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Abstract The computational complexity of a variety of problems from al-
gorithmic game theory is investigated. These are variations on the question
whether a strategy in a normal form game survives iterated elimination of
dominated strategies. The difficulty of the computational task depends on the
notion of dominance involved, on the number of distinct payoffs and whether
the game is constant-sum. Most of the open cases are fully classified, and
the remaining cases are shown to be equivalent to certain questions regard-
ing elimination orders on graphs. The classifications may serve as the basis
for a discussion to what extent iterated dominance could be useful to restrict
rationality for computationally bounded agents.

Keywords Computational complexity, normal form game, dominated
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1 Introduction.

We consider finite two-player games in strategic form, i.e. given by a pair
(A,B) of n×m payoff matrices (over the integers). The idea is that one player
picks a row, the other the column. The first player then receives the payoff
determined by the corresponding cell in A, while the second player receives
the payoff specified by B. Now if some row always provides a better payoff for
the row player than some other regardless of column players choice, it makes
sense for row player to exclude it from his considerations. Because the matrices
are assumed as common knowledge, column player can infer that row player
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will never choose this particular row. This in turn may entice column player
to exclude one of the columns, if it is an inferior choice against all remaining
rows. Iterated elimination of dominated strategies refers to such an elimination
process, continued until no further strategies (that is rows or columns) can be
removed.

For a fixed pair of matrices, we define several relations between subgames,
that is pairs (I, J) with I ⊆ {1, . . . , n}, J ⊆ {1, . . . ,m}. These relations differ
by the justification needed to delete a certain strategy from the game. We are
interested in the computational problem of deciding whether a specific strategy
in a given game may be eliminated by iterated application of such a deletion
rule. Depending on the rule, the number of distinct payoffs and whether the
game is constant-sum or not, most of these problems are shown to be complete
for one of the complexity classes L, NL, P or NP (w.r.t. logspace reductions).
Some classifications of this type have previously been obtained in [7,13,4], and
the cases resisting full classification are discussed in further detail in Section
4.

1.1 Definitions.

The elimination rules of interest are the following:

Definition 1 (Strict Dominance) The notion of strict dominance is defined
through:

1. (I, J)→<< (I \ {i}, J), if there is an i0 ∈ I with Ai0,j > Ai,j for all j ∈ J .
2. (I, J)→<< (I, J \ {j}), if there is a j0 ∈ J with Bi,j0 > Bi,j for all i ∈ I.

Definition 2 (Dominance) The notion of dominance (sometimes called weak
dominance in the literature) is defined through:

1. (I, J) →< (I \ {i}, J), if there is an i0 ∈ I with Ai0,j ≥ Ai,j for all j ∈ J ,
and a j0 ∈ J with Ai0,j0 > Ai,j0 .

2. (I, J) →< (I, J \ {j}), if there is a j0 ∈ J with Bi,j0 ≥ Bi,j for all i ∈ I,
and an i0 ∈ I with Bi0,j0 > Bi0,j .

Definition 3 (Weak Dominance) The notion of weak dominance (some-
times called very weak dominance in the literature) is defined through:

1. (I, J) →≤ (I \ {i}, J), if there is an i0 ∈ I \ {i} with Ai0,j ≥ Ai,j for all
j ∈ J .

2. (I, J) →≤ (I, J \ {j}), if there is a j0 ∈ J \ {j} with Bi,j0 ≥ Bi,j for all
i ∈ I.

If, for some mode of domination→, we have (I, J)→ (I \{i}, J) witnessed
by i0, we say that i is (weakly / strictly) dominated by i0. Provided that we
actually move to the subgame (I \ {i}, J), we say that i is eliminated by i0.
An analogous convention is used for column player’s strategies. Generally, we
use →∗ to denote the transitive closure of the relation →.
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Once a game and a mode of elimination have been specified, the goal is
to find a minimal subgame, i.e. a subgame not further reducible. For all three
notions, Nash equilibria of the subgame are also Nash equilibria of the original
game, so iterated strategy elimination can be regarded as a preprocessing step
in the computation of Nash equilibria. For iterated elimination of strictly dom-
inated strategies the converse is also true: Strategies used in Nash equilibria
are never eliminated.

It is known that there is a unique minimal element for strict dominance
(⇒<<) for each game with finite strategy sets, while this is not true for dom-
inance or weak dominance1. For weak dominance, uniqueness up to equiva-
lence can be recovered for zero-sum games, or more generally, for games with
jointly varying payoffs, as shown in [12]. A game has jointly varying payoffs,
if Aij = Akl ↔ Bij = Bkl. A very similar condition suffices to obtain order
independence up to equivalence for dominance as well [14,15].

Instead of eliminating just one dominated strategy at each step, it is pos-
sible to eliminate all currently dominated strategies at once2. As argued in
[11], this notion can be axiomatically justified, and it yields a unique minimal
result:

Definition 4 (Simultaneous Dominance)
(I, J)→s< (I \K,J \ L), if

1. There are ik ∈ I, jk ∈ J for each k ∈ K with Aik,j ≥ Ak,j for all j ∈ J
and Aik,jk > Ak,jk .

2. There are il ∈ I, jl ∈ J for each l ∈ L with Bi,jl ≥ Bi,l for all i ∈ I and
Bil,jl > Bil,l.

3. K ⊆ I and L ⊆ J are maximal among all subsets fulfilling 1. and 2.

Another notion we will consider is the elimination of never best responses
(against pure strategies3). This concept belongs to the realm of rationaliz-
ability conditions as considered in general in [1]. The probably best known
definitions of rationalizability are the definitions of [21] and [3]. Here a strat-
egy will be eliminated, if it is not a best response (i.e. provides its player with
the best possible payoff given the choice of the opponent) to any of the remain-
ing strategies for the opponent. As shown in [1], there is a unique maximal
reduced subgame, provided that one starts with finite strategy sets.

Definition 5 (Elimination of never best responses) The notion of it-
erated elimination of never best responses against pure strategies is defined
through:

1 The claim of order invariance up to strategy permutation for weak dominance given in
[13, Proposition 1] is wrong. A trivial counterexample is the game A = (0, 1), B = (0, 0)
with the two reduced forms A′ = (0), B′ = (0) and A′′ = (1) , B′′ = (0).

2 Doing so for strictly dominated strategies does not influence the final result, while doing
so for weakly dominated strategies could result in empty strategy sets.

3 Often the concept of never best responses is considered against mixed strategies instead.
Then never best responses and strictly dominated strategies would coincide (compare e.g.
[16, Pages 59–60]). Elimination of never best responses against pure strategies however is a
distinct concept.
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1. (I, J)→br (I \{i}, J), if for each j ∈ J there is an ij ∈ I with Aij ,j > Ai,j .
2. (I, J)→br (I, J \ {j}), if for each i ∈ I there is a ji ∈ J with Bi,ji > Bi,j .

