This is an author produced version of a paper published in:
Journal of Clinical Nursing

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa33786

Paper:
http://dx.doi.org/10.1111/jocn.13852

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/
PROF. UNA KYRIACOS (Orcid ID: 0000-0003-1611-8014)

Article type: Original Article

Validation of a Modified Early Warning Score-linked Situation-Background-Assessment-Recommendation (SBAR) communication tool: a mixed methods study

Concise title: Validation of a Situation-Background-Assessment-Recommendation (SBAR) communication tool incorporating early warning scores

Authors:
Debora Burger, MSc, RN
Division of Nursing and Midwifery, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
E-mail: burgerde@ohsu.edu

Sue Jordan, MB.BCh., PhD., PGCE (FE)
School of Human and Health Sciences, Swansea University, Wales, United Kingdom
E-mail: S.E.Jordan@swansea.ac.uk

Corresponding author: Una Kyriacos, PhD, MSc, RN
Division of Nursing and Midwifery, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
E-mail: una.kyriacos@uct.ac.za
Telephone: +27 21 4066410
Twitter: Una Kyriacos@unakyriacos

Conflict of Interest Statement: none.
Funding: This study was partially funded by the National Research Foundation of South Africa.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jocn.13852
This article is protected by copyright. All rights reserved.
Validation of a Modified Early Warning Score-linked Situation-Background-Assessment-Recommendation (SBAR) communication tool: a mixed methods study

Abstract

Aims and objectives. The objective of this study was to develop and validate a modified Situation-Background-Assessment-Recommendation communication tool incorporating components of the Cape Town Modified Early Warning Score vital signs chart for reporting early signs of clinical deterioration.

Background. Reporting early signs of physiological and clinical deterioration could prevent ‘failure to rescue’ or unexpected intensive care admission, cardiac arrest or death. A structured communication tool incorporating physiological and clinical parameters allows nurses to provide pertinent information about a deteriorating patient in a logical order.

Design. Mixed methods instrument development and validation.

Methods: We used a sequential 3-phase method: cognitive interviews, content validation and inter-rater reliability testing to validate a self-designed communication tool. Participants were purposively selected expert nurses and doctors in government sector hospitals in Cape Town.

Results. Cognitive interviews with five experts prompted most changes to the communication tool: 15/42 (35.71%) items were modified. Content validation of a revised tool was high by a predetermined ≥70% of 18 experts: 4/49 (8.2%) items were modified. Inter-rater reliability testing by two nurses indicated substantial to full agreement (Cohen’s kappa 0.61-1) on 37/45 (82%) items. The 1 item achieving slight agreement (Cohen’s Kappa 0.20) indicated a difference in clinical judgement. The high overall percentage agreement (82%) suggests that the modified items are sound. Overall, 45 items remained on the validated tool.

Conclusion. The first Modified Early Warning Score-linked Situation-Background-Assessment-Recommendation communication tool developed in South Africa was found to be valid and reliable in a local context.

Relevance to clinical practice. Nurses in South Africa can use the validated tool to provide doctors with pertinent information about a deteriorating patient in a logical order to prevent a serious adverse event. Our findings provide a reference for other African countries to develop and validate communication tools for reporting early signs of clinical deterioration.

This article is protected by copyright. All rights reserved.
Keywords: Situation-Background-Assessment-Recommendation (SBAR), modified early warning score, MEWS, deterioration, failure to rescue, reliability, validity. (MeSH checked on 17 June 2016)

Introduction

Serious adverse events (SAEs) are untoward medical occurrences that result in death, are life-threatening, require hospitalization or prolongation of hospitalization or result in persistent or significant incapacity or a congenital anomaly (ICH 1996 p.7). Unexpected admission to intensive care units (ICU) or cardiac arrest fall within this definition (McGaughey et al. 2009). Early recognition of rapid clinical deterioration can make the difference between life and death (Mapp et al. 2013). Emergency response teams provide early intervention (Leonard et al. 2004) and can be activated by a staff member who is concerned about a patient or feels that something is not right (Klein 2000). Detecting and intervening to prevent SAEs are important criteria for evaluation of nursing care quality (Schmid et al. 2007). Expert nurses are able to make meaningful assessments from random bits of patient information and integrate their findings with knowledge of physiology and pathophysiology to guide their nursing actions, preventing ‘failure to rescue’ (Dracup & Bryan-Brown 2004); however, not all nurses are ‘expert’. ‘Failure to rescue’ is the unexpected loss of life following a complication in hospital (AHRQ 2007) and is used as a patient safety indicator in initiatives to limit such deaths. It is sometimes attributed to infrequent and incomplete monitoring and recording of

What does this study contribute to the wider global clinical community?

• A standard SBAR communication tool can be modified to incorporate an early warning score system for physiological parameters and clinical parameters for early response to signs of clinical deterioration.

• A modified SBAR communication tool can be validated by cognitive interviewing for face validity, by content indexing and inter-reliability testing.

• Doctors and nurses are end users of a SBAR communication tool therefore transdisciplinary collaboration improves validity and reliability testing of the tool.
vital signs (Goldhill 2005), misinterpretation of clinical data and delays in reporting or escalating concerns (National Patient Safety Agency (NPSA) 2007).

