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ABSTRACT: We present a family of N = 1 supersymmetric backgrounds in type-IIA

supergravity and their lifts to eleven-dimensional supergravity. These are of the form

AdS5 × X5 and are characterised by an SU(2) structure. The internal space, X5, is ob-

tained from the known Sasaki-Einstein manifolds, Yp,q, via an application of non-Abelian

T-duality.
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1 Introduction

According to the AdS/CFT correspondence [1], the N = 1 superconformal field theory

arising from a stack of D3-branes at the tip of a Calabi-Yau cone over an Einstein man-

ifold X5 is conjectured to be dual to the type-IIB supergravity background with metric

AdS5 × X5 [2–5]. The discovery of a countably infinite family of Sasaki–Einstein mani-

folds known as Yp,q in [6, 7] provided a dramatic expansion in concrete examples of the

correspondence. Up to that point, the only explicitly known metrics for X5 were the round

metric on S5 and the homogenous space T1,1 – with corresponding field theories being

N = 4 SYM and the N = 1 two-node quiver of Klebanov and Witten [3]. Following this

geometric discovery, and its subsequent interpretation in terms of toric geometry [8], an

infinite family of examples of holography could be deduced in a systematic way [9].

Non-Abelian T-duality [11], the extension of the more familiar T-duality of U(1) isome-

tries to non-Abelian isometry groups, has been established as a solution generating tech-

nique of type-II supergravity backgrounds supported by Ramond fluxes [12]. A natural

question, given the importance of Abelian T-duality, to ask is how can this non-Abelian

duality be exploited in the context of holography. Here we will restrict our focus to confor-

mal backgrounds with AdS5 factors in the geometries (a number of related recent works

have considered non-Abelian T-duality in various other contexts [13–28]).

In [12] this application of non-Abelian T-duality was initiated by considering the non-

Abelian T-dual of AdS5 × S5 along an SU(2) isometry group acting in the sphere. The

result of this was a solution in type-IIA supergravity that preserved N = 2 supersym-

metries that has at least a close relation to the class of geometries provided by Giaotto
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and Maldancena [30] as the gravity duals to Giaotto theories [29] (in the solution of [12]

there is a singularity making an exact identification difficult at the field theory level). Fol-

lowing the historical development of type-IIB examples of holography outlined above, a

similar non-Abelian T-dualisation was applied in [16] to AdS5 × T1,1 again giving rise to

geometries in type-IIA but now preserving N = 1 supersymmetry and free from singular-

ities. Whilst the precise holographic interpretation is not fully understood, the results of

[16] indicate some connection to the N = 1 counterparts of Giaotto or “Sicilian” theories

considered in [31].

In this paper we report on the result of applying this dualisation to Yp,q spaces. We

will construct an infinite family of smooth solutions to type-IIA supergravity which pre-

serve N = 1 supersymmetry – these backgrounds can be understood as having an SU(2)

structure. In this short note our aim is to present this geometry which we hope may open

the path for a further study of its holographic interpretation.

We begin with a telegraphic review of the geometry of Yp,q, then summarise the du-

alisation procedure and finally give the results of the new geometry.

2 Some salient features of Yp,q

We review only the essentials that are needed for our purpose and refer the reader to the

original articles [6, 7] for further explanations. The local form of the metric ia

ds2 =
1 − y

6

(
σ2

1 + σ2
2

)
+

1

w(y)v(y)
dy2 +

v(y)

9
σ2

3 + w(y) [dα + f (y)σ3]
2 , (2.1)

in which the functions are defined by

w(y) =
2(b − y2)

1 − y
, v(y) =

b − 3y2 + 2y3

b − y2
, f (y) =

b − 2y + y2

6(b − y2)
, (2.2)

where 0 < b < 1 is a parameter determined by p and q. The σi are a set of SU(2) left

invariant one-forms

σ1 = cos ψ sin θdφ − sin ψdθ , σ2 = sin ψ sin θdφ + cos ψdθ , σ3 = dψ + cos θdφ ,

(2.3)

with the periodicities for the angles

0 6 θ 6 π , 0 6 φ 6 2π , 0 6 ψ 6 2π . (2.4)

The domain of y is

y1 6 y 6 y2 , (2.5)

where y1 and y2 are the two smallest roots of

b − 3y2 + 2y3 = 0 . (2.6)
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The space B4 given by the coordinates (θ, φ, y, ψ) is topologically an S2 × S2. The period of

the angle α can be fixed, in terms of p and q, such that the total space is an S1 fibration over

B4 and is topologically an S2 × S3. The isometry group is, up to discrete identifications,

SU(2)× U(1)× U(1).