There are various computational problems associated with the notions of
iterated elimination of strategies. Several of them for strict dominance, dom-
inance and weak dominance have been studied in [10], showing all of them
to be NP-complete for dominance and weak dominance, and most of them
to be in P for strict dominance. Here we will study decision problems similar
to those considered in [13] or [7], asking whether it is possible to eliminate a
certain strategy.

There are two canonic encodings of bimatrix games with natural numbers
as payoffs into finite strings, one based on the unary representation of the
individual payoffs, one based on the binary representation. Inclusion in a given
complexity class always works for both, and as all lower bounds are achieved
for games with a fixed number of distinct payoffs, the choice of representation
has no impact whatsoever on the computational complexity of the problems
we consider. All problems are decision problems, i.e. the output is either yes
or no, thus it suffices to state when yes is the output in order to fully define
the problem.

Definition 6 Strict has an n ×m game A, B and a strategy 1 ≤ i ≤ n as
input, and answers yes, iff there are I, J with ({1, . . . , n}, {1, . . . .m}) ⇒<<

(I, J) and i /∈ I.

Definition 7 Dominance has an n×m game A, B and a strategy 1 ≤ i ≤ n
as input, and answers yes, iff there are I, J with ({1, . . . , n}, {1, . . . .m}) ⇒<

(I, J) and i /∈ I.

Definition 8 Weak has an n × m game A, B and a strategy 1 ≤ i ≤ n
as input, and answers yes, iff there are I, J with ({1, . . . , n}, {1, . . . .m}) ⇒≤
(I, J) and i /∈ I.

Definition 9 Simultaneous has an n×m game A, B and a strategy 1 ≤ i ≤
n as input, and answers yes, iff there are I, J with ({1, . . . , n}, {1, . . . .m}) ⇒s<

(I, J) and i /∈ I.

Definition 10 Response has an n×m game A, B and a strategy 1 ≤ i ≤ n
as input, and answers yes, iff there are I, J with ({1, . . . , n}, {1, . . . .m}) ⇒br

(I, J) and i /∈ I.

There are several interesting modifications to the problems introduced
above, focusing on additional properties of the game. For Elimination ∈
{Strict,Dominance,Weak,Simultaneous,Response}, we use k-Elimination
to denote the restriction of the respective problem to games with at most k
different payoff values, that is max{|{Aij | i ≤ n, j ≤ m}|, |{Bij | i ≤ n, j ≤
m}|} ≤ k. Z-Elimination refers to the restriction to zero-sum (or constant
sum4) games. k-Z-Elimination is defined in the straightforward way. By ex-
plicitly considering the number of distinct payoffs in our completeness proofs,

4 It is straightforward that these cases are equivalent. Technically, our examples will be
constant-sum games rather than zero-sum games.
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Weak Dominance Strict Simulteneous Response
3 NP NP P P NL
2 ≥ P NP NL P NL

4-Z P P P P NL
3-Z P P NL P NL
2-Z ? ? L ? L

Table 1 Overview of the classifications. An entry NP denotes NP-completeness, etc., while
≥ P denotes membership in NP together with P-hardness.

we demonstrate that this number is not suitable for an investigation along the
lines of parameterized complexity theory [9].

1.2 Previous and new results.

In each step of any elimination process at least one strategy has to be elim-
inated, otherwise the elimination stops. Thus, any elimination process is of
polynomial length, and can be guessed and verified in polynomial time. There-
fore, all problems introduced above are trivially decidable in NP. For the no-
tions with unique minimal result, membership in P follows with the same
reasoning.

NP-completeness for 2-Dominance was established in [7], which of course
implies NP-completeness for k-Dominance (k > 2) and for Dominance. In
[13], P-hardness5 is shown for 6-Z-Weak. That Z-Dominance can be solved
in P was shown in [4].

In the present paper, we show that k-Strict is P-complete for k ≥ 3, and
k-Z-Strict is P-complete for k ≥ 4. Both 2-Strict and 3-Z-Strict are NL-
complete. In a zero-sum game with payoffs in {0, 1}, only trivial cases of strict
dominance are possible, and there cannot be any iteration of elimination. This
allows to decide 2-Z-Strict in L.

By proving them to be equivalent to 2-Strict, also Response and k-Response
(k ≥ 2) will be shown to be NL-complete.

For 3-Z-Dominance as well as for 3-Z-Simultaneous we show P-completeness,
leaving the case k = 2 open. Without the restriction to zero-sum games, we
can show that 2-Simultaneous is P-complete.

For weak dominance, we establish the membership in P of Z-Weak, and
reduce the number of payoff values needed for P-completeness, so that we can
prove 3-Z-Weak to be P-complete. The problem 3-Weak is NP-complete.
For the case of just two different payoff values, we only establish P-hardness
of 2-Weak, and leave the remaining questions open. See Table 1 on Page 5
for an overview.

5 While P-completeness is claimed, the corresponding part of the proof is wrong. However,
as we will show later, the P-completeness result is true.
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2 Complexity classes and their complete problems.

The computational complexity of a problem is usually classified by showing it
to be among the hardest problems solvable by a specific computational model.
Hardest refers to reducibility of problems: If there is a simple procedure f to
compute an instance f(i) of problem B from any instance i of problem A,
such that the answer of A to i is the same as the answer of B to f(i), then
A is reducible to B. A problem A is hard for some class of problems C, if any
problem in C is reducible to A. If moreover A is in C, we call it C-complete.
The specific reduction type used in the present paper is logspace reductions,
that means we demand that the function f in a reduction can be computed
using amounts of memory growing only logarithmically with the input size.

We shall briefly introduce the complexity classes occurring in our results,
and present their complete problems we use to derive the completeness-results.
Most of this section is based on [17].

The class NP contains the problems decidable by a polynomially time-
bounded nondeterministic Turing machine. NP-complete problems are not as-
sumed to admit fast decision algorithms. An archetypical NP-complete prob-
lem is 3SAT, defined as following:

Definition 11 (3-Satisfiability) 3SAT has a list of clauses as input, each
containing three literals of the form Xi or ¬Xi. The question is whether truth
values can be attached to the literals, so that at least one literal per clause is
true.

The problems in P are those decidable by a polynomially time-bounded
deterministic Turing machine. The P-complete problems are those where a
substantial speed-up through parallel computing is least to be expected, i.e.
the inherently sequential problems. As an archetypical P-complete problem we
use several versions of the monotone circuit value problem (MCV):

Definition 12 (monotone circuit value problem) The problem MCV
takes a monotone circuit as input, that is a directed acyclic graph (Dag),
where the vertices are labeled with And, Or and False. Vertices labeled with
False always have in-degree 0, while And and Or vertices have in-degree less
or equal 2. The value of a False vertex is false. An And vertex has the value
true, if and only if all his input vertices have value true6; an Or vertex has
value true, if and only if he has an input vertex with value true. There is
exactly one vertex with out-degree 0, the root. The answer to the problem is
yes, if and only if the root is assigned the value true.

