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Abstract—Piezoelectric-actuated stick-slip device
(PASSD) is a highly promising equipment that composed
of one end-effector, one piezoelectric actuator (PEA)
and one driving object adhered to the PEA. Since the
end-effector can slip on the surface of the driving object,
the PASSD is capable of realizing the macro-level motion
with the micro-level precision. Due to the following two
reasons: (1) the complicated relative motion between the
end-effector and the driving object, and (2) the inherent
hysteresis nonlinearity in the PEA, the ultraprecision
displacement control of the end-effector of PASSDs raises
a real challenge, which is rarely reported in the literature.
Towards solving this challenge, a neural network based
controller is proposed in this paper. First, a neural network
based model is proposed to capture the relative motion
between the end-effector and the driving object. Second,
a neural network based inversion model is developed to
on-line calculate the desired position of the PEA under
the predesigned reference of the end-effector. Third, a
dynamic linearized neural network based model predictive
control method, which can effectively handle the hysteresis
nonlinearity, is employed to implement the displacement
control of the PEA, which finally results in an overall high-
precision controller of the end-effector. Finally, a PASSD
prototype has been implemented and tested through
experimental studies to demonstrate the effectiveness of
the proposed approach.

Index Terms—Stick-slip, piezoelectric actuator, end-
effector, neural network.

I. INTRODUCTION

RECENTLY, the nano/micro-level positioning becomes
a vital technology in many ultra-precision applications

such as the computer component [1], the micro-manipulation
system [2], and the atomic force microscope [3]. Among
these applications, the piezoelectric actuator (PEA) is the
kernel positioning component owing to its high precision and
fast response characteristics [4]. However, the limited motion
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range is an unavoidable issue of PEAs [5]. Therefore, how to
realize a long range motion with a relatively high precision is
a challenging task in the literature. Towards this challenge,
the piezoelectric-actuated stick-slip device (PASSD) is one
most widely adopted approach because of its theoretically
unlimited motion and high positioning precision [6]. The
working principle of PASSDs is briefly introduced in the
following paragraph.

Driving Object

Fig. 1. The stick-slip principle of PASSDs.

The PASSD is usually composed of one PEA, one driving
object adhered to the PEA, and one end-effector [7], as shown
in Fig. 1. The end-effector is driven by the friction force
generated from the relative motion between the end-effector
and the driving object. This friction-based driven approach is
the so-called stick-slip mode which is a widely adopted driven
manner in PASSDs. The stick-slip mode usually includes three
parts: the initial state, the stick period, and the slip period [7],
[8].

1) The initial state: in the initial phase, there is no voltage
applied to the PEA. The end-effector is horizontally
placed on the upper surface of the driving object. Both
the end-effector and the driving object stay at their initial
positions, respectively.

2) The stick period: in the stick period, the input voltage of
the PEA is increased slowly, which pushes the driving
object rightward to a displacement Δstep with a low
acceleration. An external force on the end-effector, which



depends on the end-effector’s mass and the PEA’s accel-
eration, is smaller than the static friction force between
between the end-effector and the driving object. There-
fore, the end-effector “sticks” with the driving object and
moves along with it to a same displacement Δstep.

3) The slip period: in the slip period, the input voltage of the
PEA is rapidly decreased to zero. Then the PEA pulls the
driving object backward quickly with a high acceleration.
In this period, the external force on the end-effector is
greater than the friction force between the end-effector
and the driving object. The end-effector “slips” on the
surface of the driving object.

