appendix A.

C. Convergence on average

Let us now obtain an estimate for the convergence rate.
The function f(@) for two plaquettes in Eq. (11) can be
written as a function of one component of the vector 6, say
0, in the form of

f(0;) = Acos(20) + @) + c, (14)

where A = A(QZ’ 05’ ¢1’ ¢27 ¢3)’ P = (p(927 95’ ¢17 ¢27 ¢3)’
and ¢ = ¢(60,, 05,1, ¢y, ¢3). Specifically,

1
A_E\/cosz[ﬁz + 05 +%}COSZ[92—‘9§ +§(¢2—¢3) :

(15)

By computing the mean value of this amplitude on a
uniform distribution of their arguments, we obtain
A =0..81, and similarly, the mean value of ¢ is ¢ = 0.
In a rough, conservative estimate where the average value
of ¢ remains constant when moving from the optimization
of one coordinate of @ to the next one, we estimate that in
every coordinate optimization step, we gain A/2 = 0.40 on

average. Therefore, since f(@) = 0, we estimate that we
will obtain convergence after n = 2.47 iterations on aver-
age. A similar estimate for the three-plaquette case leads to
a gain per coordinate optimization step of A/2 = 0.40 on
average, and thus estimated convergence after n = 2.47
iterations on average, which is the same value as found for
the two-plaquette case.

These values can be checked by a numerical simulation
of the method averaging over many random configurations
of phases ¢. For two and three plaquettes, the simulation
produces a mean value of 7 =1 (exact) and 71 = 2.25
(6 = 0.50), respectively. On the one hand, the exact
convergence after n = 1 iterations for two plaquettes is
due to the high degree of symmetry of f(@) in that case,
which has not been taken into account in the rough
estimation of the average convergence rate. On the other
hand, the simulation is compatible with the estimate for the
three-plaquette case, with a slightly improved, i.e., faster,
rate of convergence.

To determine the convergence rate of the method
optimizing individual mean values instead of their sum,
we have numerically simulated this version of the algo-
rithm used in the experiment, by averaging over random
values of ¢b. This produces convergence after 7 = 1 (exact)

iterations for the two-plaquette case and 71 =2.16
(6 = 0.56) for the three-plaquette case. The numerically
observed convergence of 7 = 1 is in accordance with the
experimentally observed convergence within a single iter-
ative cycle of optimization (see discussion above and
Fig. 2). Interestingly, the numerical results for the three-
plaquette case suggest that the variant based on optimizing
individual mean values converges slightly faster than
optimizing the sum over all of them.

Furthermore, as expected from the analytical arguments,
our numerical study confirms that no phase configurations
were encountered for which the optimization algorithm gets
stuck or reaching convergence takes particularly long. In
fact, the worst case in 10,000 random simulation runs
corresponded to convergence after n = 5 iterative cycles.
Further details can be found in Appendix C.

D. Experimental optimization of the seven-qubit code

Figure 3 shows experimental results of the iterative phase
optimization algorithm applied to the entire encoding
sequence of the seven-qubit error correcting code.
Whereas initially X-type stabilizer expectation values are
nonmaximal because of the presence of unknown relative
phase shifts in the state of Eq. (2), after two iterative cycles
(n = 2), composed of 14 elementary optimization steps, the
algorithm converges within the experimental resolution and
outputs a set of values for the compensation phase shifts
0 =16,,...,0,], for which the initially unknown relative
phases {¢;} are removed. As a consequence, not only the
Z-type stabilizer values, which are unaffected by the
optimization protocol, but also all X-type stabilizers are
positive-valued and maximal within the given accuracy of
the encoding quantum circuit. The experimentally observed
convergence after n = 2 rounds is in very good agreement
with the numerical prediction of n = 2.16 for the three-
plaquette case.

