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Effective mechanical properties of 
multilayer nano-heterostructures
T. Mukhopadhyay1, A. Mahata2, S. Adhikari   3 & M. Asle Zaeem   2

Two-dimensional and quasi-two-dimensional materials are important nanostructures because of 
their exciting electronic, optical, thermal, chemical and mechanical properties. However, a single-
layer nanomaterial may not possess a particular property adequately, or multiple desired properties 
simultaneously. Recently a new trend has emerged to develop nano-heterostructures by assembling 
multiple monolayers of different nanostructures to achieve various tunable desired properties 
simultaneously. For example, transition metal dichalcogenides such as MoS2 show promising electronic 
and piezoelectric properties, but their low mechanical strength is a constraint for practical applications. 
This barrier can be mitigated by considering graphene-MoS2 heterostructure, as graphene possesses 
strong mechanical properties. We have developed efficient closed-form expressions for the equivalent 
elastic properties of such multi-layer hexagonal nano-hetrostructures. Based on these physics-based 
analytical formulae, mechanical properties are investigated for different heterostructures such as 
graphene-MoS2, graphene-hBN, graphene-stanene and stanene-MoS2. The proposed formulae will 
enable efficient characterization of mechanical properties in developing a wide range of application-
specific nano-heterostructures.

A generalized analytical approach is presented to derive closed-form formulae for the effective in-plane elas-
tic moduli of hexagonal multiplanar nano-structures and heterostructures. Hexagonal nano-structural forms 
are common in various two-dimensional and quasi-two-dimensional materials. The fascinating properties of 
graphene1, a two-dimensional allotrope of carbon with hexagonal nanostructure, has led to an enormous interest 
and enthusiasm among the concerned scientific community for investigating more prospective two-dimensional 
and quasi-two-dimensional materials that could possess interesting electronic, optical, thermal, chemical 
and mechanical characteristics2–4. The interest in such hexagonal two-dimensional materials has expanded 
over the last decade from hBN, BCN, graphene oxides to Chalcogenides like MoS2, MoSe2 and other forms of 
two-dimensional materials like stanene, silicene, sermanene, phosphorene, borophene etc.5,6. Among these 
two-dimensional materials, hexagonal honeycomb-like nano-structure is a prevalent structural form3. Four dif-
ferent classes of single-layer materials with hexagonal nano-structure exist from a geometrical point of view, as 
shown in Fig. 1(a–d). For example, graphene7 consists of a single type of atom (carbon) to form a honeycomb-like 
hexagonal lattice structure in a single plane, while there is a different class of materials that possess hexagonal 
monoplanar nanostructure with different constituent atoms such as hBN8, BCN9 etc. Unlike these monoplanar 
hexagonal nanostructures, there are plenty of other materials that have the atoms placed in multiple planes to 
form a hexagonal top view. Such multiplanar hexagonal nanostructures may be consisted of either a single type of 
atom (such as stanene10,11, silicene11,12, germanene11,12, phosphorene13, borophene14 etc.), or different atoms (such 
as MoS2

15, WS2
16, MoSe2

17, WSe2
16, MoTe2

18 etc.). Even though these two-dimensional materials show promising 
electronic, optical, thermal, chemical and mechanical characteristics for exciting future applications, a single 
nanomaterial may not possess a particular property adequately, or multiple desired properties simultaneously. To 
mitigate this lacuna, recently a new trend has emerged to develop nano-heterostructures by assembling multiple 
monolayers of different nanostructures for achieving various tunable desired properties simultaneously.

Although the single-layer of two-dimensional materials have hexagonal lattice nano-structure (top-view) in 
common, their out-of-plane lattice characteristics are quite different, as discussed in the preceding paragraph. 
Subsequently, these materials exhibit significantly different mechanical and electronic properties. For example, 
transition metal dichalcogenides such as MoS2 show exciting electronic and piezoelectric properties, but their 
low in-plane mechanical strength is a constraint for any practical application. In contrast, graphene possesses 
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strong in-plane mechanical properties. Moreover, graphene is extremely soft in the out-of-plane direction with a 
very low bending modulus, whereas the bending modulus of MoS2 is comparatively much higher, depending on 
their respective single-layer thickness19. Having noticed that graphene and MoS2 possess such complementary 
physical properties, it is a quite rational attempt to combine these two materials in the form of a graphene-MoS2 
heterostructure, which could exhibit the desired level of electronic properties and in-plane as well as out-of-plane 
strengths. Besides intense research on different two dimensional hexagonal nano-structural forms, recently the 
development of novel application-specific heterostructures has started receiving considerable attention from the 
scientific community due to the tremendous prospect of combining different single layer materials in intelligent 
and intuitive ways to achieve several such desired physical and chemical properties20–26.

