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Abstract

Magnetorheological elastomers (MREs) are a relatively new class of smart materials that can undergo large
deformations resulting from external magnetic excitation. These are promising candidates in producing sen-
sors and actuators. Due to their inherent chemical compositions, most polymeric materials are highly sus-
ceptible to temperature. While performing experiments on MREs that are exposed to magneto-mechanically
coupled loads, maintaining a constant temperature profile is a non-trivial task for various reasons, e.g., i)
experiments need to be performed in a temperature chamber that can maintain a prescribed temperature
throughout a test, and ii) additional temperature gradients can be generated internally. In this paper, a
thermo-magneto-mechanically coupled constitutive model is devised that is based on the total energy ap-
proach frequently used in MREs modelling and computation. Relevant constitutive equations are derived
exploiting basic laws of thermodynamics that result in a thermodynamically consistent formulation. We
demonstrate the performance of the proposed thermo-magneto-mechanically coupled framework with the
help of two non-homogeneous boundary value problems. In both problems an axisymmetric cylindrical
tube is deformed under thermo-magneto-mechanically coupled loads. In the first example the mechanical
deformation is a combination of axial stretch and radial inflation whereas in the second example the cylinder
is put under a mechanical load of torsion around the cylinder axis combined with an axial stretch. In both
examples a circumferential magnetic field and a radial temperature gradient are applied. The results capture
various thermo-magneto-mechanical couplings with the formulation proposed for MRE.

Keywords: Magneto-elasticity, magneto-thermo-mechanical coupled problem, nonlinear elasticity,
thermo-mechanical couplings

1. Introduction

In the recent years a growing interest in the study of so-called smart materials in the finite deformations
regime emerged. In this context especially magnetorheological elastomers (MREs) are a promising class of
materials. MREs can change their mechanical behavior in response to external excitations by a magnetic
field. To alter their mechanical characteristics under an external field makes them interesting candidates
especially for applications such as tunable stiffness and damping devices. One of the key advantages of
MREs over other smart or functional materials is that they work by contact-free excitations, cf. [11, 12].
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Magneto-active elastomers have been proposed to be used in robotic and vibration control applications
[1, 29, 32, 35, 36, 37, 38, 49, 81, 82]. MREs are filled with field-responsive micro or nano-sized iron par-
ticles. During the preparation of such composites, magnetically permeable particles are first mixed into a
liquid monomer system. Subsequently the mixture is set to rest in order to cross-link with time. Depending
on the timing of application of the magnetic field during the manufacturing of MREs two types of materials
can be produced. If the external magnetic field is absent during the curing process of the composites the
particles are more or less randomly distributed and form isotropic MREs. If an external magnetic field is ap-
plied during the curing process, it results in a relative alignment of the magneto-active particles that remain
locked within chains when the body solidifies [14, 28, 47, 35, 79, 80, 41, 42]. These produce transversely
isotropic MREs [5, 14, 28, 47, 35, 79, 80]. For the preparation and experimental characterization of iron-
filled elastomers, some seminal works can be consulted, e.g. [47], [35], [80], [17, 48].

Although the research exploring various aspects of MREs has been a growing field of interest in recent
years, the mathematical foundations of the coupling of electromagnetic fields in finite strains date back to
early 1960’s and are well documented in some earlier publications, see for example the works of Pao [58]
and Eringen and Maugin [31]. In a series of pioneering papers and monographs, Dorfmann and Ogden
developed a constitutive framework for the coupling of magnetic and mechanical fields which is based on
the so-called total energy [22, 23, 24]. Their modelling framework mainly assumes isotropy of the poly-
meric composites. It has been shown that the total stress tensor and the magnetic field can be expressed as
simple derivatives of the total energy function with respect to the deformation gradient and the magnetic
induction [23, 24, 25]. They presented analytical solutions of some classical non-homogeneous boundary
value problems in which it has been shown that any of the magnetic variables, i.e. the magnetic induction
vector, the magnetic field vector or the magnetization vector can be used as an independent variable in the
problem formulation. A significant amount of contributions on the modelling of magneto-mechanically cou-
pled problems were published by Bustamante [5], Bustamante, Dorfmann and Ogden [24, 9] extending the
work of Dorfmann and Ogden [3, 22, 23, 24, 25] by a constitutive model for transversely isotropic MREs.
Despite these seminal contributions, there is no work, to the best of the authors’ knowledge, that relates to
temperature-dependent behavior of magneto-mechanical coupled polymers.

All modelling strategies described above are based on the so-called strain invariant-based approach where
invariants do not have any direct physical meaning. Aiming to develop constitutive models that can be based
on physically meaningful invariants, Shariff [68, 69, 70], Bustamante and Shariff [7] proposed a set of spec-
tral invariants. The main idea of their approach is to construct a set of spectral invariants whose elements
are the principal stretches and the square of the dot product of the eigen-directions of the right stretch tensor.
They formulate a new class of spectral invariants to model not only the behavior of transversely isotropic
composites but also of anisotropic MREs [7]. They claim that the new invariants have clear physical mean-
ing and thus can be more attractive in order to find elegant expressions for the total energy function by fitting
experimental data.

Variational formulations for the governing equations of magnetic field-responsive composites, a prerequi-
site for numerical computations involving magneto-mechanical problems, are proposed by Bustamante et
al. [6, 8]. Another variational formulation on MREs is proposed by Vogel [72] and Vogel et al. [74], where
three-field formulations are proposed by considering a nearly incompressible behavior of the bulk rubber-
like materials. Recent experimental evidence [65] suggests that iron-filled polymeric composites manufac-
tured under a magnetic field during the curing process do not necessarily form composites where all iron
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particles are aligned in the same direction. Rather they form a dispersion type anisotropy with distributed
chains. Hence, Saxena et al. [65] proposed a magneto-active polymer model with a dispersed chain-like
micro structure and demonstrated some numerical examples by finite element calculations. Very recently,
Pelteret et al. [59] devised a computational framework for quasi-incompressible electro- and magneto-elastic
solids immersed in free space.

A general thermodynamically consistent constitutive framework for thermo-magneto-mechanically coupled
phenomena is devised in this contribution. We adopt a standard assumption for the heat capacity being
a constant. Successive integration and application of appropriate boundary conditions result in a general-
ized formulation for the total thermo-magneto-mechanical energy function in an additive form where the
magneto-mechanically coupled effect is linearly scaled with the temperature. In order to demonstrate the
validity of the proposed coupled framework, a classical non-homogeneous boundary value problem, i.e. the
extension and inflation of an axisymmetric cylindrical tube, is solved analytically. A magnetic field is ap-
plied in the azimuthal direction by assuming a current flowing along the axial direction of the hollow tube.
Furthermore, heat flow occurs in the thick-walled hollow tube along the radial direction in addition to the
magneto-mechanical load. To the best of the authors’ knowledge, this benchmark problem, that has been
widely used not only in finite strain elasticity but also in electro-/magneto-elastic problems, is not solved yet
in the literature for the thermo-magneto-mechanically load case.

This paper is organized as follows. In Section 2, the finite strain theory of nonlinear magneto-elasticity
is reviewed. Thereby relevant nonlinear kinematics and balance laws both in the spatial and the material
configuration are derived. In Section 3, the main focus of this contribution, a thermo-magneto-mechanical
coupled framework is discussed. Furthermore, coupled constitutive equations based on the total energy
function, and the modified heat equation for thermo-magneto-mechanically coupled problems are presented
in this chapter. A total energy function that obeys the second law of thermodynamics is proposed where the
temperature is incorporated as an independent variable in addition to the magnetic field and the deformation
gradient. Two non-homogeneous boundary value problems under thermo-magneto-mechanical loads are
solved analytically in order to substantiate the proposed formulation. The results are elaborated in Section
4. Section 5 concludes the paper with a summary and an outlook to future works.

2. Basics of non-linear magneto-mechano-statics

2.1. Kinematics

Since polymeric materials typically can undergo large deformations we distinguish between the material
configuration B0 and the spatial configuration Bt. To describe the deformation of the body material coordi-
nates X in B0 are mapped through the nonlinear deformation map χ onto the spatial coordinates x in Bt.
In general all quantities that refer to the material configuration B0 are denoted by upper case letters or by
the subscript [•]0. Quantities referring to the spatial configuration Bt are denoted by lower case letters or
by the subscript [•]t. The deformation gradient F is defined as the gradient of the deformation map χ with
respect to the material coordinatesX , i.e.