The Yp,q geometries are Sasaki–Einstein meaning that the metric cone

ds2 = dr2 + r2ds2(Yp,q) , (2.7)

is Calabi-Yau and as such is equipped with a Kähler form J and a holomorphic three-form

Ω. A natural basis is

e
1 = − 1√

6
H(y)−1dy e

2 = − 1√
6

H(y)(dβ − cos θdφ) e
3 =

√
1 − y√

6
dθ

e
4 =

√
1 − y√

6
sin θdφ e

5 =
1

3
(dψ + ydβ + (1 − y) cos θdφ) e

r = d log r ,

(2.8)

where we define 6H(y)2 = w(y)v(y) and β = −(6α + ψ). In this basis,

J = r2
(
e

r ∧ e
5 + e

1 ∧ e
2 − e

3 ∧ e
4
)

,

Ω3 = r3eiψ
(
e

r + ie5
)
∧
(
e

1 + ie2
)
∧
(
e

3 − ie4
)

,
(2.9)

where e
r = d log r. These obey dJ = 0 and dΩ3 = 0 and are normalised such that Ω3 ∧

Ω3 = 4i
3 J ∧ J ∧ J.

With this space we can construct the following solution of type-IIB supergravity sup-

ported by a self-dual RR five-form:

ds2 = ds2[AdS5] + ds2[Yp,q] , F5 = 4(1 + ∗)e1 ∧ e
2 ∧ e

3 ∧ e
4 ∧ e

5 . (2.10)

In the basis defined in (2.8) together with the remaining frame-field on AdS5 specified by

e
xµ

= rdxµ for µ = 0 . . . 3, the four Killing spinors that do not depend on the xµ (and are

dual to supersymmetries in the gauge theory) are given by

ǫ = e−
i
2 ψ
√

rη0 , (2.11)

where η0 is a constant spinor obeying

iΓx0x1x2x3 η0 = −η0 , Γ12η0 = −iη0 , Γ34η0 = iη0 . (2.12)

The Killing vectors associated to the SU(2) isometry

k(1) = − cos φ∂θ + cot θ sin φ∂φ − csc θ sin φ∂ψ ,

k(2) = − sin φ∂θ − cot θ cos φ∂φ + csc θ cos φ∂ψ ,

k(3) = −∂φ ,
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may act on the Killing spinor by means of the spinor-Lorentz-Lie derivative

Lkǫ = kµ(∂µ +
1

4
ωµABΓAB)ǫ +

1

4
∇µkνΓµνǫ . (2.13)

One finds that, by virtue of the projection conditions,

Lk(i)ǫ = 0 , i = 1, 2, 3 . (2.14)

This is, of course, no more than the gravity realisation that this SU(2) does not correspond

to an R-symmetry in a field theory. For completeness we note the action of the remaining

U(1)’s is given by

L∂ψ
ǫ = − i

2
ǫ , L∂α

ǫ = 0 . (2.15)

3 Non-Abelian T-duality essentials

The most direct way to obtain the relevant transformation rules for the background under

non-Abelian T-duality is to work with a string σ-model and follow a Buscher procedure

for the NS sector. We supplement this in the RR sector using the rules found in [12]. Here

we provide a quick summary of this in the absence of “spectator fields” ; a comprehensive

treatment may be found in [17].

Consider a space supporting an isometry group G such that the metric (and the NS

two-form if present) can be written in terms of left-invariant Maurer–Cartan forms for this

group. Then the σ-model on this target space is given by

S =
∫

d2σEij L
i
+L

j
− , (3.1)

where Eij = Gij + Bij and Li
± = −iTr(g−1∂±g) are the pull-backs of the Maurer–Cartan

forms. We gauge the isometry

∂±g → D±g = ∂±g − A±g , (3.2)

and introduce a Lagrange multiplier term −iTr(vF+−). Integrating out the Lagrange mul-

tipliers enforces a flat connection and the original σ-model is recovered upon gauge fixing.