The focus of this paper is validation of a standardized approach to calling for more skilled assistance for patients requiring review and at risk of SAEs. One such approach is the Situation-Background-Assessment-Recommendation (SBAR) communication tool which, in the present study, is enhanced by incorporation of a locally validated ‘track-and-trigger’ Modified Early Warning Score (MEWS) system. No such modified tool for adult patients was located in the published literature.

The SBAR communication structure is widely used in the USA and has been adopted by the UK’s National Health Service for use by all health professionals as the standard structure for communication, as part of the Innovation and Improvement Initiative (NHS Institute for Innovation and Improvement 2008). Although most SBAR research is from the USA (Ardoin & Broussard 2011), other countries conducting SBAR research include Australia (Clark et al. 2009, Cunningham et al. 2012, Dawson et al. 2013, D’ Agincourt-Canning et al. 2011, Street et al. 2011), Belgium (De Meester et al. 2013), Canada (Andreoli et al. 2010, Boaro et al. 2010, Ilan et al. 2012, Kotsakis et al. 2014, Velji et al. 2007), China (Wang et al. 2015), Germany (Flemming & Hübner 2013), UK (Hayes et al. 2014, Whittingham & Oldroyd 2014), Iran (Chaharsoughi et al. 2014), Sweden (Randmaa et al. 2014), the Netherlands (Ludikhuize et al. 2011, Poot et al. 2014) and South Africa (Raymond & Harrison 2014). However, to our knowledge, SBAR development and validation is rarely reported.

The SBAR communication tool provides a framework for relaying critical information between clinicians with a shared set of expectations (NHS Institute for Innovation and Improvement 2008), usually initiated by a nurse summoning the assistance of a doctor or emergency response team (Leonard et al. 2004) to prevent ‘failure to rescue’. The SBAR tool comprises the following components allowing for brief descriptions of: the situation (who and where the patient is and the circumstances); the background including the patient’s medical history, treatment and events leading up to the episode; an assessment of the situation; and recommendation for review of the patient and interim intervention measures. Components of the SBAR communication technique are described in Table 1.
Table 1: Components of the SBAR communication technique and related questions

<table>
<thead>
<tr>
<th>Situation:</th>
<th>What is going on with the patient? What is the primary problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background:</td>
<td>What are the clinical facts surrounding the problem?</td>
</tr>
<tr>
<td>Assessment:</td>
<td>What do I think the problem is?</td>
</tr>
<tr>
<td>Recommendation:</td>
<td>What should be done to correct the problem?</td>
</tr>
</tbody>
</table>

(Leonard et al. 2004:86)

Background

Traditional vital signs charts used in public sector hospitals in Cape Town, South Africa require graphic plotting of values, but do not provide guidelines for a nursing response if a patient’s condition deteriorates (Kyriacos et al. 2011a). In contrast, Early Warning Score (EWS) Systems and Modified EWS (MEWS) are designed to track early signs of patient deterioration and trigger a response by trained nurses to seek assistance to improve patient safety and prevent unnecessary SAEs (Royal College of Physicians 2012). These systems incorporate physiological parameters, such as respiratory rate and heart rate, recorded in boxes with predefined ranges (Gao et al. 2006). Disturbed vital signs are allocated points with weightings with suggested interventions to recheck the patient or summon assistance (Smith et al. 2006).

Since publication of the USA Joint Commission’s National Patient Safety Goal on handovers (2007), the use of SBAR has been widely reported (Dawson et al 2013, Staggers & Blaz 2013). SBARs have been tested in interdisciplinary daily rounds (Cornell et al. 2014a, Cornell et al. 2014b, Townsend-Gervis et al. 2014) and with diverse clinicians (Donahue et al. 2011, Field et al. 2011, Randmaa et al. 2014). They provide a vehicle for clinicians to communicate clearly and concisely, thereby enhancing professionals’ satisfaction with communication (Ardoin & Broussard 2011, Renz et al. 2013) and the hospital’s safety climate (Ardoin & Broussard 2011, Randmaa et al. 2014).

Accordingly, this paper reports on the design and validation of the Cape Town SBAR tool that incorporates physiological and clinical parameters on the revised Cape Town MEWS (Kyriacos et al. 2015). The study was undertaken in Cape Town, South Africa.

Methods

Ethical Considerations

The study was approved by the University of Cape Town’s Human Research Ethics Committee (HREC REF: 900/2014). Principles of the Declaration of Helsinki (WMA 2013) were upheld. Written informed
consent was obtained from each participant for the cognitive interviews and inter-rater reliability testing after explanations by the first author of the research aim and data collection methods. For determining the CVI of the prototype tool after the first author’s explanation, the completed checklist was returned, implying informed consent; all participants returned the completed forms.

Design

A mixed methods design was used for development, validation and reliability testing of the prototype Cape Town MEWS-linked SBAR tool (Gabe & Jordan 2014, Grove et al. 2013). In research, epistemological and methodological pluralism is aimed at producing more effective research (Johnson & Onwuegbuzie 2004). To identify potential measurement or response error we undertook: cognitive interviews to explore the interpretation of the SBAR tool by future users (nurses and medical doctors), content validity analysis (Lynn 1986, Yaghmale 2003) and inter-rater reliability testing (Gabe & Jordan 2014).