F := Grad χ; J := detF > 0, (1)

where J is the Jacobian determinant of the deformation gradient that has to be positive in order to avoid
any unphysical deformations. Moreover we introduce the left and right Cauchy-Green tensors b and C,
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respectively, as
b := FF T , C := F TF . (2)

2.2. Balance laws

2.2.1. Spatial configuration
Within a material body, the relation between the magnetic field h and the magnetic induction b is given in
terms of the magnetization m and the magnetic permeability in vacuum µ0

b = µ0[h + m], in Bt. (3)

Note that in free space the above relation degenerates to b = µ0h. If we assume the magnetostatic case
where the free current density is zero and the electric displacement is constant in time, Ampere’s law together
with the absence of magnetic monopoles yields

curl h = 0, div b = 0 in Bt, (4)

where curl and div denote the corresponding differential operators with respect to the position vectors x
in Bt. Equation (4)1 is satisfied automatically if the magnetic field h is derived from a scalar potential
[72, 54, 50, 62, 77, 78]. Hence, the definition of h is here

h := −grad ϕ, (5)

where grad ϕ is the gradient of the magnetic scalar potential ϕ with respect to the spatial coordinates. The
matter-field interaction is captured by the ponderomotive body force in terms of the magnetization and the
gradient of the magnetic induction, cf. [72, 54, 6]

b
pon
t := m · ∇b. (6)

The ponderomotive body force can be expressed as the divergence of a corresponding ponderomotive stress

σpon with div σpon = b
pon
t , (7)

which can further be decomposed into a non-symmetric magnetization stress [72, 73, 74] and the symmetric
Maxwell stress

σpon = σmag + σmax, (8)

where

σmag = [m · b]i−m⊗ b, σmax = −Mti+
1

µ0
b⊗ b. (9)

In Equation (9) Mt = 1
2µ0

[b · b] is the free field magnetic energy density per unit spatial volume and i is
the second order identity tensor in the spatial configuration. Note that Mt is parameterized in the magnetic
induction. In the absence of matter, the magnetization m and, consequently, the magnetization stress σmag

vanish whereas the Maxwell stress satisfies a divergence free condition, i.e.

div σmax = 0. (10)
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By incorporating the ponderomotive body force bpon
t into the balance of linear momentum we obtain

div σ + b
pon
t + bt = div σtot + bt = 0 in Bt, (11)

where bt is the mechanical body force andσtot is the total Cauchy-type symmetric stress tensor as introduced
by Dorfmann and Ogden [22, 23, 24, 25]. The total Cauchy stress σtot consists of both the mechanical and
the ponderomotive stress

σtot = σ + σpon. (12)

For the boundary conditions on ∂Bt = ∂Bχ
t ∪ ∂Bt

t with ∂Bχ
t ∩ ∂Bt

t = ∅, Dirichlet-type conditions for the
deformation map χ are prescribed as

χ = χp, on ∂Bχ
t . (13)

On the part of the boundary ∂Bt
t mechanical tractions tpt are prescribed and result in the Neumann-type

boundary condition
[[σtot]] · n = −tpt , on ∂Bt

t, (14)

where the jump [[•]] is defined as the difference of a certain quantity with regard to the outward pointing
normal vector n, i.e.: [[•]] = {•}out − {•}in. The respective jump conditions associated with the magnetic
quantities are defined as

n · [[b]] = 0 and n× [[h]] = ĵf (15)

where ĵf denotes the free surface current density [73]. With the assumption, that no free surface currents
flow over ∂B we can derive, in combination with Equation (5), the continuity condition for the magnetic
scalar potential,

[[ϕ]] = 0 (16)

2.2.2. Material configuration
In this section, we transform various magnetic quantities from the spatial configuration Bt to the material
configuration B0. The magnetic field, the magnetic induction and the magnetization in the material setting
can be computed, respectively, as

H = hF , M = mF , B = JbF−T . (17)

Similarly, the magneto-static Maxwell equations in the material configuration are defined as

Curl H = 0, Div B = 0, (18)

where Curl and Div denote the corresponding differential operators with respect to the position vectors X
in B0. Equation (18)1 will be satisfied if the magnetic field H is derived from a scalar potential such that

H = −Gradϕ, in B0. (19)

In the bulk B,H and M are connected by the relation, cf. [72]

B = Jµ0C
−1[H + M] in B0. (20)

Note that in free space the above relation reduces to B = Jµ0C
−1H. The total Cauchy stress σtot defined

in the spatial configuration can be transformed into its material counterparts, i.e. the total Piola and Piola-
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Kirchhoff stress tensors P tot and Stot, respectively, as

P tot = JσtotF−T , Stot = JF−1σtotF−T . (21)

Similar to the total Cauchy stress, the total Piola stress can be decomposed into the mechanical Piola stress
P and the ponderomotive Piola stress P pon

P tot = P + P pon = P + Pmag + Pmax, (22)

with the magnetization Piola stress Pmag and the Maxwell Piola stress Pmax that can be expressed as

Pmag = [M ·B]F−T −m⊗B, and Pmax = −M0F
−T +

1

µ0
b⊗B. (23)

In Equation (23) M0 = 1
2µ0

J−1B · [CB] denotes the magneto-static energy density per unit volume in
the material configuration. The balance of linear momentum (12) together with the corresponding Neu-
mann boundary conditions and the divergence free condition for the Maxwell stress in free space (10) are
transformed to

Div P tot + b0 = 0 with [[P tot]] ·N = −tp0 on ∂Bt
0 and Div Pmax = 0. (24)

The jump conditions are translated to the material configuration such that

N · [[B]] = 0 and N × [[H]] = Ĵf (25)

where Ĵf denotes the free surface current density in the material configuration [73]. In transforming the
boundary conditions from the spatial configuration to the material configuration, conversions ĴfdA = ĵfda
and tp0dA = tptda are used where the area element dA relates to the material configuration and da is the
respective area element in the spatial configuration.

3. Non-linear thermo-magneto-elasticity

3.1. Constitutive equations

In the sequel it proves convenient to treat the magnetic field rather than the magnetic induction as the
primary magnetic variable. To this end we first introduce the free field magnetic complementary energy per
unit volume in the material configuration as

M∗
0 (H;F ) := min

B
{M0 −H ·B} = −1

2
Jµ0H · [C−1H]. (26)

Then the energy density Ψ per unit volume in B0 is parameterized in the deformation gradient, the absolute
temperature Θ and the magnetic field

Ψ = Ψ̃(F ,Θ,H). (27)

Dorfmann and Ogden [22, 23] have demonstrated that the concept of the so-called total energy function is
useful for magneto-elastic constitutive modelling. Hence, we express the total energy function as

Ω(F ,Θ,H) = Ψ(F ,Θ,H) +M∗
0 (F ,H). (28)
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In the absence of a free current density, the second law of thermodynamics in the form of the Clausius-
Duhem inequality eventually leads to [20, 55]

δ0 = P tot : Ḟ −B · Ḣ− Ω̇−HΘ̇−Q · Grad(Θ)

Θ
≥ 0, (29)

where H is the entropy and Q is the heat flux vector defined in the material configuration that can be
transformed to the spatial form via Jq = FQ. Now, we can express the constitutive relations in terms of
the total energy as

P tot =
∂Ω

∂F
, with Pmax =

∂M∗
0

∂F
, B = − ∂Ω

∂H
, H = −∂Ω

∂Θ
, (30)

see, e.g. [72] for further details. After applying the Coleman-Noll argumentation [20] to Equation (29), the
reduced conductive dissipation power density reads

δcon
0 = −Q · Grad(Θ)

Θ
≥ 0. (31)

Moreover, in many cases, expressions for the total stress have to be written either in terms of the total Cauchy
stress or in terms of the total Piola-Kirchhoff stress tensor , i.e.

