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This paper presents a novel combination of visual servoing (VS) control and neural network
(NN) learning on humanoid dual-arm robot. A VS control system is built by using stereo vision

to obtain the 3D point cloud of a target object. A least square-based method is proposed to

reduce the stochastic error in workspace calibration. An NN controller is designed to com-

pensate for the e®ect of uncertain payload and other internal and external uncertainties during
the tracking control. In contrast to the conventional NN controller, a deterministic learning

technique is utilized in this work, to enable the learned neural knowledge to be reused before

current dynamics changes. A skill transfer mechanism is also developed to apply the neural
learned knowledge from one arm to the other, to increase the neural learning e±ciency. Tracked

trajectory of object is used to provide target position to the coordinated dual arms of a Baxter

robot in the experimental study. Robotic implementations has demonstrated the e±ciency of

the developed VS control system and has veri¯ed the e®ectiveness of the proposed NN controller
with knowledge-reuse and skill transfer features.

Keywords: Neural networks; deterministic learning; visual servoing; stereo vision.

1. Introduction

The issues pertaining to robot control have gained increasing research attention,

recently. Visual servoing (VS) is a technique of control using computer vision

†Corresponding authors.
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information to control the motion of a robot. It mainly depends on techniques of

computer vision, image processing and control theory.2 It is of great importance in

improving the °exibility of robot control systems18 and has been widely applied.

There are two central setups of the camera and the robot end-e®ector: Eye-in-hand,

or end-point open-loop control, which the position of the object is watched by the

camera appended to the robot hand; Eye-to-hand, or end-point closed-loop control,

which the movement of the end-e®ector and the object are both be watched by a

camera settled on the world frame.3 In this paper, the control of a Baxter robot arm

end-e®ector using a stereo visual camera ZED as the eye-to-hand camera is

addressed. Because of a narrower ¯eld of view that eye-in-hand VS provides, as the

sensors are attached in the hand. A least squares-based method is proposed to reduce

stochastic errors during camera calibration process.

To improve robot arm's control performance, an adaptive controller was devel-

oped for robot manipulators.22 It employed a barrier Lyapunov function-based

synthesis to design controller for the manipulator to operate in an ellipsoidal con-

strained region. An adaptive neural network (ANN) control for the robot system in

the presence of full-state constraints is designed.16 The NN enables the system to deal

with uncertainties and disturbances e®ectively. Among these work, we see that NN

technique has been extensively used for robot control system due to its universal

approximation ability and its capability to cope with unmodeled dynamics of the

robot systems. The highly nonlinear nature of the robot dynamics makes it chal-

lenging to obtain an accurate model under practical operational conditions.24

However, conventional NN control was focused on internal uncertainties. To over-

come the uncertainties bring from unknown payload, a novel NN-based intelligent

controller is designed in this paper and obtains an enhanced performance of VS

control.

Furthermore, the learning ability of conventional NN controllers is limited, since

even repeating same task, the parameters of controller need recalculation every time.

Therefore, a deterministic learning technique has been developed as, not only be able

to obtain control dynamic knowledge from closed-loop control process, but also be

reuse the obtained knowledge for another similar control task without readapting to

the uncertainties of the environments.7 Deterministic learning is proposed by using

deterministic calculations that began from adaptive control, rather than utilizing

syntactical standards. The deterministic learning approach tackles the issue of

learning in a dynamic situation and is valuable in numerous applications, for ex-

ample, dynamic pattern recognition,8 learning and control of robotics,9 and oscilla-

tion faults diagnosis.10 In addition to the designed NN controller, deterministic

learning feature is added in this paper to e±ciently reuse the learned knowledge.

After the initial learning of the environmental uncertainties, the proposed NN con-

troller do not need to re-learn until dynamics changes. It can greatly reduce the

computational load.

With the aim of improving the \intelligence" of robot, a robot-to-robot skill

transfer mechanism is proposed in this paper. Unlike the conventional approach of
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transferring human skills to robot, the learned knowledge from NN controller is

transferred from arm to arm with dual-arm robot in this paper. With guaranteed

performance, NN controller only need to learn once of system uncertainties on one

side of dual-arm. The other arm can perform the same task without readapting the

same uncertainties. It can help to increase the neural learning e±ciency and also to

further reduce the computational load.