Based on the above introduction, it can be seen that the
stick-slip actuation mode is mainly determined by two factors:
(1) the relative motion between the end-effector and the driving
object; and (2) the displacement control of the PEA. The first
factor is highly dependent on the friction. In the literature,
there are some friction models which can be used for PASSDs
such as the Coulomb model, the viscous model, the Dahl
model, the LuGre model and the elasto-plastic model [9].
However, due to their complicated nonlinearities, these friction
models are barely considered in the controller design of the
end-effector. For the second factor, the positioning accuracy
can be seriously deteriorated by the inherent hysteresis non-
linearity of PEAs. To deal with the hysteresis nonlinearity of
PEAs, there are various control methods in the literature, such
as the inversion-based methods [10], [11], the sliding mode
control methods [12]–[15], the active disturbance rejection
control [16], [17], and some intelligent control methods [18]–
[23]. Although these methods are successfully applied in the
control of PEAs, to the best of the authors’ knowledge,
there is no such an attempt of using these advanced con-
trol algorithms to deal with the hysteresis nonlinearity in
PASSDs. Therefore, how to effectively control the PASSD
is still a challenging task and it is seldom studied in the
literature [24], [25]. The most classical control method of
PASSDs is the proportional control law without considering
the friction and the hysteresis nonlinearity [9]. For this method,
it simply applies the proportional control law to the PEA
according to the tracking error of the end-effector, which
cannot lead to a satisfactory control performance. A modified
voltage/frequency proportional control strategy is presented for
the control performance improvement in [26]. Unfortunately,
the fundamental limitation in the proportional control approach
still exists. To further improve the control performance of the
proportional controller, the iterative learning control idea is
adopted in [27]. However, the control parameters have to be
re-learned once the desired reference of the end-effector is
changed and it is hard to ensure that the friction during each
learning period is the same. In [28], a hybrid charge control
method for PASSDs is developed to increase the slip speed.
Since the charge control is used, the effect of the hysteresis
nonlinearity can be avoided. However, the friction effect is still
ignored. In [29], the velocity of the end-effector is adopted to
compensate the vibration of PASSDs, however, an accurate
velocity estimation is difficult to be realized in practice. By
reviewing the very limited literature, it is evident that the high-

precision control of PASSDs is far away from being fully
solved, which gives the motivation of the study conducted
here.

This paper proposes a neural network based control method
for the high precision positioning of PASSDs. The proposed
controller includes two types of control phases: the one-
step control phase (the coarse positioning) and the sub-step
control phase (the fine positioning). To achieve a satisfactory
positioning accuracy in the sub-step control phase, the relative
motion between the end-effector and the driving object is first
modeled by a neural network based on the identification ap-
proach (this neural network model is called the end-effector’s
motion estimator). The advantages of this identification based
method are: (1) the specific parameters in the friction model
cannot be known a prior; (2) different friction models can be
approximated by this identification based approach; and (3)
the complicated analysis and computation for determining the
end-effector’s motion by friction can be avoided. Second, an
inversion of the end-effector’s motion estimator is obtained
by using the neural network technique as well. With this
inversion model, the desired position of the driving object can
be determined by the predesigned reference of the end-effector.
Third, the model predictive control method proposed in [ 30]
is employed to control the PEA to let the driving object reach
the desired position. This model predictive controller is able
to handle the hysteresis nonlinearity well. Finally, a PASSD
prototype device is developed to verify the proposed modeling
and control methods. The experiments results show that the
relative motion between the end-effector and the driving object
can be captured by the proposed neural network model well
and a high positioning accuracy of PASSDs has been achieved
by the proposed controller. In the literature, there is one recent
paper addressing the control of PASSDs using the predictive
control approach [31], while it is assumed that there is no
relative motion between the end-effector and the driving object
in the sub-step control phase. Therefore, the high precision
control of PASSDs is transformed into the high precision
control of the PEA. However, it is difficult to maintain the
zero relative motion in some fast positioning scenarios and the
consideration of the relative motion between the end-effector
and the driving object is more reasonable and necessary in
practice.

The rest of this paper is organized as follows: in Section II,
some preliminary results on the control principle of PASSDs
and the model predictive controller for PEAs are provided;
Section III proposes the neural network based end-effector’s
motion estimator and its inversion and explains how to achieve
the high precision control of PASSDs; Section IV presents
details of the PASSD prototype and conducts experiments to
verify the proposed modeling and control methods; and the
conclusion remarks are given in Section V.

II. PRELIMINARIES

A. Control Paradigm of PASSDs

By the stick-slip principle of PASSDs shown in Fig. 1,
the control paradigm of PASSDs is usually divided into two
phases: the one-step control phase and the sub-step control
phase.