σtot = J−1 ∂Ω

∂F
F T , Stot = 2

∂Ω

∂C
. (32)

We assume the magneto-mechanical behavior of the material to be incompressible at constant temperature.
Therefore in order to capture the temperature induced deformation while simultaneously assuring incom-
pressibility of the material behavior at constant temperature following [27] we introduce a multiplicative
decomposition of the deformation gradient. Here we distinguish between a magneto-mechanical part FM

and a thermal part FΘ capturing thermal expansion. In terms of the deformation gradients and the corre-
sponding Jacobians this decomposition reads

F = FMFΘ, J = JMJΘ. (33)

Thus the definitions of the total stress (32) can be reformulated as

σtot =
∂Ω

∂F
F T − pi, Stot = 2

∂Ω

∂C
− pC−1, (34)

where p is a Lagrange multiplier associated with the incompressibility constraint JM = 1 [9].

3.2. Energy function

At this stage, a thermo-magneto-mechanically coupled energy function is required where, besides the me-
chanical and magnetic quantities, temperature will be an additional variable. In the case of a magneto-
mechanical problem, the heat capacity at constant deformation and constant magnetic field is denoted as
cF ,H. As an initial attempt towards modelling the thermo-magneto-mechanical behavior of elastomers, a
constant heat capacity is assumed, whereby Θ0 is the constant reference temperature

cF ,H(Θ) = cF ,H(Θ0) = c0. (35)
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Departing from the usual definition of the heat capacity c0 we obtain

c0 = −Θ
∂2Ψ

∂Θ∂Θ

!
= const.⇒ −c0

Θ
=

∂2Ψ

∂Θ∂Θ
, with Ψ = Ψ(F ,Θ,H), (36)

see, Holzapfel and Simo [46], Vertechy et al. [75, 76], Erbts et al. [30], Mehnert et al. [53], Santapuri
et al. [66, 67]. If the above relation is integrated once from the reference temperature Θ0 to an arbitrary
temperature Θ, it becomes

∂Ψ

∂Θ
= −c0

[
ln(Θ)− ln(Θ0)

]
−M1(F ,H) = −c0 ln

( Θ

Θ0

)
−M1(F ,H), (37)

where the integration constant M1 may depend on the deformation gradient F and the magnetic field H
but not on temperature Θ. Integrating a second time from the reference temperature Θ0 to an arbitrary
temperature Θ brings us to the full expression of the energy function

Ψ = c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
−
[
Θ−Θ0

]
M1(F ,H) +W (F ,H). (38)

For isotropy, the isothermal energy function W (a function in F and H) at the reference temperature ex-
pressed in Equation (38) depends on the magneto-mechanical coupled invariants, i.e. I1 to I6 asW (F ,H) =
W (I1, · · · I6). Thereby the magneto-mechanical coupled invariants (I1, I2, I3, I4, I5, I6) are defined as a
combination of the right Cauchy-Green tensor C and the magnetic field H in the material configuration

I1 = tr(C); I2 =
1

2

[
[tr(C)]2 − tr(C2)

]
; I3 = det(F );

I4 = [H⊗H] : I; I5 = [H⊗H] : C−1; I6 = [H⊗H] : C−2.
(39)

Earlier we proposed an additive decomposition for the coupling term M1 in the case of thermo-electro-
elasticity, see Mehnert et al. [53]. In absence of clear experimental evidences at this stage, a similar approach
can be applied here in the thermo-magneto-mechanical study. That means, the integration constant M1 can
be decomposed additively into a purely mechanical part M(F ) and a magneto-mechanically coupled part
C(F ,H), i.e.

M1(F ,H) = M(F ) + C(F ,H). (40)

As discussed in [53], in the case of large deformations, there are various forms to express the purely me-
chanical part M(F ). One of the simplest forms could be M(F ) = 3κβ ln(J), where κ is the bulk modulus
coefficient at the reference temperature and β is the thermal expansion coefficient. Note that in the case
the magneto-mechanical deformation is considered as incompressible at constant temperature, it holds that
J = JΘ. To complete the expression in Equation (40) the magneto-mechanically coupled part C(F ,H)
needs to be fixed. We assume a relation in line with the one proposed by Vertechy et al. [75] in thermo-
electro-elasticity which was also used in our previous work on electro-active polymer modelling. A formu-
lation comparable to the one found in [75] can be obtained by assuming

C(F ,H) = − 1

Θ0
W (F ,H), (41)

8
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which will eventually yield a complete thermo-magneto-mechanically coupled energy function as

Ψ(F ,Θ,H) =
Θ

Θ0
W (F ,H) + c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
−
[
Θ−Θ0

]
M(F ). (42)

To obtain a full expression of the temperature-dependent energy function derived in Equation (42), we need
to define an isothermal energy function W (F ,H) at the reference temperature. For the sake of simplicity,
a coupled incompressible Neo-Hookean-type material law depending on the invariants I1, I4 and I5 is
proposed. The first invariant I1 describes the purely mechanical case while the fourth invariant I4 depends
on the magnetic field. To model the interactions between the mechanical and the magnetic loads I5 is
introduced into the energy function, which gives

W (F ,H) = µ[I1 − 3] + c1I4 + c2I5. (43)

Next we assume that the shear modulus, due to its field-responsive nature, is no longer a constant material
parameter but rather depends on the applied magnetic field. Hence, µ(I4) needs to be formulated. For an
increase in the stiffness due to magnetization and the phenomenon of magnetic saturation after a critical
value of magnetization, a hyperbolic function such as µe/4 [1 + αetanh (I4/me)] is assumed, where µe is
the shear modulus of the material in the absence of a magnetic field. This assumption particularises the
previous formulation as

W (F ,H) =
µe
4

[
1 + αe tanh

(
I4

me

)]
[I1 − 3] + c1I4 + c2I5, (44)

where the parameter me is required for the purpose of non-dimensionalisation while αe is a dimensionless
positive parameter for scaling. The parameters c1 and c2 relate to the magneto-mechanical coupling. For
αe = c1 = c2 = 0, this simplifies to the classical Neo-Hooke elastic energy density function widely used
to model elastomers. Once suitable experimental evidences are available other advanced forms of energy
functions associated with the purely mechanical part can be coupled with the magnetic part of the energy to
improve the modelling, cf. [2, 61, 43, 44, 45].

Due to the small value of the vacuum permeability the free space term in the total energy formulation (28)
will be neglected in our analytical example, c.f. [77], i.e. there Ω(F ,Θ,H) ≈ Ψ(F ,Θ,H).

3.3. Magneto-mechanically coupled heat equation

From the first law of thermodynamics, the governing equation for the evolution of the thermal field can be
written in entropy form as

ΘḢ = R− DivQ+ Dloc with Dloc ≡ 0, (45)

with the heat source R and the heat flux vector Q in the material configuration. Going back to the thermo-
dynamically consistent definition of the the constitutive relation H = −∂Ψ

∂Θ we obtain

ΘḢ = −Θ
∂2Ψ

∂Θ∂Θ
Θ̇−Θ

∂2Ψ

∂F ∂Θ
: Ḟ −Θ

∂2Ψ

∂H∂Θ
· Ḣ. (46)

Combining Equations (45) and (46), the heat conduction equation is thus obtained in the format

c0Θ̇ = R− DivQ+ Θ∂Θ

[
P tot : Ḟ + B · Ḣ

]
. (47)
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In contrast to the classical heat equation, this format contains two additional contributions. The struc-
tural thermo-mechanical cooling/heating effect related to Ḟ and the thermo-magnetic heating/cooling effect
related to Ḣ, see Vertechy et al. [75], Mehnert et al. [53] for a similar expression in the case of thermo-
electro-elasticity.