There are two different sets of additional restrictions imposed on the cir-
cuits we will use, both lead to problems equivalent to the original MCV:

6 In particular, an And vertex with in-degree 0 always has the value true; thus, we do
not need to include designated True vertices. In theory, the same is true for False and Or
vertices, however, including False vertices explicitly facilitates our constructions.
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∧1

∨1

⊥1 ⊥2

∨2

⊥3 ∧2
Table 2 An example instance for MCV1 introduced in Definition 13

∧1

∨1

∧2 ∧3

⊥3 ∨2

∧4 ∧5
Table 3 An example instance for MCV2 introduced in Definition 14

Definition 13 In the problem MCV1, And and Or vertices are alternating.
Each False vertex has out-degree 1 and is input to a specific Or vertex; And
vertices only have Or vertices as input (if any). All Or vertices have in-degree
2. Two vertices never share all their inputs (except when the set is empty).
The root is labeled And. There is at least one vertex with each label.

Definition 14 In the problem MCV2, And and Or vertices are alternating.
Or vertices only have And vertices as input. All Or vertices have in-degree 2.
Each And-vertex has at most one False-vertex as input. The root is labeled
And, and has no False-vertex as input. Different And-vertices have disjoint
inputs, different Or-vertices have unequal inputs.

The third complexity class needed is NL, the class of problems decidable
on a logarithmically space-bounded nondeterministic Turing machine. The
standard complete problem for NL is Reachability, defined as:

Definition 15 (Reachability) The decision problem Reachability takes
a Dag G together with two vertices s, t as input, and answers Yes, iff there
is a path in G from s to t.

For our purposes, another problem is more useful:

Definition 16 (Cycle Reachability) The decision problem CycleReach
takes a directed graph G and a vertex s as input, and answers Yes, iff G
contains a cycle which can be reached from s.

Theorem 1 CycleReach is NL-complete.7

7 I would like to thank Anuj Dawar and Yuguo He for pointing out this result to me.
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Proof A non-deterministic algorithm for CycleReach storing only a constant
number of vertices works as follows. Guess a node u ∈ V which is kept for the
rest of the algorithm. Starting with v as the active vertex, always guess a
successor of the active vertex, and let it be the new active vertex. If there
is no successor, reject. If the active vertex equals u for the first time, flip a
control bit. If it equals u for the second time, accept. In addition, the number
of steps can be counted, and the computation can be aborted once its exceeds
2|V |.

To see that CycleReach is even NL-complete, we present a reduction
from Reachability. If a path from s to t is sought, an edge from t to s is
added. Then a cycle can be reached from s, iff t was reachable from s in the
original graph. ut

We will later use CycleReach in a more restricted form, by requiring
the graph to be bipartite and not to have cycles of length 2. This is of no
consequence for its completeness, as we may just insert an extra vertex in the
middle of any edge to ensure these properties without altering the answer.

3 The classifications.

We proceed to prove the claimed results. As the proof ideas for the membership
and hardness results for any given complexity class share similar elements,
we go by complexity classes, rather than by properties of the games or the
dominance criteria.

3.1 Inside NL.

Theorem 2 2-Z-Strict is in L.

Proof The only possible dominations are by a row of 1s against a row of 0s, or
by a column of 0s against a column of 1s. If we assume that the initial game
allows to eliminate a row, there must be a row containing only 1s, which of
course is uneliminable. Thus, there will never be a column containing only 0s,
that means there will never be a domination between columns.

The considerations above show that the following algorithm is sufficient
to solve 2-Z-Strict. In the first step, determine whether the game has a row
containing only 1s, or a column containing only 0s, or neither. In the first case,
the initial game is copied to the output tape row-wise, leaving out all 0-rows,
in the second case, it is copied column-wise, leaving out all 1-columns. In the
third case, the complete game forms the output. ut

Theorem 3 2-Strict is NL-complete.

Proof We show that 2-Strict and CycleReach are equivalent.
Given a game, we can check in logarithmic space whether there are strate-

gies for both row and column player always granting a payoff of 1 to the
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respective player after the first round of elimination. If not, the iteration stops
and the answer can be determined already, as not further eliminations can be
possible.

If there are such strategies, we consider the remaining strategies of both
players as vertices in a graph. There is an edge from si to tj , iff Aij = 1, and
an edge from tj to si iff Bij = 1. There are no edges between si and sk or
between tj and tl. Iterated elimination of strictly dominated strategies now
corresponds to iteratively removing vertices without outgoing edges, as those
vertices correspond to strategies always yielding payoff 0, which is then strictly
dominated by the strategy always providing 1. In the end, only those vertices
remain from which a cycle can be reached.

For the other direction, we start with transforming the directed graph into
a bipartite graph by inserting a new vertex for each edge. Then we construct
a game, where both player have a special strategy always yielding payoff 1,
and a strategy for each vertex in their set of vertices. An edge from u to v
corresponds to payoff 1 for the owner of u when u is played against v; no edge
to payoff 0. Again, removal of dominated strategies corresponds to removal of
vertices without outgoing edges. ut

Theorem 4 3-Z-Strict is NL-complete.

Lemma 1 3-Z-Strict is NL-hard.

Proof We use a reduction from CycleReach to the problem at hand. We
assume the graph is bipartite and does not contain a cycle of length 2.

The construction: The game to be constructed has fixed strategies s◦
and t◦ for row and column players respectively, and additional strategies su
and tv for nodes u ∈ V1 or v ∈ V2, if {V1, V2} is the partition of the vertex set.
The payoffs for row player are as follows:

t◦ tv
s◦ 1 2

su 0


2 (u, v) ∈ E

0 (v, u) ∈ E

1 otherwise

Complexity of the construction: Clearly in doable in logspace.
Correctness of the construction: A strategy tv gets eliminated by t◦

iff v has no successors in the graph, the same holds for su. As s◦ and t◦ are
never eliminated, there cannot be eliminations of tv1

by tv2 or of su1
by su2

for any vertices v1, v2, u1, u2. What remains after iterated elimination are just
the strategies belonging to those vertices forming that largest subgraph where
any vertex has an outgoing edge – but these are exactly those vertices from
which a cycle can be reached. ut

Lemma 2 3-Z-Strict is in NL.
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Proof Now we have to show that iterated elimination can be executed in
NL under the current restrictions. We do this by providing a logspace re-
duction to CycleReach. As all instances where there is a row consisting
only of 2s or a column consisting only of 0s are trivial, (and this property is
logspace-decidable), we may freely assume that our games do not have such
rows or columns.