On the other hand, if we integrate by parts one can solve instead for the non-propagating

gauge fields. If we fix the gauge symmetry (e.g. by setting g = 1) one finds the T-dual

sigma model in which the Lagrange multipliers now play the role of the T-dual coordi-

nates:

Ŝ =
∫

d2σ∂+vi(Mij)
−1∂−vj , Mij = Eij + fij

kvk . (3.3)

Notice that the structure constants and the coordinates themselves explicitly enter into the

metric and NS two-form of the T-dual target space which can be read-off from this sigma
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model. The dilaton receives a shift from integrating out the gauge field and is given by

Φ̂ = Φ − 1

2
log det M . (3.4)

As explained in detail in [12, 17] this dualisation process acts differently on left and right

movers as can be seen in the transformation properties of world-sheet derivatives (which

actually define a canonical transformation between the two T-dual sigma models [32, 33]).

After T-dualisation, the left and right moving world-sheet bosons each separately define

a set of frame-fields for the target space geometry which we call ei
+ and ei

−. These are

necessarily related by a local frame rotation, ei
+ = Λi

je
j
−, with ΛTΛ = 1. In the example

of (3.3) this frame rotation has the form Λ = −M−TM.

It is this local frame rotation that determines the action on spinors and the RR sector

via the induced spinor representation, Ω, of Λ

Ω−1ΓiΩ = Λi jΓj . (3.5)

Consider the RR sector in the democratic formalism that incorporates fluxes and their

Hodge duals equally (implicitly we are thinking now of a full ten-dimensional type-II

context) specified by polyforms

IIB : F =
4

∑
n=0

F2n+1 , IIA : F̂ =
5

∑
n=0

F2n . (3.6)

From these we may construct bi-spinors /F by contracting the constituent p-forms with p-

anti-symmetrised gamma matrices. The T-daulity rules for the RR sector are then encoded

by

eΦ̂ /̂F = eΦ/F · Ω−1 . (3.7)

One can also view this as a generalisation of a Fourier–Mukai transformation [20].

Non-Abelian T-duality may or may not preserve supersymmetry if it was there in

the original geometry. A criterion [12] for the preservation of supersymmetry is that the

Killing spinors of the original geometry should be invariant under the action given in

eq. (2.13) of the Killing vectors generating the isometry dualised. In the case at hand, i.e.

the dualisation of the Yp,q spaces, we thus anticipate following eq. (2.14) that the super-

symmetry will indeed be preserved in the T-dual.1 Suppose we start with ten-dimensional

MW Killing spinors ǫ1 and ǫ2, then the Killing spinors in the T-dual will be given by

ǫ̂1 = ǫ1 , ǫ̂2 = Ω · ǫ2 . (3.8)

Instead of working with the explicit Killing spinors, it can be rather convenient in

geometries that preserve N = 1 supersymmetry to work in the language of G-structures,

1Notice that Killing spinor also has a vanishing derivative along the U(1)α isometry so a SUSY preserving
Abelian T-duality can be performed here, indeed that was part of the duality chain in [6, 7] that led to the
discovery of these Yp,q geometries.
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[34, 35], and to harness the power of generalised complex geometry. The interplay of

non-Abelian T-duality with G-structures was considered in detail in [19].2 In essence one

considers a spacetime that is a warped product of four-dimensional Minkowski space and

a six-dimensional internal manifold. Performing an appropriate four-six decomposition

of the Killing spinors one is left with internal spinors η1
± and η2

± (here the sign denotes

six-dimensional chirality). From these one can construct two Cli f f (6, 6) pure spinors

Ψ± = η1
+ ⊗ η2

± . (3.9)

By means of the Clifford map these can be converted into polyforms. The Gravitino and

Dilatino supergravity equations then can be restated as

e−2A+ΦdH

[
e2A−ΦΨ1

]
= 0 , e−2A+ΦdH

[
e2A−ΦΨ2

]
= dA ∧ Ψ̄2 +

ieΦ

8
F̃ , (3.10)

where dH = d + H∧, A is the warp factor in the metric and F̃ are the internal components

of the RR fluxes in eq. (3.6) i.e. F = G + vol(R1,3) ∧ F̃. For type-IIA one has Ψ1,2 =