4. Non-homogeneous boundary value problems

We now present two boundary value problems based on a widely used geometrical setup, a cylindrical tube of
electrically non-conducting magneto-elastic material that behaves incompressible at constant temperature,
cf. [22, 23, 24, 25]. In this case, we will formulate the problems under thermo-magneto-mechanically
coupled load as discussed in Section 3. In the considered case it is reasonable to work in the cylindrical
coordinates (R,Φ, Z) with the unit basis vectors (ER,EΦ,EZ) defined in the material configuration. In
the spatial configuration these quantities are defined as (r, φ, z) and (er, eφ, ez), respectively. It is assumed
that the tube is infinitely long so as to avoid difficulties with the end conditions of a finite length tube.
Furthermore we assume in these examples that the deformation due to thermal expansion can be neglected
compared to the prescribed deformation because of the comparably small value of the thermal expansion
coefficient β. Therefore we can assume F = FM . The three components of the magnetic field h and the
magnetic induction b are defined in the spatial configuration as (hr,hφ,hz) and (br,bφ,bz), respectively.
By expressing the divergence of the magnetic induction div b = 0 in cylindrical coordinates in the deformed
configuration we find

1

r
br +

∂br
∂r

+
1

r

∂bφ
∂φ

+
∂bz
∂z

= 0. (48)

Similarly, the curl of the magnetic displacement field becomes

1

r

∂hz
∂φ
− ∂hφ

∂z
= 0;

∂hr
∂z
− ∂hz

∂r
= 0;

1

r

∂(rhφ)

∂r
− 1

r

∂hr
∂φ

= 0. (49)

As we investigate cylindrically symmetric problems the components of the magnetic field and the magnetic
induction are independent of the coordinates φ and z, i.e. ∂(•)

∂φ = ∂(•)
∂z = 0, reducing equations (48) and (49)

to
rbr = const.; rhφ = const.; hz = const.. (50)

Finally from equation (12), the divergence of the total Cauchy stress tensor in cylindrical coordinates in a
cylindrically symmetric stress state is expressed as

div σtot =

[
∂σtot

rr

∂r
+
σtot
rr − σtot

φφ

r

]
er +

[
∂σtot

rφ

∂r
+

2σtot
rφ

r

]
eφ +

[
∂σtot

rz

∂r
+
σtot
rz

r

]
ez. (51)

A schematic figure of the thick-walled tube in cylindrical coordinates is depicted in Figure (1). The geometry
of the tube in the spatial configuration is described by

ai ≤ r ≤ ae; 0 ≤ φ ≤ 2π; 0 ≤ z ≤ l, (52)

where ai and ae denote the inner and outer radii in the deformed configuration, respectively. The corre-
sponding geometry of the tube in the material configuration is expressed by

Ai ≤ R ≤ Ae; 0 ≤ Φ ≤ 2π; 0 ≤ Z ≤ L, (53)
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M
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N

Figure 1: A thick walled cylinder in the spatial configuration with the internal radius ai and the external radius ae. An electric
current c generates the magnetic field h. The tube is inflated by an internal pressure P while it is axially stretched by a normal
force N

where Ai and Ae are the inner and outer radii in the undeformed configuration, respectively.

4.0.1. Solution of the temperature function
We will now focus on finding an analytical solution of the heat equation (47) and therefore apply various
simplifications. In the current case we neglect the thermo-mechanical and thermo-magneto cooling/heating
effects, hence the equation (47) will simplify to

c0Θ̇ = R− DivQ. (54)

To the best of the authors’ knowledge, for the problem under consideration, an analytical solution is only
available in the literature for the stationary heat equation [10, 60]. Hence we consider only steady-state heat
conditions and neglect any source terms R. With these simplifications we can formulate the equation in the
deformed configuration as

div(gradΘ) = 0, or ∆Θ = 0, (55)

where Q = −κJC−1Grad Θ and ∆ is the spatial Laplacian operator. In formulating the equation, a
constant value for the thermal conductivity κ has been assumed. The quasi-static heat equation is reduced to
the Laplace equation [10]. In cylindrical coordinates (r, φ, z) the equation for an axial symmetric problem,
e.g. a cylindrical hollow tube can be written as

d2Θ(r)

dr2
+

1

r

dθ(r)
dr

= 0, (56)

where r is the spatial radius of the tube. Bland et al. [10], Rajagopoal and Huang [60] proposed an analytical
solution for the Laplace equation when a temperature difference is prescribed between the internal and
external radii, i.e.

Θ(r) = k1 + k2 ln r, (57)
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where k1 and k2 are constants that need to be determined from the boundary conditions. Such a solution
indicates a logarithmically varying temperature profile along the radial thickness of the tube. For an internal
radius ai and an external radius ae with the corresponding temperatures Θ(ai) and Θ(ae), respectively, we
find

k1 =
Θ(ai) ln(ae)−Θ(ae) ln ai

ln ae − ln ai
and k2 =

Θ(ae)−Θ(ai)

ln ae − ln ai
. (58)

4.0.2. Azimuthally applied magnetic field
There are few ways to apply a magnetic load for this thick-walled tube problem as described in Dorfmann
and Ogden [22, 23, 24, 25]. In the following examples, we consider an azimuthally applied magnetic field
with the spatial component hφ = λ−1HΦ. For the problem under consideration, the spatial magnetic field
is related to the deformed tube geometry by

hφ =
c

r
=

c

Rλ
= λ−1Hφ, (59)

where c is a constant. This type of magnetic field can be created in a real experimental set-up if a current
flows along the core of the tube or a surface current flows along the inner boundary of the tube. As we
consider a hollow cylinder, it can be assumed that there is a central core of radius r < ai that can carry a
steady current I , i.e. I = 2πc. In this situation, there is no difficulty for a possible singularity at r = 0,
see Dorfmann and Ogden [25] for more details. In the absence of a surface current, the boundary conditions
require that hφ is continuous across the cylindrical surfaces r = ai and r = ae. Since this is the only
component of the magnetic field that exists throughout the thickness of the tube, there will only be a single
corresponding component bφ of the magnetic induction throughout the space. The non-zero components of
the Maxwell stress therefore read

σmax
rr = σmax

zz = −σmax
φφ =

1

2
µ0h2

φ. (60)

Note that according to the equation (50)2, hφ depends on r, hence σmax
φφ = σmax

φφ (r) = 1
2µ0h2

φ = 1
2µ0

c2

r2 .

4.1. Extension and inflation of a tube

In the first example the tube is deformed under a combination of axial extension, due to the normal
force N, and radial expansion that is the result of a pressure P on the internal surface of the tube. Thus the
transformation from the undeformed to the deformed configuration reads

r2 = λ−1
z

[
R2 −A2

i

]
+ a2

i , φ = Φ, z = λzZ, (61)

where the first relation is based on the incompressibility assumption and λz is the uniform axial stretch. The
relation between the deformed internal radius ai and the deformed external radius ae reads

a2
e = a2

i + λ−1
z

[
A2
e −A2

i

]
. (62)

This results in a deformation gradient that only has entries on the main diagonal. In cylindrical coordinates
the radial, circumferential/azimuthal and axial entries read

λr = [λλz]
−1; λφ =

r

R
= λ; λz, (63)
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wherein the incompressibility constraint λ1λ2λ3 ≡ 1 has been used. Using the deformation gradient the
magnetic field vector in the spatial configuration takes the form

hr =
1

λr
HR = λλzHR,

hφ =
1

λφ
HΦ = λ−1HΦ,

hz =
1

λz
HZ = λ−1

z HZ .

(64)

Considering cylindrical symmetry, the divergence of the total stress divσtot = 0 in cylindrical coordinates
can be derived from Equation (51) as

∂σtot
rr

∂r
+
σtot
rr − σtot

φφ

r
= 0, (65a)

∂σtot
rφ

∂r
+

2σtot
rφ

r
= 0 (65b)

∂σtot
rz

∂r
+

1

r
σtot
rz = 0. (65c)

Using the constitutive relation (34)2 the total Piola-Kirchhoff stress for an incompressible material can be
calculated as

Stot = 2
∂Ω

∂C
− pC−1

= 2

[
∂Ω

∂I1

∂I1

∂C
+
∂Ω

∂I2

∂I2

∂C
+
∂Ω

∂I5

∂I5

∂C
+
∂Ω

∂I6

∂I6

∂C

]
− pC−1

= 2Ω1I + 2Ω2[I1I −C]− pC−1 − 2Ω5

[
C−T · [H⊗H] ·C−1

]

− 2Ω6

[
[C−1 ·C−T ]H⊗ [C−1H]− [C−1H]⊗ [C−1 ·C−T ]H

]
.