In this context, this paper presents an neural learning enhanced VS control sys-

tem with knowledge reuse and skill transfer features. The system was successfully

implemented on a Baxter humanoid robot and test results are demonstrated, which

show the potential of the novel learning controller.

2. Preliminaries

Lemma (Ref. 5). Consider a parameterized linear time-varying (LTV) multivari-

able systems in the following form:

_e

�
:

" #
¼ Aðe; �Þ Bðe; �ÞT

�Cðt; �Þ 0

� �
e

�

� �
; z :¼ e

�

� �
; ð1Þ

where e 2 Rn, � 2 Rm,Aðe; �Þ 2 Rn�n,Bðe; �Þ 2 Rm�n,Cðe; �Þ 2 Rm�n, � 2 D � Rl .

There exists a constant �M > 0 such that for all t > 0 and for all � 2 D,

max jjBðt; �Þjj; @Bðt; �Þ
@t

����
����

� �
6 �M : ð2Þ

and there exist symmetric matrices Pðt; �Þ and Qðt; �Þ such that Pðt; �ÞBðt; �ÞT ¼
C ðt; �ÞT and �Qðt; �Þ :¼ Aðt; �ÞTPðt; �Þ þ Pðt; �ÞAðt; �Þ þ ðt; �Þ:

. Furthermore,

9pm, qm, pM and qM > 0 such that, for all ðt; �Þ 2 R>0 � D, pmI 6 Pðt; �Þ 6 pMI and

qmI 6 Qðt; �Þ 6 qMI .

Then, the system is �-uniformly globally exponentially stable (�-UGES) if and

only if Bð _s; _sÞ is �-uniformly persistency of excitation (�-uPE), and the in-bound

constants are independent of the initial conditions �.

3. Kinematics Modeling of Humanoid Baxterr Robot Arms

3.1. Dual arms workspace identification for humanoid Baxterr robot

Baxterr robot is a humanoid robot with an identical pair of seven degree of freedom

(DOF) manipulators installed. Each manipulator has seven rotational joints and

eight links as shown in Fig. 1(a). The joint naming of arm was displayed in Fig. 1(b).

Baxter robot's kinematic model together with DH parameters and joint rotation

limits were discussed from our previous work.19 It is essential to estimate the robot

manipulator workspace for optimized robotic design and algorithm. In this paper, the

previous method used on a single arm19 is extended to both arms to calculate the

reachable workspace. 6000 randomly chosen points in the joint space for each arm
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were generated by using homogenous radial distribution. Then, point clouds of the

reachable workspace for both manipulators were generated based on the end-e®ector

positions calculated with forward kinematics, as illustrated in Fig. 2(a). Further-

more, Delaunay triangulation is applied to the point cloud to generated a convex hull

of the joint space, as illustrated in Fig. 2(b). These are used to constrain the

individual workspace for left and right arms independently in order to let them

co-operate more e±ciently while control.

(a) Baxter robot arm (b) Baxter robot arm joint naming

Fig. 1. Baxter humanoid robot and its joint naming. S0 - Shoulder Roll, S1 - Shoulder Pitch, E0 - Elbow

Roll, E1 - Elbow Pitch, W0 - Wrist Roll, W1 - Wrist Pitch, W2 - Wrist Roll.

(a) The point cloud of reachable
workspace of Baxter robot arms

(b) The convex hull of reachable
workspace of Baxter robot arms

Fig. 2. The identi¯cation of Baxter's workspace.
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4. Setup of Stereo Vision Sensor

4.1. System structure overview

The robot control system is shown in Fig. 3. The ZED stereo camera is a passive

depth camera consists of two RGB-cameras with ¯xed alignment. It is used as the

visual sensors in the robotic control system. It captures videos in 30 fps under

1280� 720 resolution to produce dense colored depth maps for estimating the

positions of objects. In experiments, ZED keeps capturing videos of objects by its two

sensors and sends them to a client computer via an USB 3.0 cable. Based on the

di®erence between two videos, client computer constructs disparity maps where the

3D position information of objects can be read. Then, the target object's position

information will be sent to the Sever Computer via UDP packets. Sever computer

will receive and decode them and then command Baxter to follow the target object

along a reference trajectory.