• One-step control phase: this phase is composed of
one stick period and one slip period. By repeating the
one-step control phase, the stick period and the slip
period appear cyclically, and the end-effector is driven to
continuously move on the surface of the driving object.
Theoretically speaking, the end-effector could achieve
a unlimited displacement as long as the length of the
driving object is sufficiently large. And the positioning
resolution of the end-effector is the movement length
Δstep of the end-effector in each one-step control phase 1,
which is a very coarse positioning. For example, if the
required motion range Ld is relatively large, the PASSD
only needs to operate the “one-step control phase” for⌊

Ld

Δstep

⌋
times (�x� denotes the largest integer smaller

than x). After completing the “one-step control phase”,
the PASSD enters the “sub-step control phase” and the
end-effector only needs to move forwards a length of
(Ld −

⌊
Ld

Δstep

⌋
Δstep), where the advanced control ap-

proach should be used in the “sub-step control phase”
to guarantee the high positioning accuracy of the end-
effector.

• Sub-step control phase: in this phase, the end-effector
is controlled to the desired position with the required
precision. To this end, one possible way is to move the
PEA with a very small acceleration such that there is
no relative motion between the end-effector and the PEA
(i.e., the stick period). In this way, the positioning accura-
cy of the end-effector equals to the positioning accuracy
of the PEA. Based on this idea, some preliminary results
have been obtained in [31]. However, to maintain the zero
relative motion, the PEA must move with a very low
acceleration, which is not acceptable in some applications
with strict time requirements. Another way is to allow
the non-zero relative motion between the end-effector
and the PEA. In this way, the relationship between the
motion of the end-effector and the motion of the driving
object should be modeled first. Then the desired position
of the driving object can be calculated by using this
relationship and the predesigned reference of the end-
effector. After that, some advanced control methods of
PEAs can be employed to drive the driving object to this
desired position in a fast manner.

The overall control paradigm of PASSDs is shown in Fig.
2. First, the sawtooth signal is used as the input voltage of the
PEA and then the PASSD enters the “one-step control phase”
repeatedly. At the end of each one-step control phase, check
whether the positioning error of the end-effector is smaller
than the movement length of the end-effector during the one-
step control phase. If no, continue applying the sawtooth signal
to the PEA. If yes, switch to the sub-step control phase to
achieve the “accurate” positioning of the end-effector.

1In practice, the movement length of the end-effector in each “one-
step control phase” may be time-variant because of the different friction
coefficients. In some particular cases, the movement length of the end-
effector can even be reduced intentionally to obtain an increased posi-
tioning resolution [8]. However, this does not effect the final positioning
accuracy because the one-step control phase only gives a “coarse”
positioning of the end-effector.
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Fig. 2. The control paradigm of PASSDs.
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Fig. 3. The structure of the feedforward neural network defined by (2).

In the sub-step control phase, it can be seen that the
positioning control of PEAs is one crucial technique for PASS-
Ds. Among the advanced control algorithms of PEAs, this
paper employs the dynamic linearized neural network based
model predictive control method proposed in [30] because this
method requires no calculation of the inversion of hysteresis
and has a satisfactory control performance by experiment
validations. The next subsection gives a brief introduction to
this model predictive control method.

B. Dynamic Linearized Neural Network Based Model
Predictive Controller for PEAs

Since the driving object is rigidly adhered to the PEA,
there is no relative motion between them. Hence if we use
the motion of the point connecting the driving object and the
PEA to describe the motion of the driving object, the motion
(displacement) of the driving object is treated same as the one
of the PEA throughout this paper. Therefore, the driving object
can be positioned with a desired precision as long as the PEA
is controlled well.