The construction: Let RD be the set of rows containing only 1’s and 2’s,
and let CD be the set of columns containing only 1’s and 0’s. Then let RE be
the set of rows that yield payoff 0 against all columns in CD, and let CE be
the set of columns yielding payoff 2 against all rows in RD.

The sets RE and CE are now used as vertices in a graph: There is an edge
from v ∈ RE to u ∈ CE , if v against u yields 2 and an edge from u ∈ CE

to v ∈ RE , if u against v returns 0. We add some further edges: We test for
each v ∈ RE whether there is a v̂ ∈ RD, so that v̂ yields strictly more than v
against all u /∈ CE . If there is no such strategy, we add a cycle and an edge
from v to the cycle to our graph. The same procedure is executed for columns.

If the designated query strategy is in RE or CE , then the strategy can be
eliminated iff no cycle can be reached from the corresponding vertex (note
that NL= coNL). If not, then the strategy is not eliminable anyway.

Complexity of the construction: The sets RD and CD are clearly
logspace-decidable – we just need a single bit for the answer, and then to
move through a column/row in the matrix. But then also RE and CD are
logspace-decidable, using the same linear-search argument. The final test then
requires to keep track of four indices, which of course is still doable in logspace.

Correctness of the construction: We note the following properties for
games containing neither a row of all 2’s nor a column of all 0s:

1. A row can potentially be strictly dominated only if it contains a 0.
2. A row can potentially strictly dominate another row only if it does not

contain a 0.
3. A row cannot be strictly dominated if it contains a 2.
4. A column can potentially be strictly dominated only if it contains a 2.
5. A column can potentially strictly dominate another row only if it does not

contain a 2.
6. A column cannot be strictly dominated if it contains a 0.

To see that 1. is true, note that if a row x is strictly dominated by some
other row y, and as assumed, y does not contain only 2s, then y has to contain
a 1 somewhere, and at the corresponding place, x must have a 0. The rest are
immediate, or follow by symmetry.

Combining these observations, an elimination never changes whether a row
contains 0s or not, or whether a column contains 2s or not. Thus, each row (col-
umn) is potentially strictly dominating, throughout the iterations, or never.
Note that the sets RD and CD contain precisely these candidates. If some
column c returns 0 or 1 against any row in RD, then c cannot be eliminated,
since no column can return strictly less against the same row, and the row
is uneliminable. By the same argument, each potentially eliminable row must
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return 0 against any column from CD. Thus, our sets RE and CE contain all
candidates for elimination.

Next, we claim that a strategy in RE ∪ CE can be eliminated iff the cor-
responding vertex has no successors – thus eventually, only those strategies
remain from where a cycle can be reached.

By symmetry, it suffices to consider some v ∈ RE . Any strategy v̂ that
could eliminate v has to be an element of RD, and has to yield strictly better
payoff than v against all u /∈ CE (because the u /∈ CE can never be eliminated).
If no such strategy exists, by construction a cycle can be reached from v. Let
us assume that such a strategy exists. By construction of CE , for any u ∈ CE

we know that v̂ yields payoff 2 against CE . So v̂ strictly dominates v iff v does
not yield payoff 2 against any u ∈ CE – but that just is equivalent to v having
no outgoing edge. ut

Theorem 5 k-Response is NL-complete for k ≥ 2. Response is NL-complete.

Proof Considering the trivial reducibilities between the problems concerned,
it is sufficient to show that 2-Reponse is NL-hard and that Response is in
NL. For the former, note that the reduction from CycleReach to 2-Strict
presented in the proof of Theorem 3 also is a reduction from CycleReach to
2-Response. For the latter, see the following lemma. ut

Lemma 3 Response is in NL.

Proof To show membership in NL for Response, we present a reduction to
2-Strict.

The construction: Given the (n × m) payoff matrix A for row player,
we construct a new matrix Â, where Âij = 1, iff Aij ≥ Akj for all k and

Âij = 0 otherwise. Likewise for column player, the best payoffs in each row
are replaced by 1, all other values by 0. We add a new strategy (n+1 and m+1
respectively) to each player, and set An+1,j = 1, Ai,m+1 = 0 for i 6= n + 1,
Bi,m+1 = 1, Bn+1,j = 0 for j 6= m + 1.

The designated query strategy remains the same.

Complexity of the construction: As each payoff in the new game can
be determined by a single linear search, this is indeed a logspace reduction.

Correctness of the construction: In the resulting game, the best-
response-relationships between the original strategies are unchanged. Never-
best-responses are strategies always yielding 0, and these strategies will be
dominated by the new all 1-strategy. Conversely, any strategy that is some-
times a best response provides a payoff of 1 in that situation, and hence cannot
be strictly dominated.

Similar to the transfer in the preceding theorem, the reduction given in
Theorem 4 also shows that 3-Z-Response is NL-hard, and the considerations
in Theorem 2 showing 2-Z-Strict to be in L also apply to 2-Z-Response.
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3.2 P-completeness.

We start with presenting polynomial time algorithms for the problems admit-
ting one (regardless of the number of different payoff values), and then show
hardness for the lowest k-value possible. Note that the following algorithm
can be executed in polynomial time: Search for a (weakly / strictly) domi-
nated strategy. If there is one, eliminate it and start again. If there is none,
check whether the specified strategy is still there or not. Provided that the or-
der of elimination is irrelevant, this algorithm solves the problems at hand.
This directly leads to:

Theorem 6 Strict is in P.

Theorem 7 Simultaneous is in P.

Proof Search only for eliminable rows at first. Once they are exhausted, search
only for columns. Then always switch back and forth only if no further elimi-
nations of the current type are possible. ut

The remaining cases require more work. Basically, we will show in both
cases that a certain order of elimination is sufficient to eliminate anything
that could be eliminated (the order of elimination depends on the strategy
one is trying to eliminate).

Theorem 8 Z-Weak is in P.

Proof When the naive approach described above finds a way to eliminate the
strategy s, then it will yield the right answer. The only problem occurs if
the initial game (A,B) is reduced to a game (Â, B̂), so that s is iteratively
eliminable in (A,B), but not in (Â, B̂). So we assume that there is a sequence of
eliminations (xi, yi), so that in the ith step the strategy xi weakly dominates yi,
and by that eliminating the latter; the sequence shall end with yimax

= s. The
case we have to consider is another possible elimination (x, y), that makes one
of the eliminations in our sequence impossible. We denote the first elimination
being made impossible by (xk, yk).