Participants and data collection

Participants and the sampling method for the three validation processes are outlined in Table 2.

Table 2: Summary of sampling methods and participants for validation processes

<table>
<thead>
<tr>
<th>Research activity</th>
<th>Sampling method</th>
<th>Inclusion/exclusion criteria</th>
<th>Participants</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Establishing cognitive form through cognitive interviewing (CI) | Purposive sampling | **Inclusion criteria** Doctors and nurses who have self-assessed expertise in adult clinical physiology and/or health sciences research (Kyriacos 2011b).
Exclusion criteria Doctors or nurses who do not give written informed consent to take part in the study | Three Masters qualified nurses and two medical doctors (one with a PhD) (n=5) | Identify problem areas |
| Internal validation of questionnaire using index of content validity (CVI) criteria | Purposive sampling | **Inclusion criteria** Nurses and doctors with self-assessed expert knowledge of adult clinical physiology and/or health sciences research and may have included participants who participated in the cognitive interviews.
Exclusion criteria Nurses and doctors who do not return the CVI checklist | Five medical doctors, five medical/surgical Registered Professional Nurses (RPN’s) and eight surgeons/surgical residents (n=18) | Expert knowledge |
<p>| Inter-rater reliability testing (IRR) | Purposive sampling | Inclusion criteria Nurses who did not participate in the content validity processes; and who have self-assessed specialist knowledge of adult physiology and experience in working in clinical | Two Registered Professional Nurses (n=2) | Measure agreement amongst raters |</p>
<table>
<thead>
<tr>
<th>Research activity</th>
<th>Sampling method</th>
<th>Inclusion/exclusion criteria</th>
<th>Participants</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nurses who do not give written informed consent to take part in the study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Participants with appropriate expertise were recruited by purposive sampling from a range of health care facilities in Cape Town.

Instrument

Prototype Cape Town SBAR tool

The initial prototype SBAR tool (Appendix 1) was structured using the framework of the Magee-Women’s Hospital SBAR telephonic checklist (Woodhall *et al.* 2008) to incorporate aspects of the Cape Town MEWS chart (Kyriacos *et al.* 2015) in a logical order.

Data collection

A. Cognitive Interviews (CI)

To validate the locally developed prototype SBAR tool, four data collection instruments were constructed for the cognitive interviews guided by the published literature: 1) a guide and questionnaire with instructions, 2) scenario, 3) a MEWS vital signs chart populated with clinical data from the scenario and 4) an informed consent form.

Participants and process

All those approached agreed to participate. Representatives of future user groups (Table 2) explored the cognitive form of the preliminary modified SBAR tool and its appropriateness, comprehensiveness, and intelligibility (Presser *et al.* 2004). Three nurses and two doctors who enjoyed reputations for erudition in adult clinical physiology and/or health sciences research were approached using purposive sampling (Beatty & Willis 2007). A small sample of cognitive interviews will reveal the most critical problems (Beatty & Willis 2007), although there is no established best practice for how many participants to interview or how many rounds of interviews should be conducted (Beatty & Willis 2007).

This article is protected by copyright. All rights reserved.
Cognitive interviews were based on ‘think aloud’ techniques with concurrent impromptu and scripted probes, captured by audio recordings (Willis 2005; Willis & Artino 2013). Probes could be cognitive, such as ‘What were you thinking?’ or confirmatory as in repeating what a participant said and seeking confirmation or expansive, for example requesting more information (Presser et al. 2004).

Participants were asked to state their interpretation of items using the sequence as of the prototype Cape Town SBAR tool, reading each section then interpreting their understanding of each item to reveal thought processes involved in the interpretation of prompts on the tool (Presser et al. 2004). Thinking aloud has been found to potentially interfere with the process being reported (Conrad et al. 1999). Therefore, the modified Cape Town SBAR communication tool was tested by describing its direct interpretation plus its utility. Participants were provided with a written fictitious scenario along with a MEWS observations chart populated with data pertaining to the scenario. Participants were then asked to transfer the information they deemed relevant from the scenario and populated MEWS chart onto the SBAR tool and to comment on their completed SBAR tool and their experience of the exercise.

Data analysis

To make sense of the data from the CIs each section of the prototype SBAR tool was reviewed from audiotape recordings and field notes taken during the interview (Knafl et al. 2007, Willis 2005). Descriptive notes were taken, including problems identified and participants’ subjective recommendations for corrections (Knafl et al. 2007, Willis 2005). Each problem was categorized according to a coding scheme of applicability, wording/tone and clarity (Knafl et al. 2007). We systematically compared the summarized data collected across participants (Knafl et al. 2007). Quantifiable trends were identified and problematic items were summarized based on the participants’ actual statements. Decisions to keep, delete or modify an item were individually considered (Knafl et al. 2007).