(66)

The total Cauchy stress can be derived by a push forward of the Piola-Kirchhoff stress, which gives

σtot = FStotF T − pFC−1F T

σtot =
∂Ω

∂F
F T − pi

=

[
∂Ω

∂I1

∂I1

∂F
+
∂Ω

∂I2

∂I2

∂F
+
∂Ω

∂I5

∂I5

∂F
+
∂Ω

∂I6

∂I6

∂F

]
F T − pi

= 2Ω1b+ 2Ω2[I1b− b2]− pi− 2Ω5h⊗ h− 2Ω6[b−1h⊗ h + h⊗ b−1h].

(67)
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In the case of radial inflation and axial stretch the deformation gradient has only diagonal entries. This leads
to the non-zero stress components of σtot

σtot
rr = −p+ 2λ−2λ−2

z

[
Ω1 + Ω2[λ2 + λ2

z]
]
− 2[Ω5 + 2Ω6λ

2λ2
z]λ

2λ2
zH

2
R,

σtot
φφ = −p+ 2λ2

[
Ω1 + Ω2[λ−2λ−2

z + λ2
z]
]
− 2Ω5λ

−2H2
Φ − 4Ω6λ

−4H2
Φ,

σtot
zz = −p+ 2λ2

z

[
Ω1 + Ω2[λ−2λ−2

z + λ2]
]
− 2[Ω5 + 2Ω6λ

−2
z ]λ−2

z H2
Z ,

σtot
rz = −2HRHZ

[
Ω5λ+ Ω6[λ3λ2

z + λλ−2
z ]
]
,

(68)

where the derivatives of the energy function with respect to the invariants are designated as ∂Ωi
∂Ii

=: Ωi. After
rearranging Equation (65a), we obtain

σtot
rr (r̄) =

∫ r̄

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr + q, (69)

where q is an integration constant which can be determined from the boundary conditions for the stress. If
the outer surface of the tube is free of mechanical loads, i.e. σtot

rr (ae) = σmax
rr (ae), we find

q = −
∫ ae

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr + σmax

rr (ae)

=

∫ ae

ai

1

r

[
σtot
rr (r)− σtot

φφ(r)
]
dr + σmax

rr (ae).

(70)

We assume a uniform mechanical pressure P at the internal surface of the cylinder boundary, resulting in
the total Cauchy stress in radial direction in the form

σtot
rr (ai) = σmax

rr (ai)− P. (71)

This relation leads to

σtot
rr (ai) =

∫ ai

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr + q

=

∫ ae

ai

1

r

[
σtot
rr (r)− σtot

φφ(r)
]
dr + σmax

rr (ae) = σmax
rr (ai)− P.

(72)

Therefore, we obtain the definition of the pressure as

P =

∫ ae

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr + σmax

rr (ai)− σmax
rr (ae)

=

∫ ae

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr +

1

2
µ0
c2

a2
i

− 1

2
µ0
c2

a2
e

=

∫ ae

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]
(73)

In order to give the reader a feeling for the derivation of the pressure we will initially present an analytical
solution for the isothermal case with a linear variation of the field-responsive shear modulus, i.e. µ(I4) =
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[g0 + g1I4]. For the more complex derivations in the case of an existing temperature gradient with a tangent
hyperbolic shear function relevant calculations are presented in the Appendix. In the simplified case these
derivatives take the form

Ω1 =
1

2
[g0 + g1I4] , Ω2 = Ω6 = 0, Ω4 = c1 +

g1

2
[I1 − 3], Ω5 = c2, I4 = H2

Φ =
c2

R2
. (74)

By inserting the expressions of σtot
φφ and σtot

rr from Equation (68) into Equation (73), we obtain

P =

∫ ae

ai

1

r

[
σtot
φφ(r)− σtot

rr (r)
]
dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=

∫ ae

ai

1

r

[1

2
[g0 + g1I4]

[
2λ2 − 2λ−2λ−2

z

]
dr − 2c2

∫ ae

ai

λ−2I4
dr
r

+
1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=

∫ ae

ai

g0

[
λ2 − λ−2λ−2

z

]dr
r︸ ︷︷ ︸

P1

+

∫ ae

ai

g1I4

[
λ2 − λ−2λ−2

z

]dr
r︸ ︷︷ ︸

P2

− 2c2

∫ ae

ai

λ−2I4
dr
r︸ ︷︷ ︸

P3

+
1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

︸ ︷︷ ︸
P4

(75)

The integrals P1, P2 and P3 can be solved analytically. With the definition for the expressions λi = ai/Ai,
λe = ae/Ae and ζ = Ae/Ai, we can derive the following dimensionless formulations

P1 =
g0

λz

[
ln

(
λi
λe

)
− 1

2λz

[
λ−2
i − λ−2

e

]]
,

P2 =
1

2
g1A

−2
i c2

[ ζ2λ2
e − λ2

i

1 + λz
[
ζ2λ2

e − λ2
i

]
]

+
1

2
g1A

−2
i λ−2

z c2
[ 1

ζ2λ2
e

− 1

λ2
i

]

P3 = −c2c
2
[ 1

a2
i

− 1

a2
e

]
.

(76)

If we consider µ0 = 2c2, the terms P3 and P4 cancel out. This gives a non-dimensional expression for the
pressure P on the internal surface of the tube

P =
g0

λz

[
ln

(
λi
λe

)
− 1

2λz

[
λ−2
i − λ−2

e

]]
+

1

2
g1A

−2
i c2

[ ζ2λ2
e − λ2

i

1 + λz
[
ζ2λ2

e − λ2
i

]
]

+
1

2
g1A

−2
i λ−2

z c2
[ 1

ζ2λ2
e

− 1

λ2
i

]
.

(77)

Another important term to demonstrate the results for this example is the normal force N that is applied at
the end faces of the tube. It is the force that is required for an axial extension or compression and is given
by

N = 2π

∫ ae

ai

tzrdr = 2π

∫ ae

ai

[
σtot
zz − σmax

zz

]
rdr. (78)

A detailed calculation for the normal force for the thermo-magneto-mechanical problem is presented in the
Appendix.
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4.1.1. Results and discussions
In the previous chapter we presented the derivation of an expression for the pressure on the internal surface
and for the normal force on the end faces of a cylinder in the isothermal case and for a linearly evolving field
sensitive shear modulus. In order to illustrate the capabilities of the derived thermo-magneto-mechanical
framework we are now going to present the results for the inflation and axial extension of the cylinder with
a more complex formulation of the shear modulus containing a hyperbolic function, c.f. Equation (44). The
expressions resulting from this more intricate material model are presented in the Appendix and contain
integrals that can not be solved analytically. For the results presented in the following, these remaining
terms were evaluated using a five point Gauss quadrature rule, cf. Van Loan [84]. The material parameters
used in the calculations are shown in Table 1. The value for the isothermal shear modulus µe is taken from
[5] while the value for αe is adapted from [63].

Table 1: Various material constants used in the computations.

µe in MPa α me in T2 c2 in F/m
0.1 30 1 0.5µ0

We will start to illustrate the material behavior by focusing first on the isothermal load case of the hollow
cylinder with the initial internal radius of Ai = 10 mm. We prescribe the radial compression or inflation
characterized by the radial stretch λi and the axial stretch λz as boundary conditions. Figure 2 illustrates the
internal pressure P required to achieve a specific magneto-mechanical loading. The pressure is depicted for
selected values of the tube thickness, characterized by the ratio of the external to the internal radius ζ both
in the purely mechanical case (solid lines) and the magneto-mechanical case (dashed lines). The strength of
the circumferentially applied magnetic field depends on the electric current c.
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c = 0 A, ζ = 2 c = 1 A, ζ = 2
c = 0 A, ζ = 2.5 c = 1 A, ζ = 2.5
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λz = 1 λi = 2

Figure 2: Plot of the pressure with respect to (a) λi and (b) λz under a magneto-mechanically coupled load for selected values of ζ
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It can be observed in Figure 2(a) that in the case of inflation (λi > 1) the required pressure on the inter-
nal surface of the tube is positive and increases with λi, whereas in the case of compression (λi < 1) the
pressure is negative and decreases if the tube is compressed further. The magnitude of the pressure is also
directly depending on the thickness of the cylinder. An increased wall thickness leads to an increase in
the magnitude of the pressure. A circumferentially applied magnetic field induced by a current c results
in two effects in the material response. On the one hand, the material contracts in radial direction due to
the magneto-mechanical coupling, and on the other hand, the material hardens due to the field-dependent
shear modulus µ(I4), see Saxena et al. [65]. As the effect of the contraction is substantially smaller than
the hardening due to the selected material parameters c2 and αe, the increase in pressure visible when a
magnetic field is applied is mainly due to the increased shear modulus.