The only way that (xk, yk) is made impossible is by elimination of xk, so
we know y = xk. If x 6= yk, then (xk, yk) could simply be replaced by (x, yk)8.
Thus, only the situation xk = y, yk = x is problematic. In this case, however,
xk and yk have to be identical once the kth stage has been reached. Thus,
elimination of yk alone does not enable new weak dominations in later stages.
Therefore, the only problematic case is yk = s. Clearly, this can be avoided if
we never use s as a weakly dominating strategy for eliminations.

The question that remains is whether it might be necessary to eliminate
a strategy by s to allow later elimination of s. This means the following

8 Or, if x is subsequently eliminated by another strategy z, by (z, yk), and so on.



Iterated Strategy Elimination 13

situation:
u v . . .

s a b . . .
r c d . . .
t e f . . .
. . . . . . . . . . . .

1. s weakly dominates r: a ≥ c, b ≥ d
2. u does not weakly dominate v, but will do so once r has been eliminated:

a ≤ b, c > d, e ≤ f
3. t does not weakly dominate s, but will do so once v has been eliminated:

e ≥ a, f < b
4. t does not weakly dominate r: e < c ∨ f < d

We have f ≥ e ≥ a ≥ c > d, rendering both f < d and e < c impossible. Thus,
t could be used to eliminate r in such a situation. For more steps between
the elimination of r and the elimination of s, the same considerations apply;
showing that elimination by s is never necessary to allow elimination of s.

Therefore, the following modification of the algorithm above solves Z-Strict:
Search for a strategy weakly dominated by another strategy not equal to the
specified strategy. If there is one, eliminate it and start again. If there is none,
check whether the specified strategy is still there or not. ut

Theorem 9 3-Z-Weak, 3-Z-Dominance and 3-Z-Simultaneous are P-
hard.

Proof The claims will be proven using a reduction from MCV1. From such a
circuit, we will construct a zero-sum game.

The construction: Row player has a strategy s∧n for each And vertex
with number n, a strategy s⊥m for each False vertex m, and another strategy
sB . Column player has the strategies t∧i, t∨j and t⊥k for And vertices ∧i, Or
vertices ∨j , and False vertices ⊥k.

t∧i t⊥k t∨j
sB 0 0 0

s∧n

{
−1 if i = n

0 otherwise
0


1 if ∨j is an input for ∧n
−1 if ∧n is an input for ∨j
0 otherwise

s⊥m 1

{
−1 if k = m

0 otherwise

{
−1 if ⊥m is an input for ∨j
0 otherwise

The payoffs of the row player are given by the table above, the column
player just tries to minimize the payoffs. The elimination of a strategy s∧n
(and t∧n) or t∨j corresponds to assigning the value true to the corresponding
vertices n or j. Hence, the value of the circuit can be determined by asking
whether the strategy corresponding to its root can be eliminated.
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Complexity of the construction: As only local information is required
to determine the payoffs in the game, it is easily computed in logspace from
the circuit.

Correctness of the construction: We will now study which strategies
can be removed under which conditions, and see that the strategies sB , s⊥m
and t⊥k could only be eliminated, if all strategies s∧n have been eliminated
first, in which case the answer is already known to be true anyway. With these
strategies remaining, elimination for s∧n (and t∧n) or t∨j is consistent with
truth in the circuit.

(Strategy sB) The strategy sB can be weakly dominated by a strategy s∧n
only if t∧n has been eliminated. In this case, s∧n was eliminated first. sB
can be weakly dominated by a strategy s⊥m only if t⊥m was eliminated
first.

(Strategy s∧n) The strategy s∧n is weakly dominated by sB , if all strategies
t∨j where ∨j is an input to ∧n have been eliminated. Provided that t∧n
has not been eliminated yet (the contrary would be impossible), in this
case s∧n is also dominated by sB . s∧n cannot be weakly dominated by
a strategy s∧n′ , as long as t∧n′ is still present, and it cannot be weakly
dominated by a strategy s⊥m, as long as t⊥m is still present.

(Strategy s⊥m) The strategy s⊥m cannot be weakly dominated by s∧n, as
long as t∧n is still present. It cannot weakly dominated by sB , as long as a
strategy t∧i is present. Weak domination by a strategy s⊥m′ is impossible
as long as t⊥m′ is present.

(Strategy t∧i) The strategy t∧i cannot be weakly dominated by another
strategy t∧i′ or by a strategy t⊥k, as long as s∧i is present. If s∧i is elimi-
nated, t∧i is weakly dominated by any t⊥k. t∧i cannot be weakly dominated
by a strategy t∨j , as long as there is a strategy s∧n, such that the vertex
∨j is an input to ∧n. The existence of such a vertex can be assumed, since
the root is labeled And, and cannot be eliminated unless all inputs are
eliminated first.

(Strategy t⊥k) The strategy t⊥k cannot be eliminated by a strategy t∧i or
t⊥k′ , as long as s⊥k is still present. Weak dominance by t∨j would only be
possible, if no s∧n with ∨j being an input to ∧n would exists, as explained
above, this does not happen.

(Strategy t∨j) The strategy t∨j is dominated by t∧i or t⊥k, if ∧i or ⊥k are the
only remaining input to ∨j , which requires the second input to be true. t∨j
could only be eliminated by t∨j′ , if ∨j and ∨j′ had the same inputs, which
was ruled out in our convention, or if t∨j could also have been eliminated
by certain t∧i or t⊥k.

ut

Theorem 10 3-Strict is P-hard.

Proof Again a reduction from MCV1 is given.
The construction: The players have the same strategies as in the proof

of Theorem 9, except for sB , which is no longer needed. Again, elimination
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t∧1 t∧2 t⊥1 t⊥2 t⊥3 t∨1 t∨2
sB 0 0 0 0 0 0 0
s∧1 −1 0 0 0 0 1 1
s∧2 0 −1 0 0 0 0 −1
s⊥1 1 1 −1 0 0 −1 0
s⊥2 1 1 0 −1 0 −1 0
s⊥3 1 1 0 0 −1 0 −1

Table 4 The construction from Theorem 9 applied to the example in Table 2

of a strategy corresponds to assigning true to the matching vertex, and elim-
inability of the strategy of the root of the circuit tells us its value. The payoffs
are given by the following tables, with row players payoffs first:

t∧i t⊥k t∨j

s∧n 0 0

{
1 if ∨j is an input for ∧n
0 otherwise

s⊥m 1 1 1

t∧i t⊥k t∨j

s∧n

{
1 if i = n

0 otherwise
0

{
0 if ∧n is an input for ∨j
−1 otherwise

s⊥m 0

{
1 if k = m

0 otherwise

{
0 if ⊥m is an input for ∨j
−1 otherwise

Complexity of the construction: As only local information is required
to determine the payoffs in the game, it is easily computed in logspace from
the circuit.