Results

A summary of modifications made to the prototype SBAR tool (Appendix 1) is presented in Table 3.
Table 3: Summary of modifications following cognitive interviews (N=5 experts)

<table>
<thead>
<tr>
<th>Items</th>
<th>Modified items [rewording/additions]</th>
<th>Items added</th>
<th>Removed items</th>
<th>Remaining items</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>1. Problem called about [Situation]</td>
<td>1. Pupils equal [Assessment]</td>
<td>1. MEWS score [Situation]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Medical history additions [Background]</td>
<td>5. Alert [Assessment]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Inspired oxygen OR room air [Assessment]</td>
<td>7. Alert to pain [Assessment]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Urine output [Assessment]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Any tests needed [Recommendation]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Second witness [Recommendation]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. Notification [Recommendation]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note to table: GCS, Glasgow Coma Scale; AVPU, alert, alert to voice, alert to pain or unresponsive.

Data in Table 3 show that 15 (35.7%) of 42 items were modified: 11 items were added and four removed. Most changes were made to the Assessment component of the SBAR tool. Participants recommended changes to the wording that are more appropriate for language used in a South African context. Analysis of the five interviews identified types of problems including applicability, wording, tone or clarity.

For applicability, problems identified by all five participants related to, for example, having to inform a doctor in public sector hospitals of a patient’s resuscitation status when there is clinical deterioration:

Participant 2: “[the wording] ‘For resuscitation’ is confusing. It is not familiar language”.

This article is protected by copyright. All rights reserved.
Participants reported that stating a patient’s resuscitation status was not current practice in South Africa, but one participant reported that there were future plans to do so therefore the item was retained.

Participants had difficulty with the wording of certain items such as ‘pain scale’:

Participant 1: “What is meant by ‘pain scale’? Is there a pain scale or is this asking the patient a Likert type scale on how bad is your pain? Is there a pain scale on the ward?”

Participant 3: “‘Pain scale’ caused confusion. Wanted to use a pain scale from 0-10. This is not a pain scale commonly used. Say what the pain is out of or rather state the severity.”

This item was modified to: ‘Pain experienced: No pain ☐ Mild pain ☐ Moderate pain ☐ Severe pain ☐’.

Participants highlighted aspects of the Assessment section of the tool that were not clear to them and that may not be relevant or applicable to a particular patient and may even cause confusion. These items were interpreted as lacking clarity. Examples of comments and suggestions include:

Participant 1: “Have a check box for items in assessment that are not applicable saying ‘not done’.”

Participant 4: “This looks like a big long list. Nurses will require training to link up the MEWS with the SBAR.”

Participant 2: “Not all of these are relevant. I do not easily see your word applicable, maybe make it bolder.”

To enhance clarity the item was modified from ‘Provide the following information if applicable’ to ‘ONLY IF APPLICABLE complete and state the following’. Furthermore, the layout was changed and checkboxes were added to increase spaces between items and to decrease the appearance of a ‘big long list.’
B. Content validity index (CVI) and expert review

Content Validity Index (CVI) criterion sheet, participants and process

All those approached (n=18) agreed to participate. For pragmatic reasons determining the CVI was completed in two rounds. Five physicians, eight surgeons and five nurses with expert knowledge of adult physiology and/or health sciences research (Table 2) participated in content validity testing. A CVI (Lynn 1986, Yaghmale 2003) criterion sheet incorporating instructions and an informed consent form adapted with permission (Gabe & Jordan 2014, Kyriacos 2011a) was constructed around the 49 items remaining on the modified prototype SBAR tool following the cognitive interviews. Items were rated according to relevance from 1 to 4, ranging from 1 = irrelevant to 4 = extremely relevant; 3 = relevant but needing minor alteration and 2 = ‘unable to assess relevance without item revision or item is in need of such revision that it would no longer be relevant’ (Yaghmale 2003). Each item had space for recommendations of items not covered in the SBAR tool (Grove et al. 2013).

The CVI checklist was used to determine the perceived relevance, inclusivity and representativeness of the 49 items of the prototype SBAR tool (Gabe & Jordan 2014, Kyriacos 2011a). Each item had a space for recommendations (Grove et al. 2013). The CVI checklist with instructions for completion was provided in person and returned in the manner as instructed only if there was a voluntary decision to participate, implying informed consent.

Data analysis

The CVI was determined by how many experts rated each item at 3 or 4 (Lynn 1986) using a pre-set proportion of ≥70% agreement (Guttmann et al. 2006). Only items that achieved ≥70% agreement by the experts at a rating of 3 or 4 were retained on the modified SBAR tool and items scoring under 70% were discarded.

Results

The opinions of 18 experts (Table 2) on the index of content validity of each of the 49 items remaining on the modified prototype SBAR tool following the cognitive interviews are presented in Table 4.
Table 4: Summary of modifications following CVI Round One (N=10 experts) and Round Two (N=8 experts)

<table>
<thead>
<tr>
<th>Initial number of items</th>
<th>Modified items</th>
<th>Items added</th>
<th>Removed items</th>
<th>Remaining items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round One: physicians (n=5) and nurses (n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 49 | 1. Resuscitation status
 2. On Oxygen
 3. Pupils equal
 4. Pupils reacting to light | 1. Pupils not reacting to light | 1. Pupils pinpoint
 2. Pupils normal size
 3. Pupils dilated
 4. Pedal pulses normal
 5. GCS* | | 45 |
| **Round Two: Surgeons (n=8)** | | | | |
| 45 | 0 | 0 | 0 | 45 |

Note to table: *GCS, Glasgow Coma Scale. The GCS and the Alert/Voice/Pain/Unresponsive (AVPU) system had been retained on the modified SBAR tool following cognitive interviews. For assessing the CVI four participants reported that assessment of level of consciousness using the AVPU system was easier than the GCS and that having both AVPU and GCS on the prototype SBAR tool could create confusion so although this item did not achieve ≥70% agreement, it was considered sufficiently important to make an exception and to remove GCS from the modified SBAR tool.