To design the model predictive controller for PEAs, the
input-output model of PEAs should be obtained first, which
can be identified by using the following “nonlinear auto-
regressive moving average with exogenous inputs” structure

p(tk) = P(π(tk)), (1)



p(tk) and v(tk) are the displacement and input voltage of
PEAs at the kth sampling interval, respectively; integers np

and nv are the corresponding maximum lags for p(tk) and
v(tk). P(·) is a nonlinear mapping to be determined. Since
the input-output data pair (p(tk), v(tk)) can be physically mea-
sured, P(·) can be approximated by the following feedforward
neural network whose structure is given in Fig. 3

P(π(tk)) =

n∑
j=1

rojσ(

mp∑
i=1

rhjiπi(tk) + rhj0) + ro0 , (2)

where mp = np+nv+1 is the number of neurons in the input
layer, and n is the number of neurons in the hidden layers. r o

j

is the weight between the jth hidden neuron and the output
neuron; ro0 is the bias of the output neuron; rhji is the weight
between the ith input neuron and the jth hidden neuron; r h

j0 is
the bias of the jth hidden neuron. These parameters are trained
by the Levenberg-Marquardt algorithm (see Chapter 10, pp.
258–262, [32]) based on the training data set (π(tk), p(tk)).
πi(tk) denotes the ith entry of π(tk). The activation function
of hidden neurons is the tangent sigmoid function

σ(x) =
e2x − 1

e2x + 1
, (3)

while the activation functions of input neurons and the output
neuron are all the unit mapping. Interested readers are referred
to [33] for a comprehensive knowledge on the feedforward
neural network. This neural network can be linearized by
Taylor-expansion at the sampling time tp as follows

p(tk) = a1(tp)p(tk−1) + · · ·+ anp(tp)p(tk−np)

+ b0(tp)v(tk) + · · ·+ bnv(tp)v(tk−nv ) + ζ(tp), (4)

where

ai(tp) = ∂F (π(tk))/∂πi(tk)
∣∣
π(tk)=π(tp)

, (i = 1, · · · , na),

bi′(tp) =
∂F (π(tk))

∂ϕi′+i(tk)

∣∣
ϕ(tk)=ϕ(tp)

(i = np + 1, i′ = 0, · · · , nv),

ζ(tp) = p(tp)− a1(tp)p(tp−1)− · · · − anp(tp)p(tp−np)

−b0(tp)v(tp)− · · · − bnv(tp)v(tp−nv ).

Then the jth-step ahead predicted displacement of PEAs
can be calculated as follows

p̂(tp+j) =(1 + a1(tp))p̂(tp+j−1) + (a2(tp)− a1(tp))p̂(tp+j−2)

+ · · · − anp(tp)p̂(tp+j−np−1) + b0(tp)Δv(tp+j)

+ · · ·+ bnv(tp)Δv(tp+j−nv ), j = 1, · · · , Ny, (5)

where p̂(tp+j) is the predicted displacement of PEAs, Ny is
the prediction horizon and Δv(tp+j) = v(tp+j)− v(tp+j−1).

By optimizing the following performance index

argminΔv(tp+1),··· ,Δv(tp+Ny )

Ny∑
j=1

(
(p̂(tp+j)− pr(tp+j))

2 + ρ(Δv(tp+j))
2
)
, (6)

the model predictive controller v(tp+1) can be designed
v(tp+1) = v(tp) + Δv(tp+1), where pr(tp) is the desired

relative sliding velocity vf (t)

where π(tk) = [p(tk−1), · · · , p(tk−n ), v(tk), · · · , v(tk−nv )], friction force Ff (t)
p

μnFn

θ (tan(θ) = σvf
)

0

Fig. 4. The “Coulomb + Viscous” friction model.

displacement of PEAs at the pth sampling point and ρ > 0
is the penalty parameter for limiting the change of control
input. Interested readers are referred to [30] for details in the
predictive controller design and the experiment validations.

III. NEURAL NETWORK BASED POSITIONING

CONTROLLER OF PASSDS

Based on the control paradigm of PASSDs, this section first
discusses how to model the relationship between the motion
of the end-effector and the motion of the driving object by
using neural networks. After that, the inversion of this neural
network model has been studied, which can generate the
desired motion of the driving object in the sub-step control
phase. Finally, the overall positioning controller of PASSDs is
presented.