Correctness of the construction: It is trivial to see that s⊥m can never
be eliminated, and that a strategy s∧n is strictly dominated by any strategy
s⊥m, as soon as all strategies t∨j corresponding to its input vertices have been
removed. Thus, the removal of row players strategies corresponds exactly to
the corresponding vertices being assigned the value true.

For column player, a strategy t∧i can never be strictly dominated as long as
any strategy s∧n is still present. As the strategy s⊥m will never be eliminated,
elimination of t⊥m is also impossible. The strategy t∨j can be eliminated by
any strategy, if there are no strategies s∧n or s⊥m corresponding to input
vertices left, but it can also be eliminated by the strategy t∧i or t⊥k, where ∧i
or ⊥k is the only remaining strategy corresponding to an input vertex of ∨j
for which s∧i or s⊥k is still present. Thus, for t∨j to be removed, at least one
of its input vertices needs to be removed earlier.

Ultimately, elimination of the strategies s∧n, t∧i and t∨j follows exactly
the same rules as assigning true to the corresponding vertices in the circuit.
In particular, the value of the circuit can be found by asking for eliminability
of the strategy associated with its root. ut
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t∧1 t∧2 t⊥1 t⊥2 t⊥3 t∨1 t∨2
s∧1 0 0 0 0 0 1 1
s∧2 0 0 0 0 0 0 0
s⊥1 1 1 1 1 1 1
s⊥2 1 1 1 1 1 1
s⊥3 1 1 1 1 1 1

t∧1 t∧2 t⊥1 t⊥2 t⊥3 t∨1 t∨2
s∧1 1 0 0 0 −1 −1
s∧2 0 1 0 0 −1 0
s⊥1 0 0 1 0 0 0 −1
s⊥2 0 0 0 1 0 0 −1
s⊥3 0 0 0 0 1 −1 0

Table 5 The construction from Theorem 10 applied to the example in Table 2

Theorem 11 4-Z-Strict is P-hard.

Proof Once more a reduction from MCV1 is used; in addition to the conditions
listed in Definition 13, we assume that there are at least 2 Or vertices.

The construction: Row player has a fixed strategy sB , a strategy s∧i for
each And-vertex ∧i and a strategy s∨n for each Or-vertex ∨n. Column player
has strategies t∨j , t∨j−1 and t∨j−2 for each Or-vertex ∨j , where t∨j−x is only
present iff the xth input to ∨j is an And-vertex. The payoffs are given by the
following table:

t∨j t∨j−x
sB 3 2

s∧i

{
3 if ∨j is an input for ∧i
1 otherwise


1 if ∧i is the xth input to ∨j
1 if ∨j is an input to ∧i
0 otherwise

s∨n

{
2 n = j

3 otherwise

{
1 n = j

2 otherwise

The value of the circuit is true, iff the strategy corresponding to its root is
eliminated.

Complexity of the construction: Once more, the construction is purely
local, and thus can be executed easily in logspace.

Correctness of the construction: The only strategies that are poten-
tially eliminable are s∧i and t∨j , corresponding to the respective vertices being
assigned the value true. Asking whether the strategy corresponding to the root
of the circuit can be eliminated provides the value of the circuit. As explained
below, the other strategies are uneliminable.

(Strategy sB) It is obvious that sB can never be eliminated, since it is a best
response against any of column player’s strategies.

(Strategy s∧i) If all strategies t∨j where ∨j is an input vertex to ∧i have been
eliminated, the strategy s∧i will also be eliminated. If any of these strategies
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t∨1 t∨2 t∨2−2

sB 3 3 2
s∧1 3 3 1
s∧2 1 1 1
s∨1 2 3 2
s∨2 3 2 1

Table 6 The construction from Theorem 11 applied to the example in Table 2

is still present, s∧i cannot be removed, since it achieves the maximal payoff
against it.

(Strategy s∨n) The strategies s∨n are uneliminable. Due to convention, there
is an Or-vertex ∨j with n 6= j. If the vertex ∨j has at least one And-vertex
as input, there is an (uneliminable) strategy t∨j−x against which s∨n yields
2, which cannot be exceeded. If both inputs of ∨j are False-vertices, t∨j
itself is uneliminable, and takes the place of t∨j−x in the argument above.

(Strategy t∨j) As s∨j cannot be eliminated, a strategy t∨j can only be elim-
inated by a strategy t∨j−x. This happens, if and only if the strategy s∧i
corresponding to the And-vertex forming the xth input of ∨j was elimi-
nated previously.

(Strategy t∨j−x) The strategies t∨j−x can never be strictly dominated in a
subgame where sB is still present. Since sB can never be eliminated, the
same is true for all strategies t∨j−x.

ut

Theorem 12 2-Weak, 2-Dominance and 2-Simultaneuous are P-hard.

Proof This time, we present a reduction from MCV2. The reduction works
for all three problems simultaneously, as they yield identical answers for the
constructed game.

The construction: Row player has a strategy s∧i for each And vertex
∧i, and a strategy sB . Column player has a strategy t∨j for each Or vertex
∨j , and strategies t∧⊥k, where k simultaneously enumerates And and False
vertices. The And-vertex k is referring to is ∧k, the corresponding False-
vertex is ⊥k. We require ⊥k to be an input of ∧k, thus, if the root is ∧r, ⊥r

does not exist. The payoffs are given by the following tables, starting with row
player:

t∨j t∧⊥k

s∧i

{
1 if ∨j is input to ∧i
0 else

{
1 if ⊥k is input to ∧i
0 else

sB 0

{
1 if ⊥k does not exists

0 else
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t∨j t∧⊥k

s∧i

{
1 if ∧i is input to ∨j
0 else

{
1 i = k

0 else

sB 0 1

The value of the circuit is true iff the strategy corresponding to the root is
eventually eliminated.

Complexity of the reduction: As ⊥k is required to be child of ∧k,
even the combined enumeration is purely local. The rest of the construction is
clearly doable in logspace.

Correctness of the reduction: For the following considerations, we al-
ways assume that the strategy corresponding to the root of the circuit has
not been eliminated yet. Otherwise, the answer is already determined as being
true, and further elimination do not matter.

(Strategy s∧i) The strategy s∧i is weakly dominated by a strategy s∧i′ , if
and only if the inputs of ∧i are a subset of the inputs of ∧i′ , which can
only happen if the input set of s∧i is empty. If ∧i has a False-vertex as
input, this is ⊥i as input. Then s∧i cannot be eliminated by sB , as long
as t∧⊥i is still present. Since t∧⊥i cannot be eliminated as long as s∧i is
present, this renders s∧i uneliminable.
If all existing inputs of ∧i are Or-vertices, then s∧i is weakly dominated by
sB , once all strategies t∨j corresponding to inputs of ∧i have been removed.
Since there is a strategy t∧⊥k, where ⊥k does not exist, in the case of weak
dominance, we also have dominance. Thus, elimination of s∧i corresponds
to the vertex ∧i being assigned the value true.