Data in Table 4 show that items scoring less than 3 or 4 by ≤70% of raters were removed (4/49, 8.2%) leaving 45 items. The final validated MEWS-linked SBAR communication tool is presented in Appendix 2.

C. Inter-rater reliability (IRR)

Data instruments

Twenty-two datasets of realistic but fictitious vital signs’ recordings were created (DB) and recorded on 22 different MEWS charts. Five experienced colleagues agreed that the fictitious datasets were not untypical of routine practice. For IRR testing, it was estimated that 22 blank SBAR tools (Appendix 2) completed independently by each rater by transcribing data from the 22 different MEWS charts would be sufficient to detect Cohen’s kappa of 0.70 (substantial agreement or better), assuming a null hypothesis (or no relationship) value of 0.00 and 10-90% prevalence with 80% power (Sim & Wright 2005).

Participants and process

Participants (Table 2) were purposively selected from nurses with detailed knowledge of physiology and experience of working in acute adult clinical settings. All those approached agreed to participate. Inter-rater reliability testing of the prototype Cape Town SBAR tool measured agreement between two independent raters viewing the same clinical data (Gabe & Jordan 2014, Tooth & Ottenbacher 2004). Raters were blind to each other’s recordings on the SBAR tool.

This article is protected by copyright. All rights reserved.
Data analysis

Data were analysed in SPSS for MAC version 22 (SPSS Inc., Chicago, IL, USA). IRR was measured using Cohen’s kappa statistic, which calculates agreement beyond that of chance (May et al. 2010). Kappa values were classified a priori as recommended (Gabe & Jordan 2014, May et al. 2010):

0.00-0.20: slight agreement
0.21-0.40: fair agreement
0.41-0.60: moderate agreement
0.61-0.80: substantial agreement
0.81-0.99: almost perfect agreement
1.0: perfect agreement

Results

The two nurse respondents were in close or full agreement on 37 of 45 items (82.2%) on the modified tool (Table 5).

Table 5: Summary of inter-rater reliability (IRR) findings

<table>
<thead>
<tr>
<th>Items: Total 45</th>
<th>Cohen’s kappa</th>
<th>Agreement</th>
<th>Comments Percentage agreement (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation: 4 Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 items</td>
<td>Both variables constant</td>
<td>Full agreement</td>
<td>Unable to calculate Cohen’s Kappa. 100% agreement</td>
</tr>
<tr>
<td>‘Calling from’</td>
<td></td>
<td>-0.05</td>
<td>Below the level of chance</td>
</tr>
<tr>
<td>Background: 5 Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/5</td>
<td>Both variables constant</td>
<td>Full or almost full agreement</td>
<td>Unable to calculate Cohen’s Kappa. 95-100% agreement:</td>
</tr>
<tr>
<td>‘This is a change from’</td>
<td></td>
<td>-0.07</td>
<td>Below the level of chance</td>
</tr>
<tr>
<td>Assessment: 30 Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/30</td>
<td>Both variables constant</td>
<td>Full or almost full agreement</td>
<td>Unable to calculate Cohen’s Kappa. 91-100% agreement</td>
</tr>
<tr>
<td>5/30</td>
<td></td>
<td>1.00</td>
<td>Perfect agreement</td>
</tr>
<tr>
<td>4/30</td>
<td></td>
<td>0.81-0.89</td>
<td>Almost perfect agreement</td>
</tr>
<tr>
<td>4/30</td>
<td></td>
<td>0.63-0.79</td>
<td>Substantial agreement</td>
</tr>
<tr>
<td>Recommendation: 6 Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/6</td>
<td></td>
<td>0.09-0.20</td>
<td>Slight agreement</td>
</tr>
<tr>
<td>4/6</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Data in Table 5 show that two items ‘Calling from’ (Cohen’s Kappa -0.05) and ‘this is a change from’ (Cohen’s Kappa -0.07) in the Situation section, represented 91% (95% CI: 71-99) and 86% (95% CI: 65-97) agreement respectively below the level of chance, indicating that these items are not reliable.

This article is protected by copyright. All rights reserved.
Deciding whether a doctor should review the patient immediately or within the next 30 minutes in the Recommendation section achieved slight agreement, reflecting differences in clinical judgement about when to call for assistance. IRR testing was not possible for 4/45 items requiring a response from the person being called for assistance. Nevertheless, the high overall percentage agreement (82.2%; 37 of 45 items) suggests that the items were reliable.