A. End-Effector’s Motion Estimator by Neural Networks

For PASSDs, the only driven force of the end-effector is the
friction Ff and the motion of the end-effector can be described
as follows

Ff (t) = Meÿef (t), (7)

where Me is the mass of the end-effector and yef (t) denotes
the current displacement of the end-effector. By using the
“Coulomb + Viscous” friction model shown in Fig. 4, Ff (t)
can be written as [34]

Ff (t) = μnFnsign(vf (t)) + σvf vf (t), (8)

where vf (t) = d(y(t)−yef (t))/dt denotes the relative sliding
velocity between the end-effector and the driving object;
sign(·) denotes the sign function; Fn denotes the normal force;
μn denotes the friction coefficient; σvf denotes the viscous
friction coefficient.

To determine the motion of the end-effector, an ordinary
procedure is to explicitly obtain the friction force and then use
this friction to calculate the end-effector’s motion. However,
equations (7) and (8) reveal that the motion of the end-
effector is actually determined by the motion of the driving
object/PEA. Therefore, this paper directly obtains the motion
of the end-effector by using the following model identification
method, which does not need to know the exact values of
μn, Fn, σvf and Me. Another advantage of this identification-
based method is that it is not dependent on the specific form



applicable.
By (7) and (8), it is reasonable to believe that yef (t)

is determined by the current and past displacements of the
driving object and the past displacements of the end-effector.
Therefore, the relationship between the end-effector’s motion
and the driving object’s motion at the sampling times can
be written as the following nonlinear auto-regressive moving
average with exogenous inputs form

yef (tk) = F (yef (tk−1), · · · , yef (tk−na), y(tk), · · · , y(tk−nb
)),

(9)
where integers na and nb are the corresponding maximum lags
for yef and y, respectively; and F (·) is the nonlinear mapping
which is governed by (7) and (8).

Since the displacement of the end-effector and the dis-
placement of the driving object can be physically collected in
experiments, the nonlinear mapping F (·) can be approximated
by the neural-network technique in an off-line manner. In
this paper, we also choose the feedforward neural network
to approximate the nonlinear mapping F (·) whose structure
is similar with the one shown in Fig. 3. The input-output
relationship of the neural network is given as follows:

ŷef (tk) =

n∑
j=1

wo
jσ(

m∑
i=1

wh
jiϕi(tk) + wh

j0) + wo
0 , (10)

where ŷef (tk) is the estimated position of the end-effector at
the kth sampling point. The number of neurons in the input
layer is m = na +nb+1 , and n is the number of neurons in
the hidden layers. The inputs of this neural-network model are
ϕi(tk) (ϕi(tk) is the ith entry of ϕ(tk), i = 1, · · · ,m) and
ϕ(tk) = (yef (tk−1), · · · , yef (tk−na ), y(tk), · · · , y(tk−nb

))T .
wo

j is the weight between the jth hidden neuron and the output
neuron; wo

0 is the bias of the output neuron; wh
ji is the weight

between the ith input neuron and the jth hidden neuron; w h
j0

is the bias of the jth hidden neuron. σ(·) denotes the tangent
sigmoid function defined by (3).

B. Inversion of the End-effector’s Motion Estimator

Equation (9) shows how the end-effector is driven by the
driving object via friction, which can be considered as a neural
network based forward-motion model. If the inversion of this
forward-motion model can be obtained, the desired motion of
the driving object/PEA can be calculated by the predesigned
motion of the end-effector. To this end, the inversion can be
written in the following form

ŷ(tk) = F−1(ref (tk), · · · , yef (tk−na), y(tk−1), · · · , y(tk−nb
)),

(11)
where ŷ(tk) represents the estimated displacement of the
driving object/PEA provided the predesigned position of the
end-effector ref (tk) and the historic positions of the end-
effector and the driving object/PEA.