Ψ+,− whereas for type-IIB Ψ1,2 = Ψ−,+. An important example occurs when the internal

spinors are parallel, in which case one finds an SU(3) structure and the pure spinors have

the form

Ψ+ =
ieA

8
e−iJ , Ψ− =

eA

8
Ω3 , (3.11)

where J is a real two-form and Ω3 a complex three-form. The Yp,q geometries are of this

type with the pure spinors following from (2.9). When the internal spinors are nowhere

parallel, they define an SU(2) structure

Ψ− =
eA

8
e−ij ∧ z , Ψ+ =

eA

8
e

1
2 z∧z̄ ∧ ω2 , (3.12)

where j is a real two-form, ω2 a complex two-form and z a complex one-form. The action

of non-Abelian T-duality on these structures replicates that of the RR fields [19] namely

/̂Ψ± = /Ψ∓ · Ω−1 . (3.13)

In [19] it was shown that under non-Abelian T-duality the SU(3) structure associated

with T1,1 becomes an SU(2) structure. This phenomena is also rather typical of what

can happen with Abelian T-duality [36] and we will see that will also be the case for the

geometries constructed here. (In non-conformal examples of geometries, for instance the

Kleabanov-Strassler geometry, it happens that the non-Abelian T-dual [17, 23] has what is

known as dynamic SU(2) structure where the projections of the pure spinors vary in some

directions – here however the SU(2) structure is of the simpler static variety).

2Our conventions essentially follow those of [37] as used in [19] where further details of the action of
non-Abelian T-duality on G-structures can be found.
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4 The Non-Abelian T-duality Geometry

4.1 Frames and Fields

We apply the dualisation proceedure outlined above to SU(2) isometry of the Yp,q solution

of type-IIB supergravity. To perform the dualisation most efficiently, and to make contact

with the general expressions for dualisation provided in [17], we choose a set of frame-

field for Yp,q given by

g
1 =

√
m(y)

6
σ1 , g

2 =

√
m(y)

6
σ2 , g

3 =
√

g(y)σ3 + h(y)dα ,

g
α = k(y)dα , g

y =
1√

v(y)w(y)
dy ,

(4.1)

in which the supplementary function are defined according to

g(y) =
v

9
+ w f 2 , h(y) =

w f√
g

, k(y)2 =
vw

9g
, m(y) = 1 − y . (4.2)

In this way the T-duality will act only in the g
1...3 directions to produce new frame-fields

ĝ
i
± in which, as per the discussion in the preceding section, the ± denotes the frame-field

seen by left and right movers after dualisation. We fix the gauge such that all the Lagrange

mulitpliers play the role of T-dual coordinates and parametrize these by

v1 = ρ sin(ξ) , v2 = ρ cos(ξ) , v3 = x . (4.3)

The target space metric is of the form

ds2 = ds2(AdS5) + ds2(M̂5) ,

ds2(M̂5) = (gα)2 + (gy)2 +
3

∑
i=1

ĝ
i
± ⊗ ĝ

i
± ,

(4.4)

with

ĝ
1
± =

2m
1
2√

3∆

(
∓xρσ̂± −

√
2

3

(
6ρ2 + gm

)
dρ

)
, ĝ

2
± =

m
1
2√

3∆

(
∓
√

2

3
mρσ̂± + 4xgdρ

)
,

ĝ
3
± =

1

∆

(
2mρ2

3
√

g
σ̂± ∓ ∆√

2g
dx ∓ 4

√
2gxρdρ

)
, σ̂± = 2

√
ghdα + 2gdξ ±

√
2dx .

(4.5)

Explicitly one has

3

∑
i=1

ĝ
i
± ⊗ ĝ

i
± =

1

6g∆

(
(3∆ − 4mρ2)dx2 + 48gxρdxdρ + 8g(mg + 6ρ2)dρ2

+8gmh2ρ2dα2 + 16mg
3
2 hρ2dαdξ + 8mg2ρ2dξ2

)
.

(4.6)
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Since they define the same metric these frames may be related by a Lorentz transformation

ĝ+ = Λĝ− whose form may readily be deduced from eq. (4.5). Henceforth we will give all

expressions in terms of the plus frames and no longer write the corresponding ‘+’ index.