Discussion

To our knowledge, this is the first report of the development and validation of a structured SBAR tool that includes components of a MEWS vital signs chart for nurses summoning skilled assistance. The multiple methods: cognitive interviews, CVI and inter-rater reliability use qualitative and quantitative data collection methods, complementing each other. Input from experts in the field provided valuable interpretation of the SBAR tool in the early stages of instrument development and improved the content validity and the reliability of the tool by suggesting modifications and highlighting potential additional problem areas.

The SBAR is appropriate for use by paraprofessional staff such as nurse aides (Donahue et al. 2010) and has been tested successfully in neonatal care in South Africa (Raymond & Harrison 2014). Using a MEWS observations chart plus a SBAR tool, nurses might be better able to rescue deteriorating patients (Ludikhuize et al. 2011). The addition of an early detection algorithm also reduces patient unexpected deaths as demonstrated in a tertiary teaching hospital (De Meester et al. 2013) where record review analysis showed an increase in unplanned Intensive Care admissions and a decrease in unexpected deaths.

Although there are many published developed or adapted SBAR tools, few have undergone rigorous validation. Mitchell et al. (2012) developed three versions of a SBAR tool but focused on internal consistency, using Cronbach’s alpha (α 0.977). For the Cape Town SBAR validation, inter-rater reliability with Cohen’s kappa gave a direct comparison between two raters, giving perfect agreement (1) for the majority of items. Initially inter-rater reliability in a study by Adams and Osborne McKenzie (2012) was low (45%) but later achieved 100% with 20 nurses. Whereas these researchers used seven nurses to determine content validity, our study involved 18 clinicians (nurses, physicians and surgeons) to determine content validity.

Velji et al. (2007) adapted a SBAR tool through a series of focus group interviews including former patients, families and staff. The Cape Town SBAR included adaptations to the tool based on input from participants with the majority of the adaptations occurring after cognitive interviews (15/42 modifications, 11 items were added and three removed). As in a study by Field et al. (2011) where a
SBAR tool was modified for use in a warfarin protocol, this study modified a SBAR tool by incorporating components of a MEWS vital signs’ chart.

Despite training, the SBAR is often not used (Ludikhuize et al. 2011) or is used incorrectly (Ilan et al. 2012, Joffe et al. 2013), particularly by nursing students (Cunningham et al. 2012, Lancaster et al. 2015). Potentially problematic reporting could occur outside the 9-5 working day. Primary physicians are often not available for their patients after hours and the sign out to the on-call provider, who knows little about the patient, may have been brief (Joffe et al. 2013). Suboptimal handover between physicians can result in serious adverse events (Ilan et al. 2012) which may not be ameliorated by use of an SBAR tool (Joffe et al. 2013). Joffe et al. (2013) assessed problem-specific SBAR tools for nurses to use when calling a doctor after hours. Their study demonstrated that nurses often omit important information when speaking to a doctor after hours and that an SBAR tool did not necessarily ensure accurate communication. By incorporating early warning scores into a SBAR tool for reporting early signs of deterioration, it is anticipated that nurses are more likely to summon early intervention and more successfully than if they had used the standard SBAR tool.

Studies (Beckett & Kipnis 2009, Donahue et al. 2011) describe a perceived improvement in patient safety using the SBAR communication tool. The SBAR tool reportedly enhances nurse and doctor satisfaction with nurse to doctor communication (Renz et al. 2013). Communication in general seems to improve reporting of errors (Ardoin & Broussard 2011, Haig et al. 2006, Randmaa et al. 2014). Few studies have evaluated actual patient outcomes associated with the use of SBAR for early reporting of patient deterioration and preventing unexpected deaths (De Meester et al. 2013, Ludikhuize et al. 2011). Introduction of the SBAR led to a reduction in sentinel events from 89.9 per 1000 (8.99%) patient days to 39.96 per 1000 (3.99%) patient days a year.

Ludikhuize et al. (2011) found that nurses trained to use the MEWS and SBAR tools in a simulated environment in an academic hospital in the Netherlands tended to perform an immediate patient assessment (77%) versus non-trained nurses (58%; P=0.056). Respiratory rate, the most sensitive indicator of acute deterioration (Subbe et al. 2003) was measured twice as often by the trained group (trained nurses 53%/non-trained nurses 25%, p=0.025). Physician reporting was also increased in the trained group (trained nurses 67%/non-trained nurses 43%) but disappointingly the SBAR was only used once. This was a single centre study and there was no real life patient for nurses to visualize (Ludikhuize et al. 2011).

De Meester et al. (2013) demonstrated that using the SBAR not only improved communication between nurses and physicians but also reduced patient unexpected deaths in a tertiary teaching
hospital. Nurses received SBAR training including role-play and training in an early detection algorithm to assess airway, breathing, circulation, disability and exposure (ABCDE). Nurses were encouraged to use the MEWS vital signs chart, the ABCDE to perform a patient assessment and to complete SBAR documentation prior to calling for assistance. Results demonstrated perception of improved nurse-physician communication as well as better nurse preparation before calling for assistance. Record review analysis showed an increase in unplanned Intensive Care admissions (from 13.1/1000 to 14.8/1000 admissions; relative risk ratio (RRR) = 50%; 95% CI 30–64; p=0.001) and unexpected deaths decreased (from 0.99/1000 to 0.34/1000 admissions; RRR = −227%; 95% CI −793 to −20; NNT 1656; p < 0.001).