E. Scalability properties

Let us now briefly discuss to what extent the present
protocol is scalable as quantum states of systems of
larger number of qubits are considered. In the analyzed
two-plaquette case, we have been able to compensate
three undesired relative phases by applying three qubit Z
rotations. For the complete minimal planar seven-qubit
color code, we need to apply seven single-qubit Z
rotations. Larger instances of 2D color codes (see
Fig. 5 in the Appendix D) encode logical qubits in a
larger number of physical qubits and thereby provide
larger logical distances and increased robustness to errors.
The number of computational basis states involved as
components in logical states of such larger systems grows
exponentially with the number of plaquettes (#), and so
does the number (#) of relative phases that need to be
compensated:
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FIG. 3. Experimental phase optimization of the complete seven-qubit quantum error correcting code. Here, the algorithm was applied
to the final state resulting from the complete encoding sequence shown in Fig. 1, i.e., three entangling operations applied to the qubits
belonging to the first (red), second (blue), and third (green) plaquette of the code. Initially, X-type stabilizer expectation values are
nonmaximal (a), indicating the presence of unknown, relative phases in the desired target state. After two rounds of iteratively
maximizing the seven expectation values of plaquette operators (S)(;l)), <S)(52)>, (S)(f)), <S§1)S§2>), <S§C2)S,<C3>>, (S,(CI)SSC3>>, and (S)(CI)S)(CZ)S)(?)),
the algorithm converges to a set of compensation phases, 8 = [0, ..., 0], for which all X-type stabilizers assume maximal values. The
individual phase value 6; to the Z rotation, which is adjusted to maximize the corresponding stabilizer expectation value under
consideration (bold line), is indicated by the orange circle for each optimization step [see (b)—(i)]. Note that because of the periodicity in
0, it is also possible to search for the minimum expectation value of the stabilizer under consideration and add the rotation angle 26 = x;
see (c) for an example. The Z- and X-type stabilizers of the logical state |0), after two rounds of optimization steps are shown in (j).
Intermediate steps of the second round of optimization are not shown. The experimental parameters are as specified in Fig. 2.

#Phases = 2#plaqueties _ 1 (16)
In the most general case, these relative phases may be

uncorrelated among each other, so an exponential number

rotations. Following this route, the required operations
become more and more nonlocal. One can then ask to
which size of a planar color code the method can be

of independent Z-type Hamiltonian generators are
required to unitarily compensate all phases. This can,
in principle, be achieved by resorting not only to single-
qubit Z rotations but also to two-qubit ZZ rotations,
exp(0;,Z;Z;), and three-qubit and higher-order n-body

extended such that only physically quasilocal rotations,
i.e., n-qubit rotations only acting on qubits belonging to
the same plaquette, are sufficient to correct the set of
undesired phases. Combinatorics show (see Appendix D)
that phases in the state of a logical distance d =5 color
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code involving 17 qubits can, in principle, still be
corrected by such physically quasilocal rotations, whereas
the next-larger generation, a distance d =7 color code
encoded in 31 qubits, would require physically nonlocal
rotations acting on qubits on several plaquettes.

This mismatch between degrees of freedom and local
operations, which becomes more significant as the code size
increases, is a generic feature and not specific to color codes.
It will ultimately need to be circumvented by the imple-
mentation of quantum error correcting codes in physical
architectures where physical error sources act quasilocally,
and by using fault-tolerant encoding protocols [45,46],
which avoid an uncontrolled propagation of errors during
the encoding over the entire quantum hardware [19,20].