The dilaton given by eq. (3.4) is calculated to be

e−2Φ = ∆ ≡ 2

9

(
m(y)2g(y) + 6m(y)ρ2 + 18g(y)x2

)
. (4.7)

The NS two-form is given by

B = −
√

6ρh

k
√

g
√

m
g

α ∧ ĝ
2 − h

k
g

α ∧ ĝ
3 − 3

√
2x

m
ĝ

1 ∧ ĝ
2 −

√
6ρ√

m
√

g
ĝ

2 ∧ ĝ
3

= −h(3∆ − 4mρ2)

3
√

2g∆
dx ∧ dα +

2
√

2ρ2m

3∆
dx ∧ dξ

+
4
√

2xρhg
1
2

∆
dα ∧ dρ +

4
√

2xρg

∆
dξ ∧ dρ .

(4.8)

The vectorial Lorentz transformation relating the plus and minus frames can be con-

verted to an action on spinors and using the rule in eq. (3.7) we can deduce the RR fluxes

that support this geometry. This yields

F2 = −4

3

√
2gmg

α ∧ g
y =

4

9

√
2mdy ∧ dα ,

F4 = B2 ∧ F2 = 8x
√

ggα ∧ g
y ∧ ĝ

1 ∧ ĝ
2 +

8√
3

ρ
√

mg
α ∧ g

y ∧ ĝ
2 ∧ ĝ

3

=
16

27∆
ρ2m2dx ∧ dy ∧ dα ∧ dξ +

32xρgm

9∆
dy ∧ dα ∧ dξ ∧ dρ .

(4.9)

We have verified using Mathematica that this indeed solves all the supergravity equations

of motion and Bianchi identities.

4.2 Smoothness

The expression for the scalar curvature tensor of this background is unwieldy however

there is a simple test that allows one to see that there should not be any curvature sin-

gularities in the T-dual geometry. In general, if one T-dualises a smooth geometry, then

any singularities that occur will do so at a point where the dilaton equally blows up. This

is associated to points in the original geometry where the Killing vectors of the isome-

try degenerate (for instance at locations where one dualises a shrinking cycle). Since the

SU(2) Killing vectors have no such points, one anticipates there to be no divergences in

the dilaton. Indeed this is the case; the dilaton defined in eq. (4.7) never blows up. To see

this is the case note that in terms of (p, q) with p > q, the range of y is

y1 =
1

4p

(
2p − 3q − (4p2 − 3q2)

1
2

)
< y < y2 =

1

4p

(
2p + 3q − (4p2 − 3q2)

1
2

)
, (4.10)
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so that the function m(y) = 1 − y is strictly positive. Then the only possible zeros of ∆

must occur at points where x = 0, ρ = 0 and g(y) = 0. Using the fact that the parameter b

is given by

b =
1

2
− 1

4p3
(p2 − 3q2)

√
4p2 − 3q2 , (4.11)

one can find that the zeros of g(y) occur at

y⋆ = 1 − 1

2
√

3p3

(
2p6 + p5

√
4p2 − 3q2 − 3p3q2

√
4p2 − 3q2

) 1
2

. (4.12)

It can be seen that y⋆ > y2 and so any such zeros fall out of the range of the y considered.

Hence the dilaton is nowhere diverging and we thus expect a smooth geometry. Indeed,

one finds explicitly that the scalar curvature is proportional to (a smooth function times)

1

∆2g(y)2m(y)2
(4.13)

which remains finite.

4.3 SU(2) Structure

This geometry preserves the N = 1 supersymmetry of the seed Yp,q background. Indeed

it can be classified as an (orthogonal, static) SU(2) structure whose pure spinors

Ψ− =
eA

8
e−ij ∧ z , Ψ+ =

eA

8
e

1
2 z∧z̄ ∧ ω2 , (4.14)

are explicitly given by

z =
1

18
√

∆

(
(6x − i

√
2m)

[
2mr−1dr + 3i

√
2dx − dy

]
+ 36i

√
2ρdρ

)

ω2 =

√
2meiξ

9rH
√

∆
(3iρdr ∧ dy + r [ρmdy ∧ dξ − 6yρdy ∧ dα − imdy ∧ dρ]

+3H2 (6ρdr ∧ dα + ρdr ∧ dξ − idr ∧ dρ − 2irρdα ∧ dξ − 2rdα ∧ dρ)
)

j2 =
1

∆

(
− 1

18gr

(
−vw∆ + 8

√
ghm2ρ2

)
dr ∧ dα − 4m2ρ2

9r
dr ∧ dξ +

m

9g
(∆ + 2

√
ghρ2)dy ∧ dα

+
2

9
mρ2dy ∧ dξ +

4

3

√
ghmρdα ∧ dρ +

4

3
gmρdξ ∧ dρ

)
.

