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Abstract We discuss the results of Gibson and Sailor (Boundary-Layer Meteorol 145:399–
406, 2012)who suggest several corrections to themathematical formulation of theLagrangian
particle dispersion model of Rotach et al. (Q J R Meteorol Soc 122:367–389, 1996). While
most of the suggested corrections had already been implemented in the 1990s, one suggested
correction raises a valid point, but results in a violation of the well-mixed criterion. Here we
improve their idea and test the impact on model results using a well-mixed test and a com-
parison with wind-tunnel experimental data. The new approach results in similar dispersion
patterns as the original approach, while the approach suggested by Gibson and Sailor leads
to erroneously reduced concentrations near the ground in convective and especially forced
convective conditions.

Keywords Atmospheric turbulence · Dispersion model · Lagrangian models · Numerical
simulation · Well-mixed criterion

1 Introduction

Based on pioneering work of Thomson (1987) and Luhar and Britter (1989), Rotach et al.
(1996) developed a novel Lagrangian particle dispersion model that simulates dispersion in
unstable, stable and neutral atmospheric conditions, whereas others are only valid for a single
condition. As with most Lagrangian models, the model of Rotach et al. (1996) also fulfills
the well-mixed criterion (Thomson 1987).

Later, Kljun et al. (2002) used the model as a “dispersion module” of LPDM-b, a
Lagrangian particle dispersion footprint model that itself later formed the basis of the flux
footprint parametrization (FFP) in one and two dimensions (Kljun et al. 2004a, 2015). The
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dispersion model was also adapted and evaluated for use over urban areas (Rotach 2001;
Rotach et al. 2004; Stöckl 2015).

Gibson and Sailor (2012) suggested several corrections to the mathematical foundations
in Rotach et al. (1996). Since many subsequent studies are based on this model, a critical
examination of these corrections seems necessary and is undertaken in the following. To avoid
repetition, the reader is directed to Rotach et al. (1996), Gibson and Sailor (2012), or Stöckl
(2015) for the theoretical formulation of themodel. Only the relevant parts are explained here.
The following uses the nomenclature of Gibson and Sailor (2012) with standard notation for
velocity fluctuation components (u, v, w) and (co-)variances (e.g., σ 2

u = uu).

2 Corrections Suggested by Gibson and Sailor (2012)

2.1 Gaussian Streamwise Turbulence

Gibson and Sailor (2012) note that in Rotach et al. (1996) the description of the Gaussian
longitudinal velocity variance (Rotach et al. 1996’s Eq. 30) was missing the power of two at
uwG. They state that

σ 2
u,G = σ 2

u + F
uw2

G

σ 2
w,G

, (1)

andwhile this is correct, it describes a simple typographical error in the article text. Themodel
code has been correct since at least 1998 and hence this correctionwill not be discussed further
(see also the Editor’s footnote in Gibson and Sailor 2012).

2.2 Convective Streamwise Probability Current

Next, Gibson and Sailor (2012) point out an issue with a constant in the formulation of the
convective streamwise probability current ϕC

u in Rotach et al. (1996). They correctly derive

ϕC
u = w(∂F/∂z)

2
√
2πσw,G

exp

{
−1

2σ 2
w,G

w2

}[
1 + erf

{
1√

2
√
1 − ρ2σu,G

[
u − ρσu,G

σw,G
w

]}]
(2)

in their Eq. 23 and compare it to Eq. 21 of Rotach et al. (1996), where ρ = uwG
σu,Gσw,G

is the
correlation coefficient between streamwise and vertical velocity fluctuations. The argument
of their exponential function has a numerator of 1, while Rotach et al. (1996) incorrectly list
a numerator of 2. However, this error had also been corrected in the model code in the 1990s,
hence it will not be discussed here either.