IV. CONCLUSIONS AND OUTLOOK

In this work, we have proposed and experimentally shown
an iterative phase optimization protocol that allows one to
efficiently compensate systematic, unknown but constant
phase-shift errors, which can occur, e.g., in realizations of
small quantum error correcting codes. The method allows
one to determine and remove such relative phases without
full quantum state tomography, and it converges very
quickly when applied to small quantum error correcting
codes. This algorithm was a key element in optimizing a
recent successful implementation of a seven-qubit quantum
error correcting code in a system of trapped ions [16]. The
method can be equally applied to alternative, nonunitary
encoding protocols based, e.g., on quantum nondemolition
(QND) measurements of stabilizer operators. Furthermore,
the protocol demonstrated here is not limited to trapped ion
systems, and we hope that it will be useful also for other,
currently ongoing efforts in quantum computing and error
correction in AMO and solid-state systems.
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APPENDIX A: PHASE DEPENDENCE
OF STABILIZER OPERATORS

The expectation values of the seven stabilizer plaquette
operators for the state equation (13) are given by

1
<S§c1)> = 1{005[472 +2(0, + 60, + 605 + 04)] 4 cos[pp) — 3 +2(=0, + 0, + 65 — 0,)]

+ cos[¢py — g + 2(=0) — 01 + 03 + 04)] + cos[ps — Py + 2(=0, + 0, — 03 + 6,4)]}, (A1)

(s = %{cos[¢1 4 2(0y + 05 + 05 + 05)] + coss — s + 2(6, + 05 — 05 — 64)]
+ cos[ppy — s + 2(=0, + 05 — 05 + 05)] + cos[pg — 7 + 2(6> — O3 — O5 + 6;)] }, (A2)

() = 1 coslih + 2001 + 04 + 0+ 07)] + cosliy — s + 203 — 04 + 0 — 07
+ 08¢y — g + 2(03 + 04 — 05 — 07)] + cos[p3 — 7 + 2(=03 + 04 + 05 — 07)]}, (A3)

<S)(61>S/(r2)> = %{COS[% +2(0; + 604 + 05 + 06)] + cos[p) — py +2(=0, — 04 + 05 + 65)]
+ coslpy — 7+ 2(=0; + 04 — 05 + 05)] + cos[ps — s + 2(=0 + 04 + 05 — 6)]}, (A4)
(stsPy = Zl‘{cos[q% +2(0, + 0, + O + 07)] + cos[p, — 7 + 2(=0, + 0, + O — 0;)]

+ cos[py — g + 2(0) + 02 — 05 — 07)] + cos[ps — ps + 2(0) — 0, + 05 — 07)]}, (AS)
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1
<S§2)S/(r3)> = Z{COS[(ﬁs +2(0, + 04 + 65 + 0;)] 4 cos[pp) — s + 2(60, — 04 + 65 — 07)]

+ COS[¢2 - ¢7 + 2(02 + 94 - 95 - 07)] + COS[¢3 - ¢6 + 2(—02 + 94 + 95 - 97)]},

(A6)

1
($187857) = {cosly +2(01 + 63 + 05 + 67)] + coslhy — s +2(=0y + 03 + 05 — 6]

+ cos[py — s + 2(0) + 03 — 05 — 07)] + cos[ps — ¢4 + 2(0; — 03 + 05 — 07)]}.

APPENDIX B: EXTREMA
OF THE FUNCTION f(6)

By considering all variables of @ fixed except one, say 6,
we have seen that the function f(@) can be written as a
cosine, Eq. (14). Since this is true for every variable of €
when fixing the rest of them, the sections of the function
f(0) in every variable are just cosine functions (one
frequency). In such a situation, it does not seem possible
|

(A7)

[

to obtain local maxima or minima. This is because the
hypersurface f(0) can be viewed as a modulation of a
cosine profile along all the orthogonal directions by other
cosine profiles; since the cosines do not have local extrema,
their modulations do not create local extrema. In fact, the
maximum (minimum) points are just the points that
maximize (minimize) all sections individually. This can
be checked with the two-plaquette case where the condition
for the critical point of f(0) is

cos (92—|—05 —l—%‘) cos (92—95 —I—%—%) sin (291 —%—l—%—l—%)

V/(0) = —4 | cos (91+95+%3) cos (91—95—%+‘74;) sin (292+%+%—%) ~0.