Limitations

The scale of this study was limited by available resources, but is typical of similar nurse-led instrument development studies. Data reliability depended on participants’ clinical knowledge and expertise, their co-operation and veracity. Due to restricted resources and ethical considerations, the modified SBAR tool was not tested or evaluated in a true clinical setting. Instead, testing was performed seeking expert opinion and using hypothetical patient scenarios. The examples used were representative of other work in Cape Town (Kyriacos et al. 2014a, b, 2015). The utility of the tool in environments beyond medical and surgical wards is not assessed.

There was potential for sampling bias as participants were purposively selected. However, none of the purposively selected participants refused to participate thereby reducing the potential for volunteer bias (Jordan et al. 2013, Toerien et al. 2009). Volunteer participants had more experience and expertise than the general workforce. Acknowledged experienced experts were recruited, which may affect the generalizability of the findings. Field-testing with less expert practitioners and real patients is needed.

From single site research in one city, we cannot assume that participants are representative of other populations. Findings cannot necessarily be generalized to settings where the prevalence of the conditions under consideration may differ. We cannot assume that respondents and response patterns are representative of other populations (Jordan et al. 2013).

Responses to fieldworkers may have been vulnerable to social desirability response biases, as participants constructed their answers around their preferred self-presentation images (Fowler & Cosenza 2008). All researchers viewed the data to reduce entrapment by prior expectation.

This article is protected by copyright. All rights reserved.
The Hawthorne effect (Roethlisberger & Dickson 1939) may have been minimized in cognitive interviews and CVI’s by explaining to participants that the purpose of these studies was not to test knowledge but to identify problem areas in the modified SBAR tool and suggestions for improvement were encouraged.

Further research is required to test the effectiveness of the modified SBAR when used in educational interventions for nurses, particularly to determine whether the modified SBAR is appropriate for all levels of nurses and nursing students (Kotsakis et al. 2014, Ozekcin et al. 2015, Wang et al. 2015).

Further research will be required to fully test the clinical effectiveness of the linked SBAR, its impact on accuracy of nurse-doctor communication, the safety climate (Ardoin & Broussard 2011, Randmaa et al. 2014), and patient outcomes (De Meester et al. 2013). In addition, research is required to evaluate the limitations of this tool in a clinical setting, such as if its use is negatively affected by factors such as distractions while calling for skilled assistance (Poot et al. 2014). Studies evaluating the MEWS-linked SBAR’s performance in early reporting of patients showing signs of deterioration are needed to fully comprehend the value of this structured communication tool and its effect on patient outcomes.

Conclusion

A Situation-Background-Assessment-Recommendation (SBAR) communication tool modified by incorporating components of a revised Modified Early Warning Score (MEWS) vital signs chart was found to have a high content validity and inter-rater reliability. Cognitive interviews (CIs) enhanced the validity of the tool as problem areas were identified and corrected. The tool now needs field testing. It is limited by the requirement for simultaneous use of the MEWS vital signs observations chart. It is hoped that with the use of this structured communication tool in conjunction with the revised MEWS, there will be earlier reporting of signs of clinical or physiological deterioration and a decrease in failure to rescue, sudden adverse events, including cardiac arrest or death.

Relevance to clinical practice

In addition to improving the accuracy of communication amongst clinicians the MEWS-linked SBAR tool provides a potential safety checklist by requiring a nurse to gather pertinent information (Randmaa et al. 2014). The MEWS vital signs chart is not a substitute for clinical judgement. Accordingly, the Cape Town MEWS observations chart (Kyriacos 2011b) incorporated in the modified SBAR tool includes clinical parameters that require clinical judgement. Our findings provide a
reference for other African countries to develop and validate communication tools for reporting early signs of clinical deterioration.

Contributions

Conception, study design, data analysis and data interpretation: DB; Supervision, data analysis, data interpretation, critical review of manuscript: UK, SJ.

Funding

This study was partially funded by the National Research Foundation of South Africa.

Conflict of interest

All authors declare that have no conflict of interest.

Acknowledgements

We thank all nurses, physicians and surgeons who gave so generously of their time and expertise in validating the modified SBAR despite severe pressures of work as well as hospital management teams for displaying willingness to participate in this study.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Kyriacos U & Jordan S (2014b) Record review to explore the adequacy of post-operative vital signs monitoring using a local modified early warning score (Mews) chart to evaluate outcomes. PLoS ONE. 9(Suppl 1), e87320 DOI: 10.1371/journal.pone.0087320 [published Online First: Epub Date].

Kyriacos U (2011a) The development, validation and testing of a vital signs monitoring tool for early identification of deterioration in adult surgical patients [PhD], University of Cape town.

NHS NPSA. Recognising and responding appropriately to early signs of deterioration in hospitalised patients, 2007.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Whittingham KA & Oldroyd LE (2014) Using an SBAR - keeping it real! Demonstrating how improving safe care delivery has been incorporated into a top-up degree programme. *Nurse Education Today*. 34(6), e47-e52.