(Strategy sB) By convention, for the strategy t∧⊥r corresponding to the
root, ⊥r does not exist. As we assume this strategy not to be elimianted
yet, and sB is the only strategy achieving payoff 1 against it (since a non-
existing vertex cannot be the input to another vertex). Thus, sB is une-
liminable.

(Strategy t∨j) Due to our convention, each vertex ∨j has exactly two And-
vertices as input. If the strategy s∧i corresponding to one of them is elimi-
nated, then also the strategy t∨j is eliminated, e.g. by t∧⊥k, where ∧k is a
remaining input, or by any other strategy, if there is no remaining input.
Due to the strategy sB , weak dominance will already imply dominance.
If both of the strategies s∧i, s∧i′ corresponding to inputs of ∨j remain, then
t∨j cannot be eliminated. Thus, elimination of t∧j corresponds to assigning
the value true to the vertex ∧j .

(Strategy t∧⊥k) As long as sB is not eliminated, a strategy t∧⊥k can never
be eliminated by a strategy t∨j . The strategy t∧⊥k might be eliminated by
another strategy t∧⊥k′ , only once s∧k is eliminated first. In this case, the
strategy t∧⊥k has no further relevance anyway.

ut
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t∨1 t∨2 t∧⊥1 t∧⊥2 t∧⊥3 t∧⊥4 t∧⊥5

s∧1 1 0 0 0 0 0 0
s∧2 0 0 0 0 0 0 0
s∧3 0 1 0 0 1 0 0
s∧4 0 0 0 0 0 0 0
s∧5 0 0 0 0 0 0 0
sB 0 0 1 1 0 1 1

t∨1 t∨2 t∧⊥1 t∧⊥2 t∧⊥3 t∧⊥4 t∧⊥5

s∧1 0 0 1 0 0 0 0
s∧2 1 0 0 1 0 0 0
s∧3 1 0 0 0 1 0 0
s∧4 0 1 0 0 0 1 0
s∧5 0 1 0 0 0 0 1
sB 0 0 1 1 1 1 1

Table 7 The construction from Theorem 12 applied to the example in Table 3

3.3 NP-completeness.

Theorem 13 3-Weak is NP-complete.

Proof Membership in NP is straightforward: A sequence of eliminations can
only be of polynomial length, so it can be guessed. Verifying whether any
putative elimination is legal requires a polynomial number of comparisons,
yielding overall an NP-algorithm.

A reduction from 3SAT shall be presented. We assume w.l.o.g. that for
different clauses c and c′, the set of literals occurring in c is never a subset of
the set of literals occurring in c′. For a clause c, ci refers to the ith literal in c.

The construction: Row player has a strategy s, as well as strategies sd
for each clause d and sl+ and sl− for each variable l. Column player has a
strategies tc, tic for each clause c and i ∈ {1, 2, 3}, as well as a strategy tk
for each variable k. The payoffs are given in Table 8 on Page 20. The first
matrix contains the payoffs for the row player, the second one column player’s
payoffs. The formula has a satisfying assignment iff the strategy s is eventually
eliminable.

Complexity of the construction: The construction is once more purely
local, no non-trivial memory is required.

Correctness of the construction: We claim that the strategy s is even-
tually eliminable, if and only if there is a satisfying truth assignment of the
original formula. For the first direction, assume that a satisfying truth assign-
ment is given. For each variable l, the strategies sl+ and sl− weakly dominate
each other. Thus, we can eliminate sl+, if the variable l is assigned the value
true, and sl− otherwise.

In the next step we will eliminate all strategies td. For each clause d, one
of its literals must be true. Assume that the ith literal for some given clause d
is true. We claim that td is now weakly dominated by tid. tid obviously provides
better or equal payoff against s, all strategies sc and all strategies sl+ where
the literal l does not occur in d, as well as all strategies sl− where the literal
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Table 8 The construction used in the proof of Theorem 13
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t1c1 t2c1 t3c1 tc1 t1c2 t2c2 t3c2 tc2 tp tq tr

s (0, 0) (0, 0) (0, 0) (2, 0) (0, 0) (0, 0) (0, 0) (2, 0) (0, 1) (0, 1) (0, 1)

sc1 (1, 2) (1, 2) (1, 2) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

sc2 (0, 0) (0, 0) (0, 0) (0, 0) (1, 2) (1, 2) (1, 2) (1, 1) (0, 0) (0, 0) (0, 0)

sp+ (0, 0) (0, 1) (0, 1) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0)

sp− (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 1) (1, 1) (0, 0) (0, 0)

sq+ (0, 1) (0, 0) (0, 1) (0, 1) (0, 1) (0, 0) (0, 1) (0, 1) (0, 0) (1, 1) (0, 0)

sq− (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0)

sr+ (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 0) (0, 1) (0, 0) (0, 0) (1, 1)

sr− (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 1)

Table 9 An example10 for the construction in Table 8 instantiated with (p∨q∨¬r)∧ (¬p∨
q ∨ r)

¬l does not occur in d. If the literal l (¬l) does occur in d, but not on the ith
position, both tid and td give payoff 1 against sl+ (against sl−). If the literal
l (¬l) occurs on the ith position in d, then, by assumption, l is true (false),
thus, the problematic strategy sl+ (sl−) has been removed in the first step.
Thus, we have covered all cases, and shown that td is indeed always eliminable,
provided that there is a satisfying truth assignment for the formula.

Once all strategies td are removed, the strategy s is weakly dominated by
every remaining strategy, thus, it can be removed.

For the other direction, we have to show that if s can be removed, there
has to be a satisfying truth assignment for the formula. We will assume that
the elimination process was stopped immediately after the removal of s.

In the first step, we will show that for each variable l, only one of the
strategies sl+ and sl− was eliminated. For that, we observe that as long as tl
is present, the two strategies are the only ones weakly dominating the other
one, thus, only one of them can be removed prior to the removal of tl. Now as
long as s is present, a strategy tl might only be weakly dominated by a strategy
tk. However, as either sl+ or sl− is still present at this point, tk does not weakly
dominate tl for l 6= k. Whether sl+ or sl− was eliminated determines the truth
value assigned to the variable l. If neither was eliminated, the truth value can
be chosen arbitrarily.

