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Abstract 

There is a dearth of suitable metrics capable of objectively quantifying motor competence. 

Further, objective movement quality characteristics during free-play have not been investigated 

in early years’ children. The aims of this study were to characterise children’s free-play 

physical activity and to investigate how gait quality characteristics cluster with free-play in 

children (3-5y). Sixty-one children (39 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg) completed 

the movement assessment battery for children and took part in free-play whilst wearing an 

ankle- and hip-mounted accelerometer. Characteristics of movement quality were profiled 

using a clustering algorithm. Spearman’s rho and the Mann-Whitney U tests were used to 

assess relationships between movement quality characteristics and motor competence 

classification differences in integrated acceleration and spectral purity, respectively. 

Significant differences were found between motor competency classifications for spectral 

purity and integrated acceleration (P<0.001). Spectral purity was hierarchically clustered with 

motor competence and integrated acceleration. Significant positive correlations were found 

between spectral purity, integrated acceleration and motor competence (P<0.001). This is the 

first study to report spectral purity in early years’ children and our results suggest that the 

underlying frequency component of movement is clustered with motor competence. 

Key words: Clustergram; Accelerometer; Spectral purity; Motor competence;  

Running head: Early years’ children movement characteristics 

 

 

 

 



Introduction 

Global physical activity guidelines recommend that early years’ children (3-5 years) engage in 

at least 180 minutes of physical activity every day (Department of Health, 2011; Tremblay et 

al., 2011). Demographic, biological, sociocultural, and motor competence can all impact upon 

physical activity levels (Barnett et al., 2016; Bingham et al., 2016; Hesketh et al., 2014; Lubans 

et al., 2010). Specifically, Stodden et al. (2008) highlighted inter-relations between motor 

competence, perceived motor competence, cardiorespiratory fitness and physical activity 

levels. Further, recent prospective studies have established that development of motor 

competence has numerous tangible health and developmental benefits. For example, higher 

levels of motor competence are shown to positively predict cardiorespiratory fitness (Vlahov 

et al., 2014), improved academic performance (Jaakkola et al., 2015), and are protective against 

overweight and obesity (Rodrigues et al., 2015). Concerningly, studies have reported low levels 

of competence among primary school aged children (Bryant et al., 2013; LeGear et al., 2012). 

These findings highlight the need to examine motor competence during early years (3-5 years), 

which is considered a critical phase for fundamental movement skill development (Gallahue & 

Donnelly, 2003). During this period, neuromuscular maturation and rapid cognitive 

development affect motor skill acquisition and development (Malina et al., 2004). Motor 

development during the early years is considered a facilitator for lifelong physically active 

lifestyles, and children’s perceptions of their competency is asserted to influence this 

development (LeGear et al., 2012). For example, older children who perceive themselves as 

having poor motor competence may fall into a negative spiral of disengagement, further 

limiting motor development, physical activity and cardiorespiratory fitness (Stodden et al., 

2008). Several studies have documented low levels of motor competence among early years’ 

children (Barnett et al., 2014; Cliff et al., 2009; Goodway et al., 2010; Hardy et al., 2010; 

Robinson, 2011; Ulrich, 2000). Motor competence in the early years is traditionally assessed 



using observation tools in a controlled setting, such as the movement assessment battery for 

children (MABC2 (Henderson et al., 2007)) or the test of gross motor development (TGMD 

(Ulrich, 1985, 2000)). To our knowledge there have been no objective measurements of motor 

competence and movement quality during habitual child activity (Clark, Barnes, Stratton, et 

al., 2016), and this dearth of literature has resulted in limited insight into children’s motor 

development. We postulate that objective measures and novel analytics will provide insight 

into the quality and quantity of movement in parallel (Clark, Barnes, Stratton, et al., 2016).  

Developments in the field of objectively measured physical activity are moving with 

expediency (Clark, Barnes, Stratton, et al., 2016). For example, accelerometers can be used to 

characterise gait patterns and determine safety, control, balance, variability and rhythmicity 

during ambulation (Aziz et al., 2014; Aziz & Robinovitch, 2011; Bellanca et al., 2013; Brach 

et al., 2011; Kangas et al., 2015). In addition, movement quality characteristics are retrievable 

using Fourier analysis and the harmonic content of an accelerometer signal, by analysing the 

symmetry within a movement, exploiting the periodicity of the signal (Gage, 1964; Smidt et 

al., 1971). The resulting spectral purity and integrated accelerations of each movement can be 

analyzed to assess, and profile, movement quality in children (Bellanca et al., 2013; Clark, 

Barnes, Holton, et al., 2016b; Clark et al., 2015). This type of analysis is highly suggestive of 

the fundamental neural control of movement (Stergiou & Decker, 2011) and shown to be 

representative of movement quality in standardised settings (Clark, Barnes, Holton, et al., 

2016b). However, this has not been investigated in early years’ children. 