ŷ(tk) =
∑
j=1

gojσ(

of the friction model. As long as the friction model indi- Since the forward-motion model F (·) can be approximated
cates that the relationship defined by (9) holds, the proposed by a neural network, its inversion F −1(·) can also be captured
identification-based method works. Therefore, the proposed by a neural network. Let F −1(·) be approximated by the
identification-based method can be applied to some cases following feedforward neural network
where the “Coulomb + Viscous” friction model may not be n m∑

i=1

ghjiφi(tk) + ghj0) + go0 , (12)

where and φi(tk) denotes the ith entry of φ(tk). The number
of input neuron is m = na + nb + 1, then number of hidden
neurons is n. goj is the weight between the jth hidden neuron
and the output neuron; go

0 is the bias of the output neuron; gh
ji

is the weight between the ith input neuron and the jth hidden
neuron; ghj0 is the bias of the jth hidden neuron.

In this paper, this neural-network based inversion model
is trained as follows. Given the predesigned position of the
end-effector ref (tk), the estimated position of the driving
object/PEA, ŷ(tk), can be calculated by (12). If the model
(12) is an exact inversion of the forward-motion model
(10), replacing y(tk) by its estimated value ŷ(tk) in (10),
it can be obtained that the input of (10) becomes ϕ(tk) =
(yef (tk−1), · · · , yef (tk−na ), ŷ(tk), y(tk−1), · · · , y(tk−nb

))T .
In this case, the output of (10), ŷef (tk), should equal to
ref (tk).

Then the training objective is to adjust the weights gh
ji, g

h
j0,

goj , go0 in (12) such that the square error e2(tk) = (ŷef (tk)−
ref (tk))

2 is minimized. Since the forward-motion model (10)
has been trained well, the weights of the neural network model
(10) are fixed. Therefore, the derivatives of e2(tk) with respect
to these weights can be calculated as follows

∂e2(tk)

∂ghji
=

∂e2(tk)

∂ŷ(tk)

∂ŷ(tk)

∂ghji
,

∂e2(tk)

∂ghj0
=

∂e2(tk)

∂ŷ(tk)

∂ŷ(tk)

∂ghj0
,

∂e2(tk)

∂goj
=

∂e2(tk)

∂ŷ(tk)

∂ŷ(tk)

∂goj
,

∂e2(tk)

∂go0
=

∂e2(tk)

∂ŷ(tk)

∂ŷ(tk)

∂go0
, (13)

where
∂ŷ(tk)

∂go0
= 1,

∂ŷ(tk)

∂goj
= σ(

m∑
i=1

ghjiφi(tk) + ghj0),

∂ŷ(tk)

∂ghj0
=

n∑
j=1

goj (1 − σ2(

m∑
i=1

ghjiφi(tk) + ghj0)),

∂ŷ(tk)

∂ghji
=

n∑
j=1

gojφi(tk)(1− σ2(

m∑
i=1

ghjiφi(tk) + ghj0)),

∂e2(tk)

∂ŷ(tk)
= 2

∂ŷef (tk)

∂ŷ(tk)
e(tk),

∂ŷef (tk)

∂ŷ(tk)
=

n∑
j=1

wo
jw

h
j(na+1)

(
1− σ2(

m∑
i=1

wh
jiϕi(tk) + wh

j0)
)
.

Then the training of the inversion model (12) can be made
by using the well-known Back-Propagation training method
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like the Levenberg-Marquardt algorithm [32]. This general
idea is similar as the neural network based internal model
control approach introduced in the reference [35].

C. Overall Controller of PASSDs

According to (12), the desired displacement of the driving
object/PEA can be obtained. The next step is to utilize the
dynamic linearized neural network based model predictive
controller presented in Section II-B to control the PEA in a fast
manner (use ŷ(tk) obtained from (12) to replace the desired
reference pr of PEAs in (6) for calculating the control effort
of PEAs). Then the sub-step control phase has been fulfilled.
By combining the neural network based inversion of the end-
effector’s motion estimator and the model predictive control
method, the overall control scheme in the sub-step control
phase is developed, whose schematic is shown in Fig. 5.