4.2. Stereo camera calibration

Raw pictures captured by ZED are distorted because lenses in ZED introduce non-

linear lens distortion deviating from the simple pin-hole model. To solve this prob-

lem, camera parameters calibration is necessary. The aim is to ¯nd out the camera

parameters such as the intrinsic, extrinsic and distortion. Usually researchers used a

2D checker-board pattern to evaluated them, avoiding complexity of 3D reference

models and high cost of precise calibration objects. In our work, these parameters are

provided by the manufacturer, we can employ them directly.

After we completed the camera parameters calibration, undistorted pictures can

be captured from ZED. Then, we can get object's co-ordinates in ZED coordinate

system. However, in practice, the position of objects is presented in Baxter coordi-

nate system rather than ZED. Therefore, we need to transform the ZED coordinates

into the Baxter coordinates, i.e., the position calibration is necessary. The transform

equation is shown as

T

X1 X2 . . . Xi

Y1 Y2 . . . Yi

Z1 Z2 . . . Zi

1 1 . . . 1

2
6664

3
7775 ¼

x1 x2 . . . xi
y1 y2 . . . yi
z1 z2 . . . zi
1 1 . . . 1

2
664

3
775; ð3Þ

Fig. 3. Communication network.
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where T is the transform matrix. ðXi;Yi;ZiÞmeans coordinates in ZED and ðxi; yi; ziÞ
means coordinates in Baxter. The aim of position calibration is to form the co-ordinate

transform matrix T . T can be achieved by

T ¼

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

1 1 1 1

2
6664

3
7775

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

1 1 1 1

2
6664

3
7775

�1

2 R4�4; ð4Þ

where ðxi; yi; ziÞ and ðXi;Yi;ZiÞ, i ¼ 1; 2; 3; 4, are four non-coplanar point coor-

dinates in the robot coordinate system and the ZED coordinate system,

respectively.

To measure coordinates in Baxter coordinate system, the most simple way is to

use rulers. However, it is very coarse because the origin of the Baxter coordinate

system is inside Baxter's body which is unavailable. Furthermore, it is also hard

to ensure the horizontality and verticality of the ruler. Another way to measure

coordinates is to use the kinematics of Baxter. At ¯rst some established reference

coordinates are given and then we command Baxter's end-e®ector to move to these

positions by using kinematics. In this way, we can get the end-e®ector's coordinates

without direct measurement. Then, we use ZED to measure the end-e®ector's

coordinates in ZED's coordinate system, which will be introduced in the next section.

In this way, the points' coordinates in both Baxter coordinate system and ZED in

Eq. (4) are easily achieved.

However, when using kinematics, stochastic errors always exist. In order to reduce

these errors, least squares method is employed. The aim of this algorithm is to

calculate an overall solution which minimizes the sum of the square errors in given

data. In order to employ this method in the calibration, we must transform Eq. (3)

into the form of Eq. (6). The transform can be done as below:

X1I4 Y1I4 Z1I4 I4

X2I4 Y2I4 Z2I4 I4

..

. ..
. ..

. ..
.

XnI4 YnI4 ZnI4 I4

2
666664

3
777775

Tc1

Tc2

Tc3

Tc4

2
6664

3
7775 ¼

x1
y1
z1

1

..

.

xn
yn
zn

1

2
66666666666666664

3
77777777777777775

; ð5Þ

where I4 2 R4�4 means identity matrix. Tci 2 R4�1 means the column vector in the

transform matrix T .
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LetA¼
X1I4 Y1I4 Z1I4 I4
X2I4 Y2I4 Z2I4 I4

..

. ..
. ..

. ..
.

XnI4 YnI4 ZnI4 I4

2
6664

3
7775; X¼

Tc1

Tc2

Tc3

Tc4

2
664

3
775 and B ¼

x1
y1
z1
1

..