Statistically, the use of traditional measures to study physical activity in humans assumes that 

variations are random and independent of past and future repetitions (Lomax, 2007), 

contrastingly however, it has been shown that such variations are distinguishable from noise 

and warrant further investigation (Delignieres & Torre, 2009; Dingwell & Cusumano, 2000; 

Dingwell & Kang, 2007; Stergiou et al., 2004; Stergiou & Decker, 2011). Moreover, frequency 



spectrum characteristics derived from an accelerometer signal are significantly related to 

movement quality, cardiorespiratory fitness, running strategy and body mass index in primary 

school children (Barnes et al., 2016; Clark, Barnes, Holton, et al., 2016b). 

Although some recent work has examined the relationship between motor skills and physical 

activity, in a standardised setting (incorporating accelerometry) (Laukkanen, Finni, et al., 2013; 

Laukkanen, Pesola, et al., 2013), there has been no attempt in the literature to use clustering 

algorithms to profile and compare derivatives of a raw acceleration trace (spectral purity, 

integrated acceleration) during free-play in early years’ children. There is clearly potential to 

derive more information from the signal output of accelerometers (Clark, Barnes, Stratton, et 

al., 2016). Therefore, the aims of this study were two-fold; to characterise children’s free-play 

physical activity and investigate how movement quality characteristics of gait cluster in 

children (3-5y).  

2.0 Method 

2.1. Participants and Settings 

Sixty-one children (39 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg, body mass index; 16.2±1.9 

kg.m2) volunteered to take part in this study from two primary schools in Northern England, 

United Kingdom (U.K) (77% South Asian, 12% White British, 11% Other/Mixed). Prior to 

research commencing, informed parental consent and child assent was attained. This research 

was conducted in agreement with the guidelines and policies of the institutional ethics 

committee. 

2.2. Instruments and Procedures  

Children took part in a free-play period, which for the purpose of this study is synonymous 

with recess, (104 ± 12 minutes per day) while their physical activity was recorded using a 

custom-built Micro Electro-Mechanical System (MEMS) based device, which incorporated a 



tri-axial accelerometer with a +/- 16g dynamic range, 3.9mg point resolution and a 13-bit 

resolution (with a z-axis amplitude coefficient of variation of 0.004 at 40 Hz (Clark, Barnes, 

Holton, et al., 2016c);ADXL345 sensor, Analog Devices). The MEMS device was housed in a 

small plastic case and affixed via a Velcro strap to the lateral malleolar prominence of the fibula 

of the right leg and set to record at 40 Hz (Barnes et al., 2016; Clark, Barnes, Holton, et al., 

2016b). Mannini et al. (2013) highlighted that for movement quality characteristics related to 

ambulation, an ankle-mounted monitor may be most suitable, and Barnes et al. (2016) 

systematically demonstrated that ankle affixed accelerometers can be used to accurately 

compute leg lift angle. Data were stored locally on the device and there were no incidences of 

data loss. Moderate-to-vigorous physical activity was also measured using an additional 

ActiGraph GT3X+ device (ActiGraph, Pensacola, FL, USA) mounted on the right hip and set 

to record at 100 Hz, in accordance with manufacturer guidelines. All children also completed 

the movement assessment battery for children, second edition, using standardised procedures 

(MABC2; as detailed in: Henderson et al. (2007)). 

2.2.1. Anthropometrics 

Stature (measured to the nearest 0.01m) and body mass (to the nearest 0.1kg) were measured 

using standard procedures using a stadiometer and digital scales (SECA, Hamburg, Germany), 

respectively (Lohmann et al., 1988). Skinfold measurements of the left triceps and subscapular 

were made by trained researchers using calibrated skinfold callipers (Harpenden, Baty 

International, U.K.), waist circumference was measured at the level of the naval and 

measurements were subsequently used to estimate body fat percentage (Eisenmann et al., 2004; 

Slaughter et al., 1988). Reliability metrics indicated good intra- and inter-observer technical 

error for measurements (Collings et al., 2017). Further, children were classified based on body-

mass index percentiles as either; underweight (≤5th percentile), normal weight (5th to 85th 



percentile), overweight (>85th to <95th percentile) or obese (≥ 95th percentile) (Cole & 

Lobstein, 2012).  