In Figure 2(b) it can be observed that the internal pressure decreases when the cylinder is stretched in the
axial direction which is due to the decrease in the wall thickness of the cylinder as its volume is preserved.
When the initial tube thickness ζ is changed, the magnitude of the pressure is affected accordingly. Further-
more when a magnetic field is applied, the hardening effect on the material is visible as the pressure level
increases.
Next, in addition to the mechanical and magnetic loading, a radial temperature gradient is applied to the
cylinder by varying the temperature Θe on the external surface of the tube while keeping the temperature
on the internal surface fixed at the reference temperature of 293 K. The behavior of the internal pressure for
this thermo-magneto-mechanical loading case is depicted in Figure 3 for selected values of Θe.
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c = 0 A, Θe = 293 K c = 1 A, Θe = 293 K
c = 0 A, Θe = 393 K c = 1 A, Θe = 393 K
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ζ = 2.5

λi = 2
ζ = 2.5

Figure 3: Plot of the pressure with respect to (a) λi and (b) λz under thermo-magneto-mechanically coupled loading for selected
values of Θe

The general trend of the behavior due to the magnetic and mechanical loading remains unchanged compared
to the isothermal case but the additional temperature gradient has an influence on the magnitude of the
pressure. It can be observed that the pressure increases for a temperature increase on the external surface
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and decreases for the opposite case which is in accordance with the results presented for polymeric materials
in Treloar [83]. In this context it is important to mention that in the scope of this contribution the material

parameters are sensitive exclusively to the magnetic field characterized by the term αe tanh
(
I4
me

)
, not to

the temperature gradient. The increase in pressure is therefore due to the additional energy in the system
instead of a direct effect on the material parameters. Figure 4 depicts the variation of the pressure with
respect to the wall thickness of the tube (a) and the applied magnetic field (b).
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0

20

40

60

80

100

ζ

P
[k

P
a]

c = 0 A, Θe = 193K c = 1 A, Θe = 193K
c = 0 A, Θe = 293K c = 1 A, Θe = 293K
c = 0 A, Θe = 393K c = 1 A, Θe = 303K

0 5 10 15 20 25 30

−6,000

−4,000

−2,000

0

2,000

c

P
[k

P
a]

λi = 0.5, Θe = 193 K λi = 2, Θe = 193 K
λi = 0.5, Θe = 293 K λi = 2, Θe = 293 K
λi = 0.5, Θe = 393 K λi = 2, Θe = 393 K

λz = 1
λi = 2

λz = 1
ζ = 2.5

Figure 4: Plot of the pressure with respect to (a) ζ and (b) the magnetic field resulting form the current c under thermo-magneto-
mechanically coupled loading for various values of Θe

As was already deduced from the preceding Figures, the internal pressure increases with an increased wall
thickness. Figure 4(a) highlights that the absolute difference between the pressure in the isothermal case and
the cases with an applied temperature gradient becomes larger with increased values of ζ. On the other hand,
the ratio between the isothermal pressure and the one in the thermo-magneto-mechanical case is reduced
with a larger value of the wall thickness, which is depicted and analyzed further in Figure 5. Figure 4(b)
shows the influence of the applied electric current and therefore of the resulting circumferential magnetic
field. It is clearly visible that the application of a magnetic field results in a hardening of the material as
the magnitude of the pressure increases. Due to the incorporation of the tangent hyperbolic-type saturation
function in the formulation of the field-sensitive shear modulus, this hardening effect almost vanishes at a
threshold, after which the pressure is almost constant, cf. Figure 4(b). This highlights furthermore that the
influence of the magnetic field on the material parameter has a significantly larger effect on the resulting
pressure compared to the displacement resulting from the magneto-mechanical coupling.

Figure 5 shows the influence of Θe on the resulting pressure for various selected values of the wall thickness.
It should be mentioned in this context that the tube has to remain thick-walled (ζ > 1) for the purpose of the
presented calculations as the temperature function is not defined in the thin-walled case. From Figure 5(a)
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Figure 5: Plot of the pressure (a) and the pressure ratio P/PΘ0 (b) under thermo-magneto-mechanical coupled loading for selected
values of the external temperature Θe

it can be observed that the model results in a linear increase of the resulting pressure for increased values of
Θe. Depicted in Figure 5(b) is the ratio of the pressure P at a specific temperature Θ to the pressure in the
isothermal case PΘ0 . It can be observed that a change in the temperature on the external cylinder surface
has the most distinct effect on the pressure for the smallest values of ζ, as this leads to a larger temperature
gradient.

Now we will focus on the scaled normal force N̄ = N
A2

i π
that has to be applied on the cross section of the

cylinder in order to maintain the prescribed boundary conditions. Initially only the isothermal loading case
is considered that is depicted in Figure 6.
It is visible in Figure 6(a) that as the cylinder tries to contract in axial direction when inflated radially, a
positive normal force has to be applied to maintain the prescribed axial stretch λz = 1. Similar to the
internal pressure, the normal force increases as well for an applied magnetic field as the material hardens.
Figure 6(b) shows that in order to achieve a tensile axial stretch λz > 1, a positive normal force has to be
applied that increases with the value of λz . It should be noted here that at λz = 1 the normal force does not
vanish as in the considered case there is a constant prescribed inflation λi = 2.
Next a radial temperature gradient is applied which leads to an increase in the magnitude of the normal force
both when focusing on the behavior due to radial inflation and to an axial stretch as can be seen in Figure 7.
As before, the change in temperature leads to a change in the normal force.
Figure 8 depicts the behavior of the normal force depending on the thickness of the cylinder (a) and the
magnetic field resulting from the applied current (b). As in the case of the pressure, the magnitude of
the normal force increases with an increased wall thickness as well as for an increased temperature on
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Figure 6: Plot of the normal force with respect to (a) λi and (b) λz under a magneto-mechanically coupled load for various values
of ζ
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the external tube surface. In Figure 8(b) the characteristic saturation behavior of the field-sensitive shear
modulus is visible as the increase of the normal force is restricted to a certain amount of the magnetic field
until a threshold is reached. After this the increase in the normal force is only minimal as there is no further
hardening of the material but only the effect of the deformation of the cylinder influences the result.
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Figure 8: Plot of the normal force with respect to (a) λi and (b) λz under a thermo-magneto-mechanically coupled load for various
values of ζ

4.2. Extension and Torsion of a tube

In our second example, the magnetic and thermal boundary conditions remain the same as before but the
mechanical loading of the cylindrical tube is changed to a combination of an axial stretch and torsion of the
angle per unit deformed length τ around the cylinder axis. For this specific loading case the transformation
of the undeformed to the deformed coordinates reads

r = λ−1/2
z R, φ = Φ + λzτZ, z = λzZ, (79)

and results in a deformation gradient in the form

F =



λ
−1/2
z 0 0

0 λ
−1/2
z τrλz

0 0 λz


 =



λ
−1/2
z 0 0

0 λ
−1/2
z γλz

0 0 λz


 , (80)

where we have introduced the definition of γ = rτ and used the incompressibility constraint det(F) = 1.
With the given deformation gradient and an azimuthal magnetic field we can use the relations in Equations
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(67) to calculate the respective non-zero entries of the total Cauchy stress which results in

σtot
rr = 2Ω1λ

−1
z − p,

σtot
φφ = 2Ω1[λ−1

z + γ2λ2
z]− p,

σtot
zz = 2Ω1λ

2
z − 2Ω5E

2
0λ

−2
z − p,

σtot
zφ = σtot

φz = 2Ω1γλ
2
z.