These do indeed solve the susy equations eq. (3.10). We leave further study based on these

structures, e.g. finding calibrated cycles and determining scaling dimensions of operators

corresponding to wrapped branes for the future.
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4.4 Charges

We note first that

F2 = −4

9

√
2(y − 1)dy ∧ dα ,

F4 − B2 ∧ F2 = 0 ,

F6 − B2 ∧ F4 +
1

2
B2

2 ∧ F2 = 4
√

2Vol(AdS5) ∧ (xdx + 2ρdρ) ,

F8 − B2 ∧ F6 +
1

2
B2

2 ∧ F4 −
1

8
B3

2 ∧ F2 = 8Vol(AdS5) ∧ (ρdρ ∧ dξ ∧ dx) .

(4.15)

This indicates that the only well-defined and finite Page charge is carried by D6 branes

and in particular

QD6
Page =

∫
−4

9

√
2(y − 1)dy ∧ dα =

√
2πq2

(
2p + (4p2 − 3q2)

1
2

)

3p2
(

3q2 − 2p2 + p(4p2 − 3q2)
1
2

) =
√

2πVol(Yp,q),

(4.16)

in which we used the expressions eq. (4.10) and that the period of α is given by

l =
q

3q2 − 2p2 + p(4p2 − 3q2)
1
2

. (4.17)

That the D6 Page charge matches the volume of Yp,q suggests that the D3 charge support-

ing the Yp,q geometry has been converted entirely to D6 charge.

One potentially useful observation is upon changing to polar coordinates ρ+ ix = r̃eiχ

then there is a nice cycle on which the B field takes the following form

{r̃ = const.. , y = y0 , α = −ξ} =⇒ B2 =
r̃√
2

sin χdξdχ , (4.18)

where y0 is a solution of h(y) =
√

g(y). One can then readily integrate this quantity over

the S2 formed by (ξ, χ). Notice that the effect of moving in this r̃ direction can be replicated

by large gauge transformations which has similarities to what happens in cascading gauge

theories. Similar behaviour was observed in [22] for an AdS6 background and in [28]

in AdS4 background both obtained via non-Abelian T-duality. In [28] this was used to

suggest that the apparently non-compact nature of r̃ encodes a spectral flow in a putative

dual CFT3. One might speculate that a similar interpretation could apply here.
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4.5 M-theory lift

The lift of the above geometry gives an eleven-dimensional metric

ds2
11 = ∆

1
3

(
ds2(AdS5) +

[
dy2

vw
+ k2dα2

])

+ ∆− 2
3

(
Λ2 +

ρ2m

3g
ω2 +

1

9
(18x2 + m2)dx2 + 8xρdxdρ +

(
8ρ2 +

4

3
m

)
dρ2

)

(4.19)

where

Λ = dx# − 2
√

2

9
(m2 − 1)dα , ω = 2g

1
2 hdα + 2gdξ . (4.20)

The four-dimensional space specified by the coordinates (x, ρ, ζ, x#) is non-trivially fibred

over the (y, α) directions due to the functional dependance on the y coordinate in the

metric. Because of this, the metric can not be simply cast in the form of Bah et al [31]

as was the case for the non-Abelian T-dual of T1,1 [16, 17]. However the solution does

preserve N = 1 supersymmetry and so falls under the general classification of Gauntlett

et al [10] as we shall now show.

If a solution of eleven-dimensional supergravity of the form

ds2
11 = eλ

(
ds2(AdS5) + ds2(M6)

)
(4.21)

preseves N = 1 supersymmetry then M6 admits a local SU(2) structure consisting of

the real two-form J2, the complex two-form Ω2 and a pair of real one-forms K1, K2 which

must obey a set of differential equations (eqn’s 2.13-2.18 of [10]). These can be obtained

from the SU(2) structure of the IIA solution presented above by first lifting to give a

seven-dimensional SU(3) structure and then reducing down to give a six-dimensional