2.3. Data Analysis 

Raw acceleration data from the MEMS device were uploaded into MatLab (MATLAB version 

R2016a), where integrated acceleration and spectral purity were derived (Barnes et al., 2016; 

Clark, Barnes, Holton, et al., 2016b). The characteristics used for analysis were derived from 

acceleration in the axis along the lower leg towards the origin of motion, termed the radial axis. 

The integrated acceleration was determined using an integration of the rectified raw 

acceleration signal (van Hees et al., 2010).  

Acceleration data were converted from the time into the frequency domain. In order to convert 

the data into the frequency domain the Fast Fourier transform was applied to the data.  The Fast 

Fourier Transform computes the discrete Fourier transform (DFT) of a sequence. 

Let x_0,…,x_(N-1) be a sequence of N complex numbers. The Fast Fourier transform 

computes the Discrete Fourier transform 

𝑋𝑘 =  ∑ 𝑥𝑛. 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  , 𝑘 ∈ 𝑍 

Equation 1. Fast Fourier Transform 

Where, N = number of time samples, n = current sample under consideration (0 .. N-1), xn = 

value of the signal at time n, k = current frequency under consideration (0 Hertz up to N-1 

Hertz), Xk = amount of frequency k in the signal (amplitude and phase, a complex number), 

n/N is the percent of the time gone through, 2 * pi (𝜋) * k is the speed in radians.sec-1, e^-ix is 

the backwards-moving circular path. 

In order to determine the quality of a child’s movement - ‘Spectral purity’ was calculated from 

the cumulative distribution function (CDF) of the frequency spectrum. The CDF plot is used 

to generate a value for spectral purity. The empirical CDF F(x) is defined as the proportion 

of X values less than or equal to some value x. In this case, it is the number of values less than 

or equal to some frequency in a spectrum being considered. A measure for spectral purity is 

therefore considered to be the frequency at which the midway point of the CDF (0.5) occurs. 

As a result, spectra that is 'clean', i.e. consisting of a tall narrow peak at the fundamental 

frequency and only low amount of noise and small harmonics will have a different value to 

spectra where there is lots of noise, a shorter wider peak, and higher peaks at the harmonics. 



Spectral purity measures how tightly the frequency components of the raw accelerations are 

distributed using fundamental frequency to harmonics and the frequency spectrum analysis is 

directly related to the ambulation of a participant (Barnes et al., 2016; Clark, Barnes, Holton, 

et al., 2016b). A participant could have high spectral purity and low overall activity, which 

indicates that cyclical, high periodicity movement has occurred. However, in combination with 

low integrated acceleration this equates to the participant remaining static, for example, sat 

down in one location for prolonged periods. 

ActiGraph acceleration data were analyzed using a commercially available analysis tool 

(KineSoft version 3.3.67, KineSoft; www.kinesoft.org). Non-wear periods were defined as any 

sequence of >20 consecutive minutes of zero activity counts (Tudor-Locke et al., 2015). 

Sedentary behaviour was defined as <100 counts per minute, while 100, 2296 and 4012 counts 

per minute were thresholds to define light, moderate and vigorous physical activity, 

respectively (Evenson et al., 2008; Trost et al., 2011). Mean counts per minute during valid 

wear time and percentage of total time spent in moderate-to-vigorous physical activity (MVPA) 

were used to define physical activity. 

The MABC2 was scored by a trained, experienced assessor and scores were described in a 

traffic light classification system including a red zone (1: <5th percentile indicating significant 

movement difficulty), amber zone (2: between the 5th and 15th percentiles indicating at risk of 

movement difficulty), and green zone (3: >15th percentile indicating no movement difficulty 

detected), following standard procedures (Henderson et al., 2007).  

2.3.1 Cluster analysis 

Hierarchical clustering is an analytic procedure that reduces multi-factorial data into smaller 

subsets, where numerous and complex characteristics of movement and lifestyle in adults and 

children (9-11y) can be reliably analysed (Clark, Barnes, Holton, et al., 2016b; Schonlau, 2002; 

Tonkin et al., 2012). Clustering yields groupings that are based on the similarity of whole cases, 

as opposed to the individual variables that comprise those cases (Leonard & Droege, 2008). 