The hexagonal nano-heterostructures can be broadly classified into three categories based on structural config-
uration, as shown in Fig. 1: heterostructure containing only mono-planar nanostructures (such as graphene-hBN 

Figure 1.  (a) Top view and side views of single-layer hexagonal nanostructures where all the constituent atoms 
are same and they are in a single plane (e.g. graphene). (b) Top view and side views of single-layer hexagonal 
nanostructures where the constituent atoms are not same but they are in a single plane (e.g. hBN, BCN). (c) 
Top view and side views of single-layer hexagonal nanostructures where the constituent atoms are same but 
they are in two different planes (e.g. silicene, germanene, phosphorene, stanene, borophene). (d) Top view and 
side views of single-layer hexagonal nanostructures where the constituent atoms are not same and they are 
in two different planes (e.g. MoS2, WS2, MoSe2, WSe2, MoTe2). (e) Three dimensional view and side views of 
heterostructures consisted of only monoplanar layers of materials (such as graphene-hBN heterostructures). 
(f) Three dimensional view and side views of heterostructures consisted of only multiplanar layers of materials 
(such as stanene-MoS2 heterostructures). (g,h) Three dimensional view and side views of heterostructures 
consisted of both monoplanar and multiplanar layers of materials (such as graphene-MoS2 and graphene-
stanene heterostructures).
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heterostructure)22,23,27, heterostructure containing both mono-planar and multi-planar nanostructures (such as 
graphene-MoS2 heterostructure19,21, graphene-stanene heterostructure24, phosphorene-graphene heterostruc-
ture28, phosphorene-hBN heterostructure28, multi-layer graphene-hBN-TMDC heterostructure26) and hetero-
structure containing only multi-planar nanostructures (such as stanene-MoS2 heterostructure25, MoS2-WS2 
heterostructure20). Recently different forms of multi-layer heterostructures have started receiving immense atten-
tion from the scientific community for showing interesting chemical, thermal, optical, electronic and transport 
properties24,25,29,30. Even though the heterostructures show various exciting physical and chemical characteris-
tics, effective mechanical properties such as Young’s moduli and Poisson’s ratios are of utmost importance for 
accessing the viability in application of such nano-heterostructures in various nanoelectromechanical systems. 
The research in this field is still in a very nascent stage and investigations on elastic properties of these built-up 
structural forms are very scarce to find in literature20,21.

The common practises to investigate these nanostructures are first principle studies/ab-initio and molecular 
dynamics, which can reproduce the results of experimental analysis with the cost of computationally expensive 
and time consuming supercomputing facilities. Moreover, availability of interatomic potentials can be a practical 
barrier in carrying out molecular dynamics simulation for nano-heterostructures, which are consisted of mul-
tiple materials. The accuracy of molecular dynamics simulation depends on the interatomic potentials and the 
situation can become worse in case of nano-heterostructures due to the possibility of having lesser accuracy for 
built-up structural forms. Molecular mechanics based analytical closed form formulae are presented by many 
researchers for materials having hexagonal nano-structures in a single layer such as graphene, hBN, stanene, 
MoS2 etc.7,8,31–33. This approach of mechanical property characterization for single-layer nanostructures is com-
putationally very efficient, yet accurate and physically insightful. However, the analytical models concerning 
two-dimesional hexagonal nano-structures developed so far are limited to single-layer structural forms; devel-
opment of efficient analytical approaches has not been attempted yet for nano-heterostructures. Considering the 
future prospect of research in this field, it is essential to develop computationally efficient closed-form formulae 
for the elastic moduli of nano-hetrostructures that can serve as a ready reference for the researchers without the 
need of conducting expensive and time consuming molecular dynamics simulations or laboratory experiments. 
This will accelerate the process of novel material development based on the application-specific need of achieving 
multiple tunable properties simultaneously to a desirable extent.