(81)

The material response to a torsion can be characterized by the torque M that has to be applied in order to
achieve the prescribed deformation. The torque can defined as the integral over the cross section of the
cylinder of the mechanical stress in azimuthal direction

M = 2π

∫ ae

ai

σzφ r
2dr = 2π

∫ ae

ai

[σtot
zφ − σmax

zφ ] r2dr. (82)

As the entry of the Maxwell stress σmax
zφ for the applied magnetic field vanishes, this definition reduces to

M = 2π

∫ ae

ai

σtot
zφ r

2dr. (83)

We assume that the cylinder consists of the same material with the same material parameters as in the
previous example. Thus, using the definition of the Cauchy stress (81) combined with the derivatives of the
energy function ∂Ωi

∂Ii
=: Ωi and the solution of the heat equation (57) we find the following expression for

the torque

M1 =
µeπτλ

2
z

Θ0

[
k1

4
[a4
e − a4

i ] +
k2

16
[a4
e[4 ln(ae)− 1]− a4

i [4 ln(ai)− 1]]

]
,

M2 =
µeπτλ

2
z

Θ0

∫ ae

ai

k1r
2αe tanh

(
c2

λzr2 + [A2
i − λza2

i ]

)
dr,

M3 =
µeπτλ

2
z

Θ0

∫ ae

ai

k2r
2 ln(r)αe tanh

(
c2

λzr2 + [A2
i − λza2

i ]

)
dr.

(84)

4.2.1. Results and discussions
We will start by investigating the magneto-mechanical loading case. Figure 9 illustrates the behavior of the
torque M depending on the angle of torsion (a) and the axial stretch (b) in the case of an azimuthally applied
magnetic field for selected values of the initial wall thickness ζ. Figure 9 shows a linear dependency of the
resulting torque on both the angle τ and the axial stretch λz . For τ = 0 the torque vanishes independently
from the applied magnetic field and the axial stretch λz . In Figure 9(b) it can be observed that the torque
does not vanish, as a constant torsion of the cylinder of τ = π/4 is assumed.
Now an additional radial temperature gradient is applied by changing the external surface temperature Θe

while maintaining the internal surface temperature at 293 K. Figure 10 shows the dependency of the torque
M depending on the angle of torsion (a) and the axial stretch (b) in the thermo-magneto-mechanical loading
case.
In both cases the effect of the temperature is clearly visible, as the torque is increased when the external
surface is heated while the torque decreases when the external surface is cooled down.
Finally we analyze the influence of the wall thickness ζ and the electric current c that induces the azimuthal
magnetic field.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

τ

M
in

N
m

c = 0, ζ = 1.5 c = 0, ζ = 2.0 c = 0, ζ = 2.5
c = 5, ζ = 1.5 c = 5, ζ = 2.0 c = 5, ζ = 2.5

0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

λz

M
in

N
m

λz = 1.0 τ = π
4

Figure 9: Plot of the torque with respect to (a) τ and (b) λz under a magneto-mechanically coupled load for selected values of ζ

Figure 11(a) shows that for an increased wall thickness the moment that has to be applied in order to achieve
the prescribed deformation increases as well. Furthermore a decreased surface temperature also leads to an
increase of the applied moment M. In Figure 11(b) the torque with respect to the applied electric current is
depicted. The dominating increase of the torque results from the hyperbolic function in the energy function.
Furthermore it is visible that a compression of the cylinder (λz = 0.5) decreases the moment M while a
temperature gradient resulting from heating the external surface results in a decrease of M.

5. Conclusions

In this contribution, we have presented a thermo-magneto-mechanically coupled framework for magneto-
rheological elastomers that can operate in finite deformations. Although almost all of the early works
on constitutive modelling of MREs assume isothermal formulations, the experimental characterization of
magneto-sensitive elastomers under isothermal conditions is difficult to achieve. Furthermore, due to the
inherent chemical composition of polymeric materials they are highly sensitive to temperature. Therefore,
in order to model any realistic experimental data, a thermo-magneto-mechanically coupled formulation is
necessary. Departing from relevant laws of thermodynamics, we derive a thermodynamically consistent for-
mulation in which temperature is an independent variable in addition to the mechanical and magnetic fields.
In order to demonstrate the applicability of our proposed constitutive framework, two non-homogeneous
boundary value problems that have frequently been used in finite elasticity and magneto-elasticity are pre-
sented. In the first example the mechanical load is a combination of radial inflation and axial extension, in
the second example the mechanical deformation consists of an axial extension combined with torsion around
the cylinder axis. In both cases the cylindrical thick-walled tube is subject to a circumferential magnetic field
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Figure 10: Plot of the torque with respect to (a) τ and (b) λz under a thermo-magneto-mechanically coupled load for selected values
of Θe

and a radial temperature gradient. Polymeric materials are typically viscoelastic in nature, cf. [4]. Hence
the proposed thermo-magneto-mechanical approach needs to be extended to incorporate the time-dependent
behavior of the underlying polymer composites. In future contributions, a detailed finite element implemen-
tation of the thermo-magneto-mechanically coupled formulation will be elaborated which will facilitate to
simulate more complex real life boundary value problems. There are plans to identify relevant constitutive
material parameters once suitable experimental data is available.
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5.1. Appendix

5.1.1. Derivation of the Pressure
With the energy function derived from (42) and (44) and under the assumption that the influence of the free
space can be neglected we find the derivatives of the energy with respect to the six invariants as

Ω1 =
Θ(r)

Θ0

µe
4

[
1 + αe tanh(

I4

me
)

]
, Ω2 = Ω6 = 0, Ω4 =

Θ(r)

Θ0

µe
2me

αe
1

cosh( I4me
)

+ c1,

Ω5 =
Θ(r)

Θ0
c2

(85)

In order to abbreviate the formulation, the hyperbolic term in the field sensitive shear modulus will be
condensed to the expression a = αe tanh( I4me

). The formulation of the pressure presented in (73) takes the
form

P =

∫ ae

ai

2

r
Ω1

[
λ2 − λ−2λ−2

z

]
dr

︸ ︷︷ ︸
P1

−
∫ ae

ai

2

r
λ−2Ω5I4dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

︸ ︷︷ ︸
P2

.
(86)

In the following calculations we will use the definition of the fourth invariant I4 = H2
Φ = c2

R2 and the
solution of the heat equation Θ(r) = k1 + k2 ln(r). Furthermore the connection between a radius r in the
spatial configuration and R in the material configuration derived from the conservation of the volume of the
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cylinder is given by R2 = λzr
2 + [A2

i − λza2
i ] = λzr

2 + b. For the first term in (86) we find

P1 =

∫ ae

ai

2

r
Ω1

[
λ2 − λ−2λ−2

z

]
dr =

µe
2Θ0

∫ ae

ai

k1 + k2 ln(r)

r
[1 + a]

[
r2

λzr2 + b
− λzr

2 + b

λ2
zr

2

]
(87)

The multiplication of the expression inside the integral results in six terms that are evaluated separately. The
first term can be solved completely analytically and results in an expression comparable to the one derived
for the isothermal case (76.1)

Term 1 =
µe

2Θ0

∫ ae

ai

k1

r

[
r2

λzr2 + b
− λzr

2 + b

λ2
zr

2

]

=
µe

2Θ0
k1

[
1

λz
ln

(
λi
λe

)
− 1

2λ2
z

[λ−2
i − λ−2

e ]

] (88)

The second expression contains a logarithmic term and can therefore only partly be solved analytically.

Term 2 =
µe

2Θ0

∫ ae

ai

k2

r

[
r2 ln(r)

λzr2 + b
− [λzr

2 + b] ln(r)

λ2
zr

2

]
dr

=
µe

2Θ0
k2

∫ ae

ai

r ln(r)

λzr2 + b
dr

− µe
2Θ0

k2

[
1

2λz
[ln2(ae)− ln2(ai)]−

b

λ2
z

[
ln(ae)

2a2
e

− ln(ai)

2a2
i

+
1

4
[a−2
e − a−2

i ]

]]
(89)

The remaining integral has to be evaluated using numerical integration methods. The same holds true for
the remaining four terms, that can not be integrated analytically as the hyperbolic function renders these
expressions too complex

Term 3 =
µe

2Θ0

∫ ae

ai

k1

r
αe tanh

(
c2

λzr2 + b

)
r2

λzr2 + b
dr,

Term 4 =
µe

2Θ0

∫ ae

ai

k2

r
αe ln(r) tanh

(
c2

λzr2 + b

)
r2

λzr2 + b
dr,

Term 5 =− µe
2Θ0

∫ ae

ai

k1

r
αe tanh

(
c2

λzr2 + b

)
λzr

2 + b

λ2
zr

2
dr,

Term 6 =− µe
2Θ0

∫ ae

ai

k2

r
ln(r)αe tanh

(
c2

λzr2 + b

)
λzr

2 + b

λ2
zr

2
dr.