Furthermore, Gibson and Sailor (2012) state that the error function’s argument (abbrevi-
ated by û in Eq. 22 of Rotach et al. 1996) should have an additional (1 − ρ2) term in the
denominator. However, this is not correct, since in Rotach et al. (1996)

û = 1√
2

(
V−1
11

)1/2 [
u − ρσu,G

σw,G
w

]
, (3)

where V is the velocity covariance matrix. Given that v is independent of u and w, the (1, 1)
matrix element of the inverse covariance matrix, V−1

11 , can be written as

V−1
11 = σ 2

v,Gσ 2
w,G

σ 2
u,Gσ 2

v,Gσ 2
w,G − σ 2

v,Guw2
G

= 1

σ 2
u,G

(
1 − uw2

G
σ 2
u,Gσ 2

w,G

) = 1

σ 2
u,G

(
1 − ρ2

) . (4)
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Substituting V−1
11 in Eq. 3 leads to

û = 1√
2
√

(1 − ρ2)σu,G

(
u − ρσu,G

σw,G
w

)
, (5)

which is identical to the term inside the error function in Eq. 2. Hence, even though
the expression for ϕC

u of Gibson and Sailor (2012) is correct, the expression stated in
Rotach et al. (1996) is correct too.

2.3 Solenoidal Probability Current

The third correction suggested byGibson and Sailor (2012) requires background information.
All models based on the Langevin equation require what Gibson and Sailor (2012) denote
the probability currents ϕi , even if they are not always explicitly named so (Rodean 1996). In
the following, i stands for the directional component index (1 and 3 in the two-dimensional
version and 1, 2 and 3 in the three-dimensional version). In the model of Rotach et al. (1996),

ϕi = ϕC
i + (1 − F)ϕG

i + ϕ∗
i , (6)

where ϕC
i denotes the convective term of the model and ϕG

i the neutral/stable term, linked
by a transition function F . A third term ϕ∗

i is required to ensure that ϕi → 0 for |u| → ∞
(Thomson 1987). This third term has to be solenoidal in velocity space, because ϕi is derived
from

∂ϕi

∂ui
= − ∂

∂xi
(ui Ptot) , (7)

where Ptot is the total (joint) probability density function (pdf) of the particles’ velocity
fluctuations, which is assumed to be equal to the pdf of the Eulerian velocity fluctuations
(Thomson 1987). A solenoidal ϕ∗

i does not affect Eq. 7 (for details see Rotach et al. 1996),
as by definition

∂ϕ∗
u

∂u
+ ∂ϕ∗

w

∂w
= 0. (8)

It is not possible to uniquely define ϕ∗
i in multi-dimensional models (Thomson 1987),

where variables in one dimension depend on those in others, as is the case in the model of
Rotach et al. (1996).Any function that fulfills the criteria above (solenoidal, lim|u|→∞ ϕi = 0)
can be used as ϕ∗

i . This non-uniqueness is a well-known, but so far, unsolved problem
(Thomson and Wilson 2012). Note that the addition of the third, lateral dimension (i = 2) in
subsequent studies (de Haan and Rotach 1998; Kljun et al. 2002; Rotach et al. 2004; Stöckl
2015) does not affect any of this, because v is independent of u and w, and ϕ∗

v = 0 (de Haan
and Rotach 1998).

With the above, wemove on to the third correction suggested byGibson and Sailor (2012),
who point out unit inconsistencies in the formulation of ϕ∗

i in Rotach et al. (1996),

ϕ∗
u = −∂F

∂z

[
exp (−γw2)

2
√
2πσw,G

]
w [erf (u) + 1] , (9a)

ϕ∗
w = −∂F

∂z

[
exp (−γw2)

2
√
2πγσw,G

]
exp (−u2) . (9b)

Namely, the arguments of neither the error function in Eq. 9a nor the second exponential
function in Eq. 9b are dimensionless. Additionally, ϕ∗

w has units of s−1 instead of the required
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m−1. Gibson and Sailor (2012) solve this by introducing factors to the arguments of the
corresponding functions, thereby changing Eq. 9 to become

ϕ∗
u = −∂F

∂z

[
exp (−γw2)

2
√
2πσw,G

]
w [erf (β1u) + 1] , (10a)

ϕ∗
w = −∂F

∂z

[
exp (−γw2)

2
√
2πγσw,Gβ2

]
exp (−β2

1u
2) , (10b)

with β1 = 1/(2σu,G) and β2 = 2/β1, henceforth called the Gibson-Sailor correction (GSC).
Alternatively, using β1 = 1 s m−1 and β2 = 1 m s−1 formally also solves the unit incon-
sistencies and does not require changing the model code (suggestion by one of us, M. W.
Rotach, in Gibson and Sailor 2012).