.

xn
yn
zn
1

2
666666666666664

3
777777777777775

; we can rewrite ð5Þ into

AX ¼ B ð6Þ
while A is a known matrix with dimension of 4n � 16. X represents the transfor-

mation matrix T with dimension of 16� 1. B is a column vector with dimension of

4n � 1. In most cases, this equation has no solution. However, we can compute the

least square solution of it by the following approach. Initially, Eq. (6) is transformed

as below:

ATAX ¼ ATB ð7Þ
If ATA is nonsingular, the transformation matrix can be calculated as below:

X ¼ ðATAÞ�1ATB ð8Þ
According to Eq. (8), the solution of Eq. (5) can be achieved, i.e., the transform

matrix T can be solved by the method of least squares. We can get a more precise

solution by completing more coordinates measurement in ZED and Baxter.

Since the robot arms contain red color and green color, they are easily impacted

by illumination, a blue object were used for detection. We ¯rstly extracted, the

ðXi;Yi ;ZiÞ, i ¼ 1; 2; 3; 4 of the object's centroid from four di®erent positions, out of

ZED camera, as the black XYZ shown in Fig. 4(a). The end-e®ector's position

ðxi; yi; ziÞ, i ¼ 1; 2; 3; 4 were recorded simultaneously. The end-e®ector were posed

10 cm behind the object's centroid, in order to follow the object while not block the

object from camera view, as the white xyz shown in Fig. 4(a).

Then we substituted ðxi; yi; ziÞ and ðXi;Yi ;ZiÞ, i ¼ 1; 2; 3; 4 into Eq. (5) to get the

transformation matrix T . T will be applied to the object's centroid position, and the

data will be send to robot as reference coordinates for following the object. The result

was shown in Figs. 4(b) and 5, black XYZ stands for object's reference coordinates

and white xyz stands for the coordinates that robot end-e®ector actually followed.

4.3. Theory of depth measurement in ZED

Both pictures captured under active ambient lighting by the ZED stereo camera are

aligned utilizing the camera intrinsics and are amended for distortion. In this way,

the undistorted images will be stereo recti¯ed to adjust both the projection planes'

epipolar lines and guarantee comparable pixels' presence in a predetermined row of

the image. The pictures acquired are then frontal paralleled and are estimated cor-

respondingly. The fundamental and the essential frameworks are ¯gured by utilizing

Epipolar geometry. There are seven parameters in the fundamental matrix representing
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two images' pixel relations, three for two image planes' homography and two for each

epipole. The essential matrix has ¯ve parameters in a 3�3 matrix, three of them are

the rotation values between the camera projection planes and two for translation.

Then, the epipolar lines were adjusted and the epipoles was moved to in¯nity.

Figure 6(a) delineates the results of stereo correction with row adjusted pixels.

The de¯nition of variables utilized underneath is given in Table 1. Stereo corre-

spondence is a technique for coordinating pixels with comparative surface texture

over two co-planar picture planes. The separation between the columns of these

splendidly coordinated pixels is characterized as d ¼ xl � xr .

(a) Before calibration

(b) After calibration

Fig. 4. Positions of the object and the end-e®ector, left image used for displaying and monitoring. Black

XYZ: object's coordinates under camera's frame of reference. White xyz: end-e®ector's coordinates under
robot's frame of reference.
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Block matching is actualized for assessing the image correspondence. With the use

of sum of absolute di®erences (SAD), a 15-pixel window block is used to discover the

matching results. Considering computational load, the disparity range is selected as

low as [0 40] to match the low texture di®erence of the experiment environment.

Table 1. De¯nition of variables.

1 xl Column value of left image pixel
2 xr Column value of right image pixel

3 D Depth (mm)

4 B Baseline (mm)

5 f Focal length (mm)
6 d Disparity

7 P Projection matrix

8 X=!, Y=!, Z=! 3D World co-ordinates

Fig. 5. Precision of calibration. Cross mark: Object's position. Circle mark: End-e®ector's position.

(a) Recti¯ed stereo images (b) Disparity map

Fig. 6. Stereo images and 3D reconstruction.
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In order to get a more complete outcome, Semi Global method is used to drive the

disparity values to the neighboring pixels.17 The output of disparity map is illus-

trated in Fig. 6(b). Disparity can be calculated by the Triangulation equation

D ¼ B f
d . It is inversely proportional to the depth of the pixel. Bouguets algorithm is

used to obtain the Cartesian co-ordinates from the reconstruction of the image, and

the equation is

P½x; y; d; 1�T ¼ ½X ;Y ;Z ; !�T ð9Þ

where ! 6¼ 1 is the homogeneous component.