Cluster analysis has been used to profile and classify systems or taxonomies (Leonard & 

Droege, 2008; Sokal & Rohlf, 1962), and whilst it has consistently been applied in other 

disciplines, such as nanotechnology and cell biology (Armstrong et al., 1996; Johnson, 1997; 

Schweitzer & Renehan, 1997; Semmar et al., 2005; Winterstein et al., 2004), it has only 

recently been used successfully to investigate human movement characteristics (Clark, Barnes, 

Holton, et al., 2016b). 

The derived characteristics (integrated acceleration, spectral purity, overall activity counts, 

MVPA percentage, BMI percentile, MABC2 classification, body fat percentage) were 

normalised so that they could be compared and input into an in-built clustering algorithm 

(MATLAB version R2016a). This algorithm goes through multiple iterative processes in order 

to cluster the data along the columns of the dataset. The similarity or dissimilarity between 

metrics was determined by calculating the pairwise Euclidean distances between the values of 

the different metrics. 

d2st= (xs−xt)(xs−xt)
′ 

Equation 2. Euclidean distance 

Where, d is the Euclidean distance; xs and xt represent the data values being compared. 

Once the distances between the characteristics (integrated acceleration, spectral purity, overall 

activity counts, MVPA percentage, BMI percentile, MABC2 classification, body fat 

percentage) for each child were derived, a linkage function was applied, to determine the 

proximity of the metrics to each other. These were paired into binary clusters, which were 

subsequently grouped into larger clusters until a hierarchical tree was formed. The resulting 

clustergram was displayed in terms of a heat map and dendrogram. The height of the link at 

which two observations on the dendrogram were joined was analysed using cophenetic distance 

(Equation 3), to demonstrate the similarity between two clusters (Saracli et al., 2013; Schonlau, 



2002; Sokal & Rohlf, 1962). The values for the dendrogram linkages were subsequently 

normalised. The cophenetic distance ratio for the overall clustergram was also measured to 

demonstrate how successfully the dendrogram preserved the pairwise distances between the 

original unmodeled data points (where 1 is maximum). 

𝑐 =  
∑ (𝑌𝑖𝑗𝑖<𝑗 − 𝑦)(𝑍𝑖𝑗 − 𝑧)

√∑ (𝑌𝑖𝑗 − 𝑦)2
𝑖<𝑗 ∑ (𝑍𝑖𝑗 − 𝑧)2

𝑖<𝑗

 

Equation 3. Cophenetic distance equation 

Where 𝑌𝑖𝑗 is the distance between objects 𝑖 and 𝑗 in 𝑌. 𝑍𝑖𝑗 is the cophenetic distance between 

objects 𝑖 and 𝑗, from 𝑍. 𝑦 and 𝑧 are the average of 𝑌 and 𝑍, respectively. 

 

A Shapiro-Wilk test determined that data were not normally distributed (P<0.001) and 

therefore non-parametric inferential methods were used for analysis. Descriptive data were 

presented as mean, median and upper and lower quartiles (Clark, Barnes, Holton, et al., 2016b). 

The Kruskall-Wallis test was used to determine differences between motor competence traffic 

light groups and post-hoc Mann-Whitney U tests, with continuity correction and tie adjustment 

(Gibbons & Chakraborti, 2011),  to determine specific differences between groups. Spearman’s 

rho was used to calculate correlation coefficients between each characteristic. All inferential 

statistics were performed using MatLab (MATLAB version R2016a). Statistical significance 

was accepted at P≤0.05.  

 

 

 

 

 



3.0 Results 

Significant differences were found between MABC2 classification groups for spectral purity 

and integrated acceleration. Post-hoc testing found significant differences between green, 

amber and red MABC2 classifications for spectral purity and integrated acceleration 

(P<0.001). Descriptive data for movement and physical activity characteristics are detailed in 

Table 1. Significant (P≤0.05) relationships were found between MABC2 classification and 

percentage of time spent in moderate-to-vigorous physical activity (r=0.29), integrated 

acceleration (r=0.66) and spectral purity (r=0.7). Significant correlations were also found 

between spectral purity and integrated acceleration (r=0.57), and body fat percentage and BMI 

percentile (r=0.75). Figure 1 illustrates that integrated acceleration and spectral purity 

(cophenetic distance (CD): 0.19), integrated acceleration and MABC2 classification (CD: 

0.19), spectral purity and MABC2 classification (CD: 0.06), were clustered together (Figure 

1), with a cophenetic distance ratio for the overall clustergram of 0.95. 