(90)
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The expressionP2 from Equation (86) can be solved completely analytically for the current thermo-magneto-
mechanical loading case

P2 =−
∫ ae

ai

2

r
λ−2Ω5I4dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=− 2

∫ ae

ai

1

r

R2

r2

Θ(r)

Θ0
c2
c2

R2
dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=− 2c2c2

Θ0

∫ ae

ai

1

r3
[k1 + k2 ln(r)]dr +

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=− 2c2c2k1

Θ0
[a−2
i − a−2

e ]− k2c
2c2

2Θ0
[a−2
i − a−2

e ]

+
k2c

2c2

Θ0

[
ln(ae)

a2
e

− ln(ai)

a2
i

]
+

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

(91)

If we consider c2 = µ0

2 the expression can be abbreviated but due to the temperature dependency the terms
do not cancel out as it was the case in Equation (75). We find an formulation in the form

P2 =− c2µ0k1

2Θ0
[a−2
i − a−2

e ]− k2c
2µ0

4Θ0
[a−2
i − a−2

e ] + k2c
2 µ0

2Θ0

[
ln(ae)

a2
e

− ln(ai)

a2
i

]
+

1

2
µ0c

2
[ 1

a2
i

− 1

a2
e

]

=
1

2
µ0c

2[1− k1

Θ0
]
[ 1

a2
i

− 1

a2
e

]
− k2c

2µ0

4Θ0
[a−2
i − a−2

e ] + k2c
2 µ0

2Θ

[
ln(ae)

a2
e

− ln(ai)

a2
i

]

(92)
The summation of the terms of P1 and P2 will give the final result for the pressure on the internal surface of
the tube in the thermo-magneto-mechanical loading case with a field sensitive shear modulus.
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5.1.2. Derivation of the Normal Force
For the derivation of the normal force we will proceed as in the previous section for the pressure. The
presented derivatives of the energy function in Equation (85) will be used here as well. We will start with
the definition of the normal force as shown in Equation (78) and insert the expressions of the total Cauchy
stress from Equation (34) and the definition of the Maxwell stress from (60) in axial direction.

N = 2π

∫ ae

ai

[σtot
zz − σmax

zz ]rdr = 2π

∫ ae

ai

[−p+ 2λ2
zΩ1 −

1

2
µ0λ

−2
z

c2

r2
]rdr. (93)

An expression for the Lagrange multiplier p can be found by using the definition of the radial and azimuthal
stress components of the Cauchy stress from Equation (34)

σtot
rr + σtot

φφ = −2p+ 2[λ−2λ−2
z + λ2]Ω1 − 2λ−2 c

2

R2
Ω5

−p =
1

2
[σtot
rr + σtot

φφ]− [λ−2λ−2
z + λ2]Ω1 + λ−2 c

2

R2
Ω5.

(94)

Inserting this expression into the definition of the normal force leads to a lengthy equation that is decom-
posed into three sub terms

N =2π

∫ ae

ai

[
1

2
[σtot
rr + σtot

φφ] + [2λ2
z − λ−2λ−2

z − λ2]Ω1 + λ−2 c
2

R2
Ω5 −

1

2
µ0λ

−2
z

c2

r2

]
rdr

=π

∫ ae

ai

r[σtot
rr + σtot

φφ]

︸ ︷︷ ︸
N1

+ 2π

∫ ae

ai

r[2λ2
z − λ−2λ−2

z − λ2]Ω1dr

︸ ︷︷ ︸
N2

+ 2π

∫ ae

ai

rλ−2 c
2

R2
Ω5dr − 2π

∫ ae

ai

1

2
µ0λ

−2
z

c2

r2
rdr

︸ ︷︷ ︸
N3

(95)

Using the transformed definition in Equation (65a) to ∂σtot
rr
∂r r = σtot

rr − σtot
φφ we can calculate the expression

in N1 as a simple scaling of the pressure, derived in the previous chapter

π

∫ ae

ai

r[σtot
rr + σtot

φφ] =
π

2
[a2
eσ

max
rr (ae)]−

π

2
[a2
iσ

max
rr (ai)] +

1

2
πa2

iP +
1

2
π

∫ ae

ai

r[σtot
rr + σtot

φφ]

π

∫ ae

ai

r[σtot
rr + σtot

φφ] = π[a2
eσ

max
rr (ae)]− π[a2

iσ
max
rr (ai)]︸ ︷︷ ︸

=0

+πa2
iP = πa2

iP.
(96)

If we insert Ω1 into the expression of N2 we end up with a lengthy equation.

2π

∫ ae

ai

r[2λ2
z − λ−2λ−2

z − λ2]Ω1dr = 2π

∫ ae

ai

r[2λ2
z − λ−2λ−2

z − λ2]
Θ(r)

Θ0

µe
4

[1 + αe tanh

(
c2

R2

)
]dr

=
πµe
2Θ0

∫ ae

ai

r[k1 + k2 ln(r)][2λ2
z − λ−2λ−2

z − λ2][1 + α tanh

(
c2

r2λz + b

)
]dr

(97)
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As it was the case for the pressure, by expanding this expression we end up with a number of terms that can
only partly be evaluated analytically. For the simplest of these terms we can find the following analytical
solution

Term 1 =
πµe
2Θ0

∫ ae

ai

rk1[2λ2
z − λ−2λ−2

z − λ2]dr =
πµek1

2Θ0

[
[λ2
z −

1

λz
][a2

e − a2
i ] +

b

λ2
z

ln

(
λi
λe

)]
.

(98)
Another term differing from the first only in the thermal constant k2 instead of k1 and the multiplication
with ln(r) can be solved partly analytically

Term 2 =
πµe
2Θ0

∫ ae

ai

rk2[2λ2
z − λ−2λ−2

z − λ2] ln(r)dr

=
πµek2

2Θ0

[∫ ae

ai

[2λ2
z −

1

λz
]r ln(r)dr −

∫ ae

ai

b

rλ2
z

ln(r)dr −
∫ ae

ai

r3 ln(r)

r2λz + b
dr

]

=
πµek2

2Θ0
[[2λ2

z −
1

λz
][

1

2
[a2
e ln(ae)− a2

i ln(ai)]−
1

4
[a2
e − a2

i ]]−
b

2λ2
z

[ln2(ae)− ln2(ai)]]

− πµek2

2Θ0

∫ ae

ai

r3 ln(r)

r2λz + b
dr.

(99)

The two final terms containing the hyperbolic tangent function are too complex to be evaluated analytically.
Therefore numerical integration has to be employed

Term 3 =
πµe
2Θ0

∫ ae

ai

rk1[2λ2
z − λ−2λ−2

z − λ2]αe tanh

(
c2

R2

)
dr,

Term 4 =
πµe
2Θ0

∫ ae

ai

rk2 ln(r)[2λ2
z − λ−2λ−2

z − λ2]αe tanh

(
c2

R2

)
dr.

(100)

Returning to Equation (95) N3 is the final term left to evaluate. When inserting the definition of λ = r
R and

Ω5 = Θ(r)
Θ0

c2 we find

N3 =2π

∫ ae

ai

c2

r

Θ(r)

Θ0
c2dr − 2π

∫ ae

ai

1

2
µ0λ

−2
z

c2

r2
rdr = 2πc2

∫ ae

ai

1

r

[
Θ(r)

Θ0
c2 − λ−2

z

µ0

2

]
dr. (101)

With the material parameter c2 = µ0

2 and the solution to the heat equation we find an expression that can be
solved analytically

N3 =µ0πc
2

∫ ae

ai

1

r

[
k1

Θ0
− λ−2

z

]
1

r
+
k2

Θ0

ln(r)

r
dr

=µ0πc
2

[[
k1

Θ0
− λ−2

z

]
ln

(
ae
ai

)
+

k2

2Θ0
[ln2(ae)− ln2(ai)]

] (102)

The summation of all the terms of N1 to N3 will give the final result for the normal force on the end surfaces
of the tube in the thermo-magneto-mechanical loading case with a field sensitive shear modulus.
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