5. Detection and Localization of Target Object

5.1. Color object detection

Color-based segmentation is utilized in order to isolate a single color object from the

captured image. One approach is to convert the entire RGB frame into corre-

sponding Hue-Saturation-Value (HSV) plane and concentrate the pixel values of the

color you want to detect. By using this method, you may be able to detect almost

every single distinguishable colors in a frame. However, implementing this approach

in live video is challenging because of ambient light. An alternative approach was

used in this paper in view of our previous work,6 to convert the captured image into

L*a*b* color space where the value of \a" and \b" is related to the color information

of a point.

During the experiments, all images are converted into L*a*b* color space and the

variance between every point's color and the standard color marks will be calculated.

The estimations are selected based on the minimum variance value of each images.

Furthermore, intersection of the diagonals was used to calculate the centroid and

Harris corner detector was used to calculate the corners of the object. According to

the centroid point in the image, the object's coordinates in ZED is then extracted

from the images. By applying the transformation matrix in Sec. 4.2, the object's

coordinates in Baxter's coordinate system can be calculated. Figure 4(b) demon-

strates the calculated centroid of the object after co-ordinate transformation in robot

co-ordinates.

5.2. Object detection regulation

In experiments, we ¯nd that because of the nonuniform distribution of light in space,

object's color in images keeps changing as the object moves. Sometimes the value of

\a" and \b" changes a lot that it a®ects the stability of object detection. To solve this

problem, we employed a regulation algorithm in object detection. The algorithm is

described below. (i) Calculate the variance between the image points' color and the

color marks. (ii) If the value of the variance of the object is not so large, go back to (i)

and continue next detection. Conversely, go to (iii). (iii) Calculate the average value
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of \a" and \b" around the centroid points, and update the older color marks with the

new value. Then, start next detection based on these new color marks.

By employing the algorithm above, object detection becomes more stable and

more adapted to the environment.

6. Neural Network Controller Design

6.1. Adaptive neural controller

According to our previous work,26 an adaptive NN-based controller is designed to

achieve the following control of the joint space trajectory. The dynamic equation of

the manipulator shows

M ðµÞµ::þCðµ; µ:Þµ: þGðµÞ þ ¿ ext ¼ ¿ ; ð10Þ
where M ðµÞ is the manipulator inertia matrix, Cðµ; µ:Þ is the Coriolis matrix for the

manipulator, GðµÞ is the gravity terms and ¿ ext denotes the external torque in-

cluding the payload gravity applied at the end-e®ector.

De¯ne s ¼ _eµ þ¤eµ, v ¼ µ
:
d �¤eµ, where eµ ¼ µ� µd , ¤ ¼ diagð�1; �2; . . . ; �nÞ.

Then, the dynamic equation (10) can be rewritten as

M ðµÞs: þCðµ; µ:Þsþ F ¼ ¿ ; ð11Þ
where F 2 Rn is de¯ned as

F ¼ M ðµÞv: þCðµ; µ:Þv þGðµÞ þ ¿ ext: ð12Þ
Design the adaptive controller as

¿ ¼ F̂ �Ks; ð13Þ
where F̂ is the estimate of F, and K ¼ diagfkig; i ¼ 1; 2; . . . ;n is a diagonal matrix

and minfkig > 0:5.

Then, by substituting (13) into (11), the closed-loop dynamics of the robot system

can be written as (14).

M ðµÞs: þCðµ; µ:Þs ¼ ~W
T
SðzÞ � �ðzÞ �Ks: ð14Þ

The following function approximation method is used.