Discussion 

The aims of this study were to characterise children’s free-play physical activity, and 

investigate how movement quality characteristics of gait cluster in children (3-5y). 

Clustergram overview  

In order for a clustergram to be considered statistically accurate, a cophenetic distance ratio of 

0.75 is required (Bradley & Stentiford, 2003). The clustergram in this study had a cophenetic 

distance ratio of 0.95, indicating confidence in the veracity of clusters identified. The clustering 

algorithm hierarchically linked each characteristic (integrated acceleration, spectral purity, 

overall activity counts, MVPA percentage, BMI percentile, MABC2 classification, body fat 

percentage), accordingly. The proximity of two or more characteristics within the clustergram 

indicated how closely the movement quality characteristics were linked to each other 



(Schonlau, 2002; Sokal & Rohlf, 1962), for example, MABC2 classification and spectral 

purity: 0.06, integrated acceleration and spectral purity: 0.19. The cophenetic distance ratio 

reported in the present study indicates that movement characteristics were successfully, and 

reliably, clustered. Hierarchically clustering movement characteristics has previously been 

shown to be successful in pre-adolescent children and close cophenetic distances between 

spectral purity and aerobic performance were highlighted (Clark, Barnes, Holton, et al., 2016b). 

However, this is the first study to utilise and report the hierarchical clustering of movement 

characteristics in early-years children. 

Integrated acceleration, spectral purity and motor competence 

The frequency and harmonic content of movement is reflective of movement characteristics 

such as gait pattern and overall physical activity, in addition to cardiorespiratory fitness (Clark, 

Barnes, Holton, Mackintosh, et al., 2016; Clark, Barnes, Holton, et al., 2016b). In this study, 

spectral purity and motor competence (MABC2 classification) were more closely 

cophenetically linked (0.06) than integrated acceleration (0.19), which was previously 

unreported. Furthermore, traditional correlation analyses found spectral purity (r=0.7) and 

integrated acceleration (0.66) were significantly correlated with motor competence. These 

findings suggest that spectral purity and integrated acceleration may be movement quality 

indicators in early years’ children, congruent with previous findings where spectral purity was 

demonstrated to be indicative of fundamental aspects of movement in pre-adolescent children 

(9-11y) (Clark, Barnes, Holton, et al., 2016b). Furthermore, in a population of geriatric and 

Parkinsonian sufferers’, accelerometer signals in the frequency domain reveal deteriorating 

gait characteristics and predict fall potential, respectively (Howcroft et al., 2013; Sejdic et al., 

2014). To the authors’ knowledge, the present study is the first to demonstrate that spectral 

purity and motor competence are related in early years’ children (Figure 1). 



Integrated acceleration, a proxy measure for overall physical activity (Clark, Barnes, Holton, 

et al., 2016b; van Hees et al., 2012), was positively related to motor competence in the present 

study and this is supported widely in the literature (Barnett et al., 2016; Barnett et al., 2014, 

2015; Robinson et al., 2015). Although some studies have relied upon self-report proxies of 

physical activity (Erwin & Castelli, 2008; Graf et al., 2004), a recent review found a positive 

relationship between motor competence and health-related benefits (Barnett et al., 2016). 

Further, Holfelder and Schott (2014) and Lubans et al. (2010) also reported positive 

associations in respective systematic reviews, and Cohen et al. (2014) demonstrated that overall 

physical activity was positively correlated with locomotor and object control competency. 

Congruent with previous work (Cohen et al., 2014; Holfelder & Schott, 2014; Lubans et al., 

2010), integrated acceleration was significantly different by MABC2 classification (P<0.001). 