Remark 1: It should be noted that the proposed controller
also has some limitations. For example, the proposed method
for PASSDs is a kind of data-driven based approach. To
determine the neural network based end-effector’s motion
estimator and its inversion, a large amount of training data
must be collected via experiments, and these data can only
be used for the controller of the specific PASSD device. If a
new PASSD is adopted, the entire training procedure should
be re-conducted. In addition, the configuration of the neural
network (i.e., the number of hidden neurons and the selection
of activation functions) is determined by the trial-and-error
approach. Intensive experiments should be made to obtain a
satisfactory configuration as well.

IV. EXPERIMENTS AND DISCUSSIONS

To verify the proposed modeling and control methods, a
PASSD prototype is developed and relevant experiments are
conducted on this prototype. This prototype is composed of

one commercial PEA product (P-753.1CD, Physik Instru-
mente, Karlsruhe, Germany) and an end-effector. Both the
PEA and the end-effector have the “V-shape” grooves as the
contact surfaces. Polished silicon wafers are adhered to the “V-
shape” grooves of the PEA and the end-effector, respectively.
The end-effector is vertically placed on the PEA. The PEA
can perform a horizontal motion up to 12 μm, and the
displacement measurement of the PEA is realized by a built-in
capacitive displacement sensor, which has a high resolution of
0.05nm. In addition, an inductive sensor (SMT 9700, Kaman,
Windsor, CT) with a resolution of 0.01 μm is adopted to
measure the displacement of the end-effector. An I/O data
acquisition board (PCI-1716, Advantech, Beijing, China) is
used to exchange the data of the prototype with the host
computer. The proposed modelling and control schemes are
both realized by SIMULINK with the toolbox of Real-Time
Windows Target, and the sampling interval in the following
experiments is set to be 0.001s. The PASSD prototype and
the experiment setup are presented in Fig. 6.

A. Verification of the End-Effector’s Motion Estimator

The performance of the neural network based end-effector’s
motion estimator is verified by experiments. After training the
neural network model (10), the sinusoid waves of 30Hz and
60Hz are applied to the PEA to validate the end-effector’s
motion estimator. Under this sinusoid signal, there is relative
motion between the end-effector and the PEA. The experi-
mental results are given in Figs. 7 and 8. It can be seen
that for the excited sinusoid signal of 30Hz, the positioning
error of the end-effector’s motion estimator is between -0.0411
μm and 0.0431 μm. For the signal of 60Hz, this positioning
error increases slightly to [-0.0680, 0.0527] μm. Therefore,
the motion of the end-effector can be well described by the
proposed neural network model even if the friction force is
not directly used to calculate the end-effector’s motion.
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Fig. 6. The PASSD prototype for validating the proposed methods.
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Fig. 7. Performance of the end-effector’s motion estimator: the sinusoid
signal of 30Hz.

B. Verification of the Model Predictive Controller

For the proposed controller of PASSDs, the dynamic lin-
earized neural network based model predictive control method
is employed to handle the control of the PEA in the sub-
step control phase. Since the positioning accuracy of the end-
effector is directly related to the control performance of this
model predictive control method, the following experiment is
conducted to verify the effectiveness of the model predictive
control method. Here, the periodic and non-periodic signals
are both used as the test tracking references. For the periodic
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Fig. 8. Performance of the end-effector’s motion estimator: the sinusoid
signal of 60Hz.

signal, the position tracking error of the PEA is shown in Fig.
9, from which it can be seen that the steady-state tracking
error is between −0.0359μm and 0.0331μm. As shown in
Fig. 10, the motion of the PEA is seriously affected by the
hysteresis nonlinearity in the open loop control mode, while
the hysteresis nonlinearity has been well compensated by
the model predictive control method. As to the non-periodic
reference signal, similar results have been found (as shown
in Fig. 12, the steady-state tracking error is [−0.0348μm,
0.0543μm], and the input-output relationship is nearly linear).
These experiments demonstrate that the model predictive con-
troller is an effective one to deal with the control of PEAs in
the sub-step control phase.
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Fig. 9. Performance validation of the model predictive control method
under the periodic tracking reference.
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Fig. 10. Input-output relationship of the closed-loop control system: the
periodic tracking case.
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Fig. 11. Performance validation of the model predictive control method
under the non-periodic tracking reference.
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Fig. 12. Input-output relationship of the closed-loop control system: the
non-periodic tracking case.