As s is the only strategy providing row player with a payoff of 2 against
any strategy td, all the strategies td were eliminated prior to s. We claim that
td must have been weakly dominated by some strategy tid. This is obviously
true, provided that sd was not removed previously. Now sd can only be weakly
dominated, if all strategies tjd for j ∈ {1, 2, 3} are removed first, which in
turn would require removal of sd, showing that sd will not be eliminated at
all. Therefore, there must be an i, such that td was weakly dominated by
tid. Assume that the ith literal in d was l (¬l). Then tid gives less payoff to
column player against sl+ (against sl−) than td, thus, sl+ (sl−) was removed
first. According to the construction of our truth assignment, this means that

10 This example was kindly provided by a referee for an earlier version of this article.



22 Arno Pauly

the ith literal occurring in d is true, so the clause d is also true. As these
consideration applied to all clauses, the truth assignment constructed satisfies
the formula. ut

4 The remaining cases and elimination orders.

Those cases without tight classifications, namely 2-Weak, 2-Z-Weak, 2-Z-Dominance
and 2-Z-Simultaneous, shall be investigated in some detail now. For this, a
number of elimination problems on graphs are introduced and shown to be
equivalent. By translating these problems from a game-theoretic framework
into graph problems, they should be easier accessible for future work.

Definition 17 Let (G,B,E) be a bipartite graph with vertices G ∪ B and
edges E ⊆ G × B. By N(u) we denote the set of neighbors of u. We let
v ∈ G be (weakly) eliminable by u ∈ G, iff N(v) ⊂ N(u) (N(v) ⊆ N(u)), and
v ∈ B be (weakly) eliminable by u ∈ B, iff N(v) ⊃ N(u) (N(v) ⊇ N(u)). A
vertex is (weakly) eliminable, iff it is (weakly) eliminable by some vertex. A
vertex is eventually (weakly) eliminable, iff there is an elimination order on
the graph resulting in its elimination. Let SubSup (WeakSubSup) denote the
problem of deciding whether a given vertex is eventually (weakly) eliminable
in a given bipartite graph. Finally, let LazySubSup denote the problem of
deciding whether a given vertex is eventually eliminable in a given bipartite
graph with an elimination order that only switches between eliminating B-
vertices and G-vertices if no alternatives are left.

Proposition 1 SubSup is log-space equivalent to 2-Z-Dominance, WeakSubSup
is log-space equivalent to 2-Z-Weak and LazySubSup is log-space equivalent
to 2-Z-Simultaneous.

Proof To move from games to graphs, let G contain a vertex for each strategy
of the first player, and B a vertex for each strategy of the second player. There
is an edge between (u, v) ∈ G × B iff the first player receives payoff 1 when
playing u against v. For the other direction, simply invert this construction. It
is straightforward to verify that each pair of elimination concepts is equivalent.

ut

Definition 18 Consider a directed graph (G,E). We call v ∈ G eliminable
by u ∈ G, iff O(v) ⊆ O(u) – here u′ ∈ O(u), iff (u, u′) ∈ E. A vertex is
eventually eliminable iff there is an elimination order on the graph resulting in
its elimination. Let DirSub denote the problem of deciding whether a given
vertex is eventually eliminable in a given directed graph. Let BipDirSub be
the restriction of DirSub to bipartite graphs.

Proposition 2 2-Weak, BipDirSub and DirSub are log space equivalent.

Proof To move from 2-Weak to DirSub, let there be a vertex for any strategy
by either player. Let there be an edge from u to v, iff u and v belong to different
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players, and the owner of u obtains the preferred payoff when playing u against
v.

For the reduction from DirSub to BipDirSub, split any vertex u into
two vertices u1, u2. Replace any edge (v, u) by (v, u1), and any edge (u, v) by
(u2, v). Add an edge (u1, u2).

Finally, for the direction BipDirSub to 2-Weak, assume the graph admits
the partition G = G1 ∪G2. Let the first player have a strategy for each vertex
in G1, and the second player a strategy for each vertex in G2. A player receives
the higher payoff for playing strategy u against strategy v, iff there is a directed
edge from u to v.

It is straightforward to verify that these reductions are actually correct. ut
Corollary 1 BipDirSub and DirSub are P-hard.

5 Conclusions.

The classification of the computational hardness of the various forms of strat-
egy elimination can contribute to the discussion (see e.g. [23]) of their merit
as an approach to a normative theory of the behaviour of rational agents.
The NP-completeness and membership in P results mirror the observations
on uniqueness: The potential outcomes of iterated elimination of (weakly)
dominated strategies in games with at least two (three) strategies is inher-
ently non-unique (assuming P 6= NP) – there cannot be a simple modification
to regain uniqueness. On the other hand, restriction to zero-sum games does
allow significant control over potential outcomes of iterated elimination.

The P-hardness results also tell us something meaningful about the respec-
tive elimination concepts: The sequentiality (one round of eliminations after
the other) involved in the definition of iterated strategy elimination is essen-
tial (again under standard assumptions from complexity theory), there cannot
be a simple equivalent definition without it. Thus, Theorems 3, 4 may be the
most surprising results in this paper: For games with only 2 distinct payoffs,
or zerosum games with only 3 distinct payoffs, iterated elimination of strictly
dominated strategies is neither trivial, nor fully sequential.

Proposition 2 now means that the alternation of elimination rounds be-
tween the two players is not an essential part of iterated elimination of weakly
dominated strategies for games with just two distinct payoffs.

There is another, unique contribution the investigation of computability
and complexity issues can make to game theory. In the spirit of bounded ra-
tionality (see e.g. [22]), one should note that in order to comply with some
theoretical concept of decision making, an agent has to be able to compute
its prescription (this is expanded upon in [19]). For example, finding a Nash
equilibrium in a bimatrix game with real payoffs is not computable [20],
hence, seems inadequate as a solution concept. Even if one only considers
integer payoffs, and is satisfied with approximate Nash equilibria11, one would

11 Note that approximate Nash equilibria are not necessarily approximations to Nash equi-
libria, but a far weaker criterion.
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still require solving a PPAD-complete problem [8,6]. As it is believed that
FP ( PPAD ( FNP (see [18,2]), this would demand significant computa-
tional resources, and may be rejected as unreasonable.

Returning to the situation for iterated strategy elimination, we have to
overcome the distinction between search problems and decision problems. If
an agent is supposed to follow an iterated elimination rule, he needs to ascer-
tain whether or not a given strategy is to be neglected. The NP-completeness
of Weak and Dominance suggests that such a decision necessitates signifi-
cant computational resources. The assumption iterated elimination of (weakly)
dominated strategies were actually used by real-life agents in complicated sit-
uations subsequently appears to be unrealistic.

We can go a (very speculative) step further: According to common belief,
the P-complete problems are inherently sequential, i.e. do not benefit from
parallel processing. Considering that the human brain can be likened to a
slow, but massively parallel computer ([5, Pages 114–115]), or by simply noting
human lazyness, P-complete problems – such as Strict – also may be unlikely
to describe actual human thinking. Such reasoning would only leave iterated
elimination of never best responses as a good candidate for bounded rationality.
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