Appendix 1: The developed prototype SBAR communication tool

Situation
- This is __________________________ calling from __________________________.
- I am calling about patient __________________________.
- The problem I am calling about is MEWS score of ____________ (Provide triggered MEWS score) and/or my patient does not look right because of __________________________.
- My patient's resuscitation status is __________________________.

Background
- The patient was admitted on __________________________.
- Admission diagnosis is __________________________.
- Pertinent medical history for this patient is __________________________.
- Current treatment includes __________________________.
- This is a change from __________________________.

Assessment
- Current vital signs are: Respiratory rate ________ Oxygen saturation % ________.
- Temperature ________ Heart rate ________ Blood Pressure ________.
- Provide the following information if applicable:
 - On oxygen: Yes_____ No ________
 - Perfusion- Capillary refill time >2 seconds: Yes______ No______
 - Skin colour: Pale______ Cyanosis ________
 - The patient is complaining of __________________________.
 - Pain scale: No pain______ Mild pain______ Moderate pain______ Severe pain______
 - Sweating: Yes______ No ________
 - Wound ooze: Yes______ No ________
 - Pedal pulses: Yes______ No ________
 - Blood glucose ________
 - Finger prick HB ________
 - Glasgow-coma scale (___/15)
 - Pupil size: Right______ Left ________
 - Intravenous fluids: Yes______________ (Provide detail of IV fluids given) No______
 - Urine output: ________ (ml/hr)

Recommendation
- I would like you to see the patient now ____ in the next 30 minutes______.
- Any tests needed? __________________________.
- Any medications? __________________________.
- While I have you on the phone may I get a second witness: Yes______ No ________
- Do you want to be notified for any reason? __________________________.
- If no improvement, when should I call again? __________________________.

Compiled by Debora Burger MSc RN UCT Division of Nursing and Midwifery (Supervisor Dr. Una Kyriacos, UCT/ Co-Supervisor Dr. Sue Jordan, Swansea University) based on SBAR report to a physician, Magee-Women's Hospital of UPMC © 2008 (Woodhall et al. 2008).
Appendix 2: Final Modified SBAR Communication tool following Cognitive Interviews and Content Validity

Instructions:

Please obtain a complete set of vital signs. Complete the SBAR communication document quickly before calling the doctor by filling in:

- the required information or using tick box ✔ (Yes) X (NO) or ND (Not done).
- Keep your descriptions brief and relevant to why you are calling.
- Ensure you have the patient’s ‘OBS’ chart and medication charts at hand when calling the doctor.
- Be prepared for a second witness if medications are ordered.

<table>
<thead>
<tr>
<th>Time Dr. alerted</th>
<th>Time DR. responded</th>
<th>Date</th>
</tr>
</thead>
</table>

Situation

This is ______ calling from ___________(State your name, title and location).

I am calling about patient _______________ (State patient’s name).

The problem I am calling about is __.

(Provide disturbed vital signs, OR the reason why you are concerned about the patient).

The patient’s resuscitation status is ‘for resuscitation’ ☐ or ‘not for resuscitation’ ☐ or unsure ☐

Background

The patient was admitted on__________________________ (Admission date and time if known).

Admission diagnosis is __.

A brief relevant history for this patient is __.

(Provide current age, weight and a quick summary of any secondary diagnosis such as diabetes, hypertension as well as procedures/operations/tests related to the current problem and if the patient has any allergies).

Current treatment includes __.

This is a change from __

Assessment

Current vital signs are: Respiratory rate _____ Oxygen saturation %______ On oxygen %/L/min _____ or Room air ☐/Temperature ______ Heart rate ______ Blood pressure ___________/____________ Alert ☐ Responds to Verbal ☐/Pain ☐ is Unresponsive ☐

ONLY IF APPLICABLE complete and state the following:

Skin colour: Pale ☐ Cyanosis ☐ Periphery: Warm (Capillary refill time <2 seconds) ☐ or Cool (CRT>2 seconds) ☐

Pupils: Equal: Yes ☐ or No ☐/Reacting to light ☐ Not reacting to light ☐

Mood: Lethargic ☐ Confused ☐ Agitated ☐

The patient is complaining of __.

Pain experienced: No pain ☐ Mild pain ☐ Moderate pain ☐ Severe pain ☐

Sweating: ☐/Wound ooze: ☐/Pedal pulses: Weak ☐ or Absent ☐

Blood glucose: _______/Finger prick Hb: ______________

Recommendation

I would like you to see the patient now ☐ in the next 30 minutes ☐

Is there anything you would like me to do in the meantime? ____________________________

(If medications are ordered): While I have you on the phone may I get a second witness? ☐

(If not coming to see the patient now): Do you want to be notified for any reason? ____________________________

If no improvement, when should I call again? __

Compiled by Debora Burger MSc RN UCT Division of Nursing and Midwifery (Supervisor Dr. Una Kyriacos, UCT/ Co-Supervisor Dr. Sue Jordan, Swansea University) based on SBAR report to a physician, Magee-Women’s Hospital of UPMC © 2008 (Woodhall et al. 2008).