F ¼ W �TSðzÞ þ ²ðzÞ;
F̂ ¼ Ŵ

T
SðzÞ;

~F ¼ F̂ � F ¼ ~W
T
SðzÞ � �ðzÞ;

~W ¼ Ŵ �W �;

ð15Þ

where W � ¼ ½W �
1 ;W

�
2 ; . . . ;W

�
n � 2 RN�n is the weight matrix, SðzÞ is the basis

function vector, z 2 �z � Rq is the input vector with �z � Rq being a compact set,

N is the number of NN node, and ²ðzÞ is the approximation error.
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sðzÞ ¼ ½s1ðjjz � �1jjÞ; . . . ; sN ðjjz � �N jjÞ�T , is the regressor vector, with sið _sÞ being a

radial basis function, and �i (i ¼ 1; . . . ;N) being the center. The Gaussian functions

choose as

siðjjz � �i jjÞ ¼ exp
�ðz � �iÞT ðz � �iÞ

& 2

� �
; ð16Þ

where �i ¼ ½�i1; �i2; . . . ; �iq �T 2 Rq represents the center of each receptive ¯eld and &

is the variance.

Choose the following Lyapunov function

V ¼ 1

2
sTM ð�Þsþ 1

2
trð ~W T

Q ~W Þ; ð17Þ

where Q is a positive de¯nite weight matrix. And using the skew symmetry1 of the

matrix M
: � 2C , the ¯rst derivative of V can be calculated as

V
: ¼ �sTKs� sT�ðzÞ þ tr½ ~W TðSðzÞsT þQŴ

:
Þ�: ð18Þ

The update law is designed as

Ŵ
:
¼ �Q�1ðSðzÞsT þ ¾ Ŵ Þ; ð19Þ

where ¾ is a pre-designed positive constant.

Substituting (19) into (18), we have

V
: ¼ �sTKs� sT�ðzÞ � �trð ~W T

Ŵ Þ: ð20Þ
Based on Young's inequality, from (20) we can have

V
: � � ¸minðKÞ � 1

2

� �
jjsjj2 � �

2
jj ~W jj2 þ �; ð21Þ

where ½ ¼ 1
2 "

2 þ ¾
2 jjW �jj2, with " is the upper limit of jj²jj over �. If ~W and s satisfy

the following inequality

¸minðKÞ � 1

2

� �
jjsjj2 þ ¾

2
jj ~W jj2 � ½ ð22Þ

where I is the unit matrix, then we can haveV
: � 0.

By using LaSalle's theorem, we see that jj ~W jj and jjsjj will converge to an in-

variant set �s � �, on which V
: ðtÞ ¼ 0, where � is the bounding set that is de¯ned as

� ¼ ðjj ~W jj; jjsjjÞ �

2�
jj ~W jj2 þ ð2K � I Þ

2�
jjsjj2 � 1

����
� �

: ð23Þ

6.2. Analysis of NN learning convergence

By denoting a new subscript �, it represents the region which is close to the tracking

trajectory, and �� represents the region which is far away from the tracking trajectory.

Let S�ðzÞ be the element that the neurons located in the region of �, and Ŵ � is the
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associated weight matrix of NN. From (19), we can have

~W
:

� ¼ �Q�1
� ðS�ðzÞsT þ �� Ŵ �Þ ð24Þ

and from (15) we have that the NN approximation error �i�ðzÞ is close to �ðzÞ.
�S � and

�~W � are de¯ned as

�S � ¼

S� 0½N��1� 	 	 	 0½N��1�
0½N��1� S� 	 	 	 0½N��1�

..

. ..
. ..

. ..
.

0½N��1� 	 	 	 0½N��1� S�

2
66664

3
77775 2 RnN��n ð25Þ

and

�W � ¼ ½W T
1� ;W

T
2� ; . . . ;W

T
n� ; �T 2 RnN� : ð26Þ

Subsequently, we de¯ne an augmented matrix of the diagonal matrix �� as

��� ¼ ½��; ��; . . . ; �� � 2 RN��N� . From this, we could rewrite (24) into:

�~W
:

� ¼ � �S �ðzÞQ�1
� sT �Q�1

� ��� Ŵ � : ð27Þ
Using the spatially localized approximation ability of RBF NN, the closed-loop

system from (14) can be expressed as

s
: ¼ M �1ð�Þ½�Ks þ �S �ðzÞ �~W

T

� � ��ðzÞ � C ð�; �:Þs�: ð28Þ
Then, a LTV system can be created from the system of (28) and (27) as

i

~W
:

�i

" #
¼ �M �1ð�ÞNðtÞ M �1ð�Þ �S T

�iðzÞ
�Q�1

i
�S �iðzÞ 0½N��N� �

" #
si
�~W i

" #
þ �M �1ð�Þ�iðzÞ

�Q�1
i �i Ŵ i

" #
; ð29Þ

where NðtÞ ¼ ki þ C ð�; �:Þ, i ¼ 1; 2; . . . ; n. Let P ¼ Q�1
i Mð�Þ, which is symmetric,

and let A ¼ �M �1ð�ÞN ðtÞ, B ¼ M �1ð�Þ �S T
�iðzÞ, and C ¼ Q�1

i
�S �iðzÞ, then we have

ATP þ PAþ _P ¼ Q�1
i ðM: ð�Þ � 2C ð�; �:Þ � 2KÞ :¼ U : ð30Þ

Since min ki > 0:5, Qi is positive, and using the skew symmetry1 of the matrix

M
: � 2C , such that we can have U < 0. This guarantees the exponential stability of

the nominal part of the system (29). Then on the premise of small enough �, the

parameter error ~W � will converge exponentially to a small neighborhood (deter-

mined by j��ðzÞj and jj � �� Ŵ � jj) of zero for all t > T1. Thus, Ŵ � can converge

exponentially to a small neighborhood of the desired weight value W �
� for all t > T1.

6.3. Knowledge reusing and skill transfer

Now, we can accurately approximate the dynamical system FðzÞ by using the

localization feature of RBFNN, with the convergence of Ŵ � such as

FðzÞ ¼ �W
T
� S�ðzÞ þ ���ðzÞ; ð31Þ
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where ��ðzÞ is close to �ðzÞ in the steady-state process, and

�W � ¼ meant2½tai ;tbi � Ŵ �ðtÞ ¼
1

tbi � tai

Z tbi

tai

Ŵ �ðsÞds ð32Þ

with ½tai; tbi �, tbi > tai > T1 representing a time segment after the transient process.

Let us de¯ne

�W ¼ meant2½tai ;tbi � Ŵ ðtÞ ¼ 1

tbi � tai

Z tbi

tai

Ŵ ðsÞds ð33Þ

we will have

Ŵ TS�� ðzÞ 
 �W
T
� S�ðzÞ: ð34Þ

Therefore, we could use �W
T
� S�ðzÞ to replace �W

T
i SiðzÞ for approximating the uncer-

tainties of system dynamics FðzÞ.
Since the learnt knowledge will not keep in the memory, the control parameters

have to be recalculated even when reproduce the similar control tasks. However,

since the estimate Ŵ is able to converge into a small neighborhoods of the optimal

W �, the FðzÞ which is the accurate approximation of the system dynamics can be

still achieved. The above learning method can be considered as approximate the

system dynamics using constant NN weights.

Based on our previous work,4 the following control law is proposed to reuse the

learnt knowledge instead of using the original NN based controller (13) and the

updated law of RBFNN's weight (19)

	 ¼ �Ks þ �F ðzÞ; ð35Þ
where K ¼ diagfkig; i ¼ 1; 2; . . . ; n;minfkig > 0:5 and �F ðzÞ ¼ �W TSðzÞ.

With the property of dual-arm, once one side of arm learnt the uncertainties of

environment, i.e., payload, the learned knowledge can also be transferred and reused

on another arm, without readapting the uncertainties. This feature can also be

extended to robot to robot skill transfer. While performing same tasks, this mech-

anism can greatly help to reduce computational load with guaranteed performance.

7. Experiment Studies

A visual tracking task was performed to test the proposed VS method, with neural

learning and without neural learning for comparison. The experiment setup is shown

in Fig. 7. In each set of tests, the blue object was moved by operator from the starting

point (P1 : ½0:7;�0:2;�0:2�) to the end point (P2 : ½0:7; 0:2;�0:2�) in a rectangle

trajectory. The object was lifted up after leaving the starting point and generally put

down on the operating table level at the end.