However, spectral purity was also found to significantly different by MABC2 classification 

(P<0.001). In preceding work, empirical evidence suggested that spectral purity was a viable 

proxy measure of the fundamental aspects of movement and that it clustered with motor 

competence (see: Clark, Barnes, Holton, et al. (2016b) and Barnes et al. (2016)). Further, given 

that the present study has demonstrated that spectral purity is clustered with motor competence 

and significantly different between motor competency classification, suggests underlying 

frequency components of movement should be further investigated for the measurement of 

movement quality in children (Clark, Barnes, Holton, et al., 2016b). Moreover, whilst it has 

been demonstrated that a proxy for overall physical activity was positively correlated with 

motor competence (Cohen et al., 2014; Holfelder & Schott, 2014; Lubans et al., 2010), spectral 

purity (r=0.7) was found to have a stronger relationship to motor competence than overall 

activity (0.66) in the present study, thereby highlighting the need for future research to examine 

and further establish this relationship. 

 



Anthropometrics. age and actigraphy  

Congruent with previous research, the present study found that BMI and body fat percentage 

were closely cophenetically clustered and significantly positively correlated (Cui et al., 2013; 

Lindsay et al., 2001). Whilst previous research has highlighted that motor competence and 

physical activity are inversely correlated with weight status in children (Cairney et al., 2005; 

Lopes et al., 2011; Lopes et al., 2012; Rivilis et al., 2011), we found that anthropometric 

characteristics were not clustered, nor correlated to any other measure (Figure 1). This is 

reflected in the literature, as Ekelund et al. (2012) and Vorwerg et al. (2013) reported no 

differences in physical activity levels in early years’ children according to BMI and that 

physical activity levels did not significantly differ between overweight/obese children and 

normal-weight peers, respectively. Further, Williams et al. (2008)  reported that there was no 

significant association between BMI and motor skill performance concluding that whilst 

weight status of early years’ children was considerably influenced by socioeconomic status, 

physical activity levels were not, potentially due to the highly transitory and frequent 

movement during nursery/preschool. 

 

Traditional hip-mounted accelerometer data did not cluster with any movement characteristic, 

whilst concurrent ankle-mounted raw accelerometry yielded significant results. One 

explanation is that traditional hip-mounted accelerometers have inadequate band-pass filtering, 

where high frequency movement and noise information can escape the filter adding 

unexplained variation in activity counts (Brond & Arvidson, 2015). Further, Wundersitz et al. 

(2015) identified that filters with at least an 8 or 10 Hz cut-off frequency were most suitable to 

process accelerations in ambulatory tasks, and thus adopted in the present study, whereas the 

actigraphy device  utilised filters out frequencies higher than 2.5 Hz (Brond & Arvidson, 2015; 

Wundersitz et al., 2015). This finding highlights the insensitivity of traditional, hip-worn 



actigraphy units to measure contextualised physical activity. Physical activity is a multi-

directional, complex construct and summative activity counts are a measure of centrality that 

are missing vital information (Bussmann & van den Berg-Emons, 2013; Stergiou & Decker, 

2011). This study highlighted that integrated acceleration and spectral purity are hierarchically 

clustered and significantly correlated with motor competency, whereas traditional, hip 

mounted, physical activity measures do not.  

Limitations 

The clustering algorithm utilised within this study was structured using hierarchical methods, 

thereby pairing characteristics according to proximity. This means inverse relationships may 

be difficult to ascertain. However, this can be mitigated with careful interpretation of the 

clustergram, in addition to incorporating other correlation analyses (i.e. Spearman’s rho). 

Although this study employed novel signal analytics of accelerometer data, it only assessed 

spectral purity and integrated acceleration, and therefore further analytics could be employed 

and should be the focus of future research. 

Conclusion 

The aims of this study were to characterise children’s free-play physical activity and to 

investigate how movement characteristics of gait cluster in children (3-5y). Overall, integrated 

acceleration and spectral purity were significantly different between motor competence 

classifications. Further, that overall physical activity and spectral purity cluster during 

uncontrolled free-play physical activity, whilst spectral purity was more closely linked to motor 

competence than integrated acceleration. Anthropometric and actigraphy characteristics were 

not correlated to, or clustered meaningfully with, any other measure. 

This study has built upon previous research (Barnes et al., 2016; Clark, Barnes, Holton, et al., 

2016a, 2016b) highlighting cophenetic clustering of spectral purity with integrated physical 



activity and motor competence. The analysis of frequency and harmonic content of movement 

and overall physical activity concomitantly is demonstrably sensitive and informative and may 

be able to distinguish between motor competency in early childhood. We recommend that 

future research seeks to better quantify and qualify physical activity in contextualised settings 

to enhance our understanding of specific movement and gait patterns. Furthermore, the link 

between spectral purity and motor competence highlighted in this study necessitates detailed 

further investigation. 
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