The GSC does solve the unit inconsistency in the earlier version. However, it violates
the requirement of a solenoidal ϕ∗

i (Eq. 8) and is therefore incorrect. This violation can
be resolved by changing the dimensionless constant 2 in the numerator of β2 to 1 instead,
henceforth called the corrected GSC (cGSC); β1 remains unchanged.

The accordingly modified Eq. 10 is solenoidal, because

∂ϕ∗
u

∂u
= −∂F

∂z

[
exp (−γw2)

2
√
2πσw,G

]
w

[(
2√
π

)
exp

(
− u2

4σ 2
u,G

) (
1

2σu,G

)]

= −∂F

∂z

[
exp (−γw2)

2
√
2πσw,Gσu,G

]
w exp

(
− u2

4σ 2
u,G

)
, (11a)

∂ϕ∗
w

∂w
= −∂F

∂z

[
exp (−γw2)

4
√
2πγσw,Gσu,G

]
(−2γw) exp

(
− u2

4σ 2
uG

)

= ∂F

∂z

[
exp (−γw2)

2
√
2πσw,Gσu,G

]
w exp

(
− u2

4σ 2
u,G

)
. (11b)

Since ∂ϕ∗
u

∂u is identical to ∂ϕ∗
w

∂w
with opposite sign, the requirement of Eq. 8 is fulfilled. If the

numerator of β2 equals 2, as Gibson and Sailor (2012) suggest, the factor in the denominator

of ∂ϕ∗
w

∂w
in Eq. 11b is 4 instead of 2 and Eq. 8 is violated.

The other requirement of lim|u|→∞ ϕi = 0 is fulfilled by all three versions of ϕ∗
i (when

substituted into ϕi , Eq. 6). Substituting ϕ∗
i in Eq. 6, using either the original version Eq. 9,

the GSC version Eq. 10, or the cGSC version, and then taking the limit of ϕi , where each
velocity fluctuation component ui approaches ±∞ separately (18 limits in total) shows this
quite readily, using AwA−BwB = 0 inϕC

i (Luhar andBritter 1989). Details on the derivation
are omitted here for brevity and because the factors β1 and β2 do not influence the limits of
ϕi .

In summary, there is no unique solution forϕ∗
i , both the original versionEq. 9 and the cGSC

version herein can be used in the model, even though the former has unit inconsistencies.
Those do not influence the well-mixed state of the model and can be formally fixed by
adding two parameters of value 1 with correcting units (Gibson and Sailor 2012) while
not changing the model code. The GSC version, however, should not be used for reasons
described above.
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3 Impact of the ϕ∗
i Modifications on Dispersion

As described in Sects. 2.1 and 2.2, the first two corrections suggested by Gibson and Sailor
(2012) have no impact on model results. To describe the impact of the GSC (cf. Sect. 2.3) on
themodel results, a well-mixed test (as inDuman et al. 2014)was undertaken. A large number
of particles (106) were initially uniformly distributed in height, and the dispersion simulation
was run for 2h (simulated time) with a timestep of 0.1 s. At the end of the simulation,
the heights of the particles were binned into 100 equal height-ranges, and the number of
particles in each bin was normalized by the expected number of particles per bin, given a
uniform distribution. To fulfill the well-mixed criterion of Thomson (1987), the normalized
concentration (i.e., particle density) has to be unity for all heights. Due to the stochastic nature
of the model, exact unity could only be achieved in the limit of an infinite number of particles,
hence a level of noise is expected. Different stability scenarios were run with the relevant
scaling variables summarized in Table 1. An additional scenario with stable stratification was
also investigated but yielded the same result as the neutral case, so that it is not explicitly
discussed here. The result of this well-mixed test is shown in Fig. 1.