C. Verification of the Neural Network based Control in the
Sub-Step Control Phase

To verify the neural network based controller proposed in
the sub-step control phase, the following experiments have
been conducted on the PASSD prototype. First, a tracking
control of a step signal (7μm) is investigated. The experi-
ment results are presented in Fig. 13. It can be seen that
the end-effector moves to the reference position in a short
time. Meanwhile, the overshoot in the transient phase is very
small. Figure 14 gives the motion of the end-effector and the
motion of the PEA. It is clear that during the time interval
[0.00s, 0.01s], there is a relative motion between the end-
effector and the PEA, which means that the “zero relative-
motion” based controller proposed in [31] does not work and
the friction effect must be considered. By the end-effector’s
motion estimator and its inversion presented in Section III,
the neural network based controller proposed in this paper
can handle the non-zero relative motion without explicitly
using the friction model. From the experiment results shown
in Figs. 13 and 14, the end-effector is able to reach the pre-
designed set-point 7μm, and this illustrates that the neural
network based inversion model (12) of the end-effector’s
motion estimator can generate a correct position for the PEA
and the model predictive controller can ensure the PEA to
reach the desired position in a fast manner.

The second experiment verifies the tracking control perfor-
mance of the proposed controller in the sub-step control phase.
Here the sinusoid signal (3 sin(20πt−π/2)+3)μm) is adopted
as the reference signal of the end-effector. The displacements
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Fig. 13. Positioning control of PASSDs in the sub-step control phase:
the step signal 7µm.
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Fig. 14. Displacements of the end-effector and the PEA under the step
signal positioning case.

of the end-effector and the PEA are both provided in Fig.
15. It is obvious that the relative motion between the end-
effector and the PEA exists. The tracking performance of the
proposed controller is given in Fig. 16. It can be seen that the
end-effector can still track this time-varying reference signal
in a satisfactory way, which demonstrates the effectiveness of
the proposed neural network based method.

D. Verification of the Overall Controller of PASSDs

Finally, the overall controller of PASSDs has been verified
by experiments. The references of the end-effector are set to
be 30μm and 40μm, respectively. For the one-step control
phase, the sawtooth signal of 5Hz is chosen as the open loop
control input. By the experiment results shown in Fig. 17,
after some one-step control phases, the end-effector moves
to the position close to the predesigned reference. Then the
coarse positioning by the one-step control phase ends and the
control system switches to the proposed neural network based
controller in the sub-step control phase, which can generate a
fine positioning for the end-effector (the steady-state tracking
error is smaller than 0.05μm). It is noted that the motion
range of the PEA (P-753.1CD) is only 12 μm. By using the
PASSD technique, the motion range can be enlarged while
the high positioning accuracy remains, which demonstrated
the advantage of PASSDs. Through the experiment validation,
the proposed overall control method is a promising way to
handle the control of PASSDs.

V. CONCLUSIONS

In this paper, a neural-network based controller is proposed
for the high-precision control of PASSDs. This controller
includes two control phases: the one-step control phase and
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Fig. 15. Displacements of the end-effector and the PEA under the time-
varying signal tracking case.
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Fig. 16. Time-varying reference tracking performance of the end-
effector in the sub-step control phase.

the sub-step control phase. The one-step control phase belongs
to the open-loop control scheme which can only lead to a
coarse positioning of PASSDs. And the sub-step control phase
requires the displacement feedback of the end-effector and the
PEA, which can result in a high-precision positioning of the
end-effector. In the sub-step control phase, a neural network
based model is first developed to estimate the relative motion
between the end-effector and the PEA. Then the inversion of
this estimator is designed to calculate the desired position of
the PEA by the predesigned reference of the end-effector.
Furthermore, the dynamic linearized neural network based
model predictive controller is employed to control the PEA
to the desired position in a fast manner, and this results in
a high-precision controller of PASSDs. The experiments are
conducted on a PASSD prototype, and experiment results show
that the proposed method is able to control PASSDs with a
desired performance.
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