(B1)

cos (91—|—62 —i—%) cos (91—92—%—1—‘/423) sin (295 +%—%+%‘)

By solving the three simultaneous conditions, we find that the critical points that are a maximum or a minimum (the rest are

saddle points) are

NI T

where ki, k,, ks € Z. However, in this case,

£(8,) = (=1)ki+k) 4 (=1)lki+k) 4 (—1)lkaths)

reaches either its absolute maximum (3) or its absolute
minimum (—1).

APPENDIX C: CONVERGENCE SCALING

For practical purposes, the average number of iterations
required by the phase optimization method (PHOM)
depends on the value taken as a convergence threshold
or, equivalently, on how close we demand the stabilizer
mean values to get to their maximum value. In our case, we
establish that convergence of the iterative optimization is
reached once all stabilizer expectation values have assumed

T
1 +7_Z> +§(k1,k27k3), (B2)

(B3)

|
their maximal values to within 103, This is well within the
experimental measurement accuracy [16,18], for which
convergence is reached in practice.

For the sake of completeness, in Fig. 4, we show the
average number of iterations as a function of the con-
vergence threshold. We have quantified the latter by means
of two figures of merit, namely, 6, = |f(@) — 7| and &,,
which corresponds to the maximum among the distances of
each individual stabilizer and its maximum value. Notably,
fast convergence is observed throughout the whole range of
numerical values considered.
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FIG. 4. Number of iterations vs convergence threshold. This
plot shows the scaling of the number of iterations required by
PHOM with the tightness of the convergence criterion. As
commented in the text, two figures of merit assess this, ; and
0,. The former is related to the distance between the sum of
stabilizers and its maximum value, and the latter is associated
with the maximum value among the distances for each stabilizer.
The simulations have been done for the case of PHOM applied to
individual mean values.

APPENDIX D: NUMBER OF QUASILOCAL
CONTROL DEGREES OF FREEDOM

For the code with 17 qubits (distance d = 5), we have
eight plaquettes (see Fig. 5), so the number of undesired
relative phases is 28 — 1 = 255. Counting the number of
degrees of freedom we have available with plaquette Z
rotations yields the following numbers of n-local oper-
ations (i.e., operations involving n qubits):
1-local.—17 one-qubit rotations.
2-local—There are seven square plaquettes that share
six sides, and one octagonal plaquette that shares six
sides with square plaquettes, so the square plaquettes are
7% (3) — 6 = 36, the octagonal plaquette is (3) — 6 = 22,
and the total is 58.

(a) (b)

FIG. 5. Larger instances of planar color codes. The 17-qubit
code (a) encodes a logical qubit of logical distance d = 5; the 31-
qubit code (b) has distance d = 7. Whereas the 17-qubit code
would, at least in principle, allow for the correction of the
undesired phases with physically quasilocal rotations, acting only
on subsets of qubits belonging to the same plaquette, phase
compensation for the 31-qubit case (and larger codes) would
require nonlocal rotations involving qubits of several plaquettes.

3-local—Square plaquettes: 7 X (‘3‘) =28, octagonal
plaquette: (3) = 56.
4-local.—Square
plaquette: () = 70.
5-local—Octagonal plaquette: (3) = 56.

Therefore, taking into account up to 5-local rotations, we
obtain 292 degrees of freedoms. Thus, indeed only local
plaquette rotations are sufficient to correct the undesired
255 phases in this second generation of color codes.

The next code in the family, the one with 31 qubits (third
generation, distance d = 7), has 15 plaquettes (Fig. 5), so it
requires 2'5 — 1 = 32767 rotations. A similar counting as
in the 17-qubit case shows that the number of phases that
can be corrected by quasilocal rotations only involving
qubits belonging to the same plaquette is 875. Henceforth,
it requires physically nonlocal rotations involving qubits of
several plaquettes.

plaquettes: 7 x (3) =7; octagonal
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