Table 1 Example scenarios considered here

Scenario u∗ (m s−1) w∗ (m s−1) L (m) z0 (m) zi (m)

Neutral 0.5 0.0 ∞ 1 1000

Convective 0.2 1.4 −15 1 2000

Forced convective 0.88 2.08 −133.3 0.2 700

The first two are taken from Kljun et al. (2015), while the third is from wind-tunnel experiments (Fedorovich
et al. 1996), scaled to the atmosphere in Kljun et al. (2004b). u∗ is the friction velocity, w∗ is the convective
velocity scale, L is theObukhov length, z0 is the roughness length, and zi refers to the planetary boundary-layer
depth

Fig. 1 Results of testing the well-mixed criterion for three different scenarios (a)–(c). For their description
see Table 1. Shown is the normalized concentration as a function of the non-dimensional height z/zi , where zi
is the planetary boundary-layer depth. The three lines represent different model runs where ϕ∗

i follows three
different formulations: original (from Rotach et al. 1996), GSC (modified according to Gibson and Sailor
2012), and cGSC (changes as suggested in Sect. 2.3)
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For neutral conditions (Fig. 1a), and similarly for stable stratification (not shown), the
exact formulation of ϕ∗

i described above does not influence the well-mixed test—or even
the simulation outcome—at all, indicated by the three almost identical curves. This does
not come as a surprise, since the transition function F and consequently ∂F/∂z is zero at
all heights for these conditions, reducing ϕ∗

i to zero as well, because ϕ∗
i depend linearly

on ∂F/∂z (Eq. 9 and Eq. 10). This behaviour is not general, and other formulations of ϕ∗
i

(not considered here) may very well influence the model in stable and neutral conditions.
Gibson and Sailor (2012) report that “a stable atmosphere (L = 100 m) showed less than 5%
difference in peak magnitude of the crosswind integrated flux footprint” (comparing their
formulation to the original in Rotach et al. 1996). However, the difference should be zero,
and their result is most likely caused by an insufficient number (5× 104) of particles, which
lead to a too low signal-to-noise ratio.

In the convective case (Fig. 1b), the results of the run with the original ϕ∗
i and the cGSC

version still coincide and are approximately unity at all heights, but the GSC version deviates
from unity near the ground, indicating a violation of the well-mixed criterion. The effect
is noticeable for small heights z/zi , because ∂F/∂z (and consequently ϕ∗

i ) is largest near
the ground. In convective conditions, F is unity everywhere except near the ground, where
mechanically produced turbulence results in a velocity distribution that, with decreasing
z/zi , progressively approaches a Gaussian distribution (F → 0) of the vertical velocity,
hence producing a profile of its derivative that is highest for small z/zi and tends towards
zero with increasing height (Rotach et al. 1996). This effect is very visible when comparing
Fig. 1b to c, where, for forced convection, the mean wind speed is higher and hence ∂F/∂z
becomes zero for larger z/zi , resulting in a larger effect of the incorrect ϕ∗

i .
To demonstrate the effect of the GSC in a practical example, a comparison with the forced

convection wind-tunnel studies of Fedorovich et al. (1996) is show in Fig. 2, similar to
Kljun et al. (2004b), who already compared the model of Rotach et al. (1996) with the
same wind-tunnel data. Displayed are vertical profiles of a dimensionless concentration
(see Kljun et al. 2004b). Each panel shows the model results for increasing distance from
the source, all taken at the center of the plume. In each panel the three resulting profiles
corresponding to the three versions of ϕ∗

i are plotted (original, GSC, and cGSC). When
the model employs the original ϕ∗

i and the cGSC version, the concentration profiles appear

Fig. 2 Similar to Fig. 3 of Kljun et al. (2004b), based on wind-tunnel data from Fedorovich et al.
(1996). Shown are vertical profiles of dimensionless concentration at increasing dimensionless distance
X∗ from the source. Note the varying scaling of the horizontal axes between panels. Measurements (	) by
Fedorovich and Thäter (2002). Explanation of the different lines in Fig. 1
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similar, while the concentrations using the GSC version are markedly lower near the ground.
These characteristics increase with distance from the source, and imply that the vertical
dispersion with the GSC transports particles erroneously higher, which was already visible
in Fig. 1c. It is noted that the GSC version can, depending on the distance from the source,
reproduce the measurements better (Fig. 2, middle panels) or worse (Fig. 2, first and last
panel). This indicates that, despite pronounced differences between GSC and the other two
simulations, these are not the major reason (deficiency) in the model in accounting for an
optimal reproduction of the measured concentrations.

In conclusion, the impact of an incorrect formulationofϕ∗
i canbepronounced in convective

conditions. For the version proposed by Gibson and Sailor (2012), the influence near the
ground is especially large, which is unfortunate, considering that the concentration near or
at the ground is probably of greatest interest in many studies.
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