Due to the 7-DOF robot dynamics, N ¼ 37 � 7 nodes are employed for the NN to

complete a highprecision of approximation.While theNN'sweightmatrix is initialized
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as Ŵ ð0Þ ¼ 0 2 R15309�7. The design parameters K of the controller are speci¯ed as

K ¼ diagf9; 9; 8; 4:5; 1:8; 1:2; 0:8g.
The object reference trajectories which has been recoded using MATLAB and the

end-e®ector trajectories of this set of comparative experiments are demonstrated in

Fig. 8. The NN learning weights of individual joints are demonstrated in Fig. 9. The

compensation torques obtained by NN of each joint are shown in Fig. 10.

7.1. Control without NN learning

During this initial set of experiments, the performance of the control method without

NN learning is tested to establish baseline performance. The color object was held by

the operator and was moved along a prede¯ned trajectory as introduced earlier.

From Fig. 8(a), we can see the actual position trajectory is below the reference

trajectory because of the heavy payload.

7.2. Control with NN learning

During this set of experiments, the same task as the ¯rst experiment was performed.

In this set, the NN learning was added to the controller and the performance of the

Fig. 7. The experiment setup. Left cross: start point. Right cross: end point. Two di®erent payload was

held in both grippers on the manipulator. The right and left one each weighs 1.3 kg and 0.7 kg, respectively.
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(a) Without NN

(b) Trajectory while learning

(c) Trajectory after learning reused

Fig. 8. Tracking trajectory and root-mean-square error (RMSE). (a)–(c) Dashed line: reference trajec-

tories generated by object tracking. Solid and Dash–dot lines: actual position trajectories of both robot

right and left manipulators, respectively. (d) Left: RMSE of right arm under three di®erent conditions.
Right: RMSE of left arm under three di®erent conditions.
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telerobot manipulator was recorded. Compared with the ¯rst test, NN is learning the

payload's weight during teleoperation, and a®ects the control inputs. As can be seen

from Fig. 8(b), the robot was able to restore to normal tracking position. The control

torque inputs of right and left arms are shown in Figs. 10(a) and 10(b).

(d) RMSE

Fig. 8. (Continued)

(a) NN learning weights for each single joint of right arm while learning

(b) NN learning weights for each single joint of left arm while learning

Fig. 9. NN learning weights for each single joint.
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(c) NN learning weights for each single joint of right arm while learning reused

(d) NN learning weights for each single joint of left arm while learning reused

Fig. 9. (Continued)

(a) The compensation torque of right arm obtained by NN while learning

Fig. 10. NN control torques for each single joint of both arms.
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(b) The compensation torque of left arm obtained by NN while learning

(c) The compensation torque of right arm obtained by the NN after training

Fig. 10. (Continued)
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7.3. Control after NN learning

During the last set of experiments, the NN will ¯rst learn the dynamics while both

manipulators tracking the object along a repeated trajectory, same as previous two.

After four cycles, the NN was adapted with the external dynamics (attached pay-

load). So that the trained NN will be reused for the further teleoperation. The control

torque inputs of right and left arms are shown in Figs. 10(c) and 10(d). The per-

formance of tracking is illustrated in Fig. 8(c).

From Fig. 8(d), it can be seen that the designed adaptive controller can help

system compensate tracking error from both internal and external dynamics. The

trained NN has a steady performance with reusing the trained knowledge to increase

tracking performance.

8. Conclusion

An NN learning enhanced VS control method was developed in this paper and

implemented on a humanoid dual-arm Baxter robot. The color object was detected

by a stereo camera and an regulation algorithm was applied to ensure the e®ec-

tiveness of detection. The calibration between camera and robot's coordinates

was done with the proposed least squared-based method to reduce stochastic errors.

(d) The compensation torque of left arm obtained by the NN after training

Fig. 10. (Continued)
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The dynamic parameters of the manipulator are estimated by the radial basis

function NN and an improved adaptive control method is designed for compensating

the e®ect of uncertain payload and other uncertainties during the dynamic control of

the robot. Speci¯cally, a knowledge reuse method with skill transfer feature has been

created to increase the neural learning e±ciency. So that the learned NN knowledge

can be easily reused for ¯nishing repetitive tasks and also can be transferred to

another arm for performing the same task. The proposed NN controller was validated

with tests on a Baxter humanoid robot, and can realize optimal performance of the

designed VS control.
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