SU(2) structure3. To cast the geometry into the form of [10] we first note that K1 defines a

canonical coordinate Y through

K1 = e−3λ sec ζd

[
−1

3
m(y)x

]
= e−3λ sec ζdY , (4.22)

where

eλ = ∆
1
6 , sin ζ =

2

3∆
1
2

m(y)x . (4.23)

Next we make a transformation of the angles

α̂ =
1

54

(
−9x# − 2

√
2α
)

, ξ̂ = −6α − ξ ψ = ξ , (4.24)

such that the coordinate ψ plays a distinguished role as the adapted coordinate for a

Killing vector defined by cos ζ(K2)µ∂µ = −3∂ψ. For notation convenience we write Cζ =

3Here seven-dimensional refers to the space spanned by the M-theory circle, five internal directions and
the AdS radial coordinate and six-dimensional is the same without the radial coordinate.

– 11 –



cos ζ and Sζ = sin ζ and to simplify the results slightly we perform the coordinate trans-

formation

ρ̂ = ρ
√

m(y)g(y) . (4.25)

Then we find that

K2 = −1

3
Cζdψ +

1

9Cζ∆

(
6
√

2m2dα̂ +
1

g
(4ρ̂2m − 3gC2

ζ ∆)dξ̂

)
. (4.26)

The four-dimensional space

ds2
4 = ds2(M6)− (K1)2 − (K2)2 = e2

1 + e2
1 + e2

3 + e2
4 (4.27)

admits a local SU(2) structure

J2 = e1 ∧ e2 + e3 ∧ e4 , Ω2 = eiψ(e1 + ie2) ∧ (e3 + ie4) , (4.28)

with frame-field given by

e1 = − 4
√

2

3Cζ∆T ρ̂m3dα̂ +
2T ρ̂

9Cζ∆g
dξ̂ , e2 =

6Cζ g

T dρ̂ +
4Yρ̂m

Cζ∆T dY , e3 = −3
√

2R
T dα̂ ,

e4 =
2Rρ̂

T gm
dρ̂ +

T
2Rgm

dy +
2YR

C2
ζ T∆gm4

(
6ρ̂2m2 + 18Y2(9g2 − gm2) + g2m4

)
dY

(4.29)

in which we define the combinations

R2 = 6g(9g − m2) , T 2 =
1

2
R2∆ +

2

3
g2m4 . (4.30)

We directly checked that J, Ω and K defined above satisfy the differential supersymmetry

conditions.

This is not quite the end of the story since dY appears explicitly in the above frame-

field in addition to the four coordinate differentials (dα̂, dξ̂, dρ̂, dy). However ds4
2 is a

metric on a four-dimensional space so such terms need to be removed by a coordinate

transformation. Indeed if we define

ρ̂ = F(U, V, Y) , y = G(U, V, Y) (4.31)

one can see that all the dY terms cancel providing that

∂YF(U, V, Y) = − 2Yρ̂m

3C2
ζ ∆g

, ∂YG(U, V, Y) = − 2YR2

3C2
ζ ∆gm

. (4.32)

Although we did not find the explicit form of the transformation4, one can readily verify

4In the case of the non-Abelian T-dual of T1,1 the analysis is much easier and this coordinate transforma-
tion can be found exactly. In the notation of [17] one finds that the canonical coordinate Y = x2

6 and the metric
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that the metric preserves the complex structure Ji
j and moreover using eq. (4.32) that Ji

j

is independent of Y as is required. As is the case with the non-Abelian T-dual of T1,1 and

the solutions of [31], M6 is not a complex manifold.

5 Comments

Whilst this shows the existence of a wide class of explicit supersymmetric solutions in

type-IIA (and of course their lifts to M-theory) the analysis here has been local in nature.

Establishing the global properties and topology of these solutions will of course be imper-

ative. Indeed, the understanding of such issues has presented a long standing challenge to

non-Abelian duality transformations. Recent work [38] (based on works in [39] and more

recently in [40]) has suggested that, at least in certain circumstances, the non-Abelian T-

dual σ-model can also be understood as the end point of a flow triggered by a relevant

deformation to a certain 2d CFT – this will shed new light on the puzzle of the apparent

non-compactness of some of the coordinates.

It would, needless to say, be extremely exciting if the geometries presented here can be

given a holographic interpretation particularly in the context of “Sicilian” gauge theories.

We leave this intriguing question open.
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