In this article, we aim to address the strong rationale for developing a generalized compact analytical model 
leading to closed-form and high fidelity expressions for characterizing the mechanical properties of a wide 
range of hexagonal nano-heterostructures. Elastic properties of four different heterostructures (graphene-hBN, 
graphene-MoS2, graphene-stanene and stanene-MoS2), belonging to all the three classes as discussed in the 
preceding paragraphs, are investigated considering various stacking sequences. The analytical formulae for elas-
tic moduli of heterostructures are applicable to any number of different constituent single-layer materials with 
multi-planar or mono-planar hexagonal nanostructures.

Results
Closed-form analytical formulae for the elastic moduli of heterostructures.  In this section, the 
closed-form analytical expressions of elastic moduli for generalized multiplaner hexagonal nano-heterostructures 
are presented. The molecular mechanics based approach for obtaining the equivalent elastic properties of atomic 
bonds is well-documented in scientific literature31,34,35. Besides that the mechanics of mono-planar hexagonal 
honeycomb-like structure is found to be widely investigated across different length scales36–40. Therefore, the 
main contribution of this article lies in proposing computationally efficient and generalized analytical formulae 
for nano-heterostructures (having constituent single-layer materials with monoplanar and multiplanar struc-
tural form) and thereby presenting new results for various stacking sequence of different nano-heterostructures 
belonging to the three different classes as described in the preceding section (graphene-MoS2, graphene-hBN, 
graphene-stanene and stanene-MoS2).

For atomic level behaviour of nano-scale materials, the total interatomic potential energy can be expressed 
as the sum of various individual energy terms related to bonding and non-bonding interactions34. Total strain 
energy (E) is expressed as the sum of energy contributions from bending of bonds (Eb), bond stretching (Es), tor-
sion of bonds (Et) and energies associated with non-bonded terms (Enb) such as the van der Waals attraction, the 
core repulsions and the coulombic energy (refer to Fig. 2).

= + + +E E E E E (1)s b t nb

However, among all the energy components, effect of bending and stretching are predominant in case of small 
deformation31,35. For the multiplanar hexagonal nano-structures (such as stanene and MoS2), the strain energy 
caused by bending consists of two components, in-plane component (EbI) and out-of-plane component (EbO). The 
out-of-plane component becomes zero for monoplanar nanostructures such as graphane and hBN. Thus the total 
interatomic potential energy (E) can be expressed as
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where Δl, Δθ and Δα denote the change in bond length, in-plane and out-of-plane angle respectively. The quan-
tities kr and kθ represents the force constants for bond stretching and bending respectively. The molecular 
mechanics parameters (kr and kθ) and structural mechanics parameters (EA and EI) of a uniform circular beam 
with cross-sectional area A, length l, Young’s modulus E, and second moment of area I, are related as: =Kr

EA
l
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and =θk EI
l

31,34,35. Based on this relationship, the closed form expressions for the effective elastic moduli of mul-
tilayer hexagonal nano-heterostructures are derived following a multi-stage idealization scheme using force equi-
librium and deformation compatibility conditions. The closed form expressions for the two in-plane Young’s 
moduli of nano-heterostructures are derived as
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The subscript i in the above expressions indicates the molecular mechanics and geometrical properties (as 
depicted in Fig. 2(a,b)) corresponding to ith layer of the heterostructure. The overall thickness of the hetero-
structure is denoted by t. n represents the total number of layers in the heterostructure. Expressions for the two 
in-plane Poisson’s ratios are derived as
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Here ν12 and ν21 represent the in-plane Poisson’s ratios for loading directions 1 and 2 respectively. Thus the 
elastic moduli of a hexagonal nano-heterostructure can be obtained using the closed-form analytical formulae 
(Equations 3–6) from molecular mechanics parameters (kr and kθ), bond length (l), in-plane bond angle (ψ) and 
out-of-plane angle (α), which are well-documented in the molecular mechanics literature. The analytical for-
mulae are valid for small deformation of the structure (i.e. the linear region of stress-strain curve). The effect of 
inter-layer stiffness contribution due Lennard-Jones potentials are found to be negligible for the in-plane elastic 
moduli considered in this study and therefore, neglected in the analytical derivation (refer to section 7 of the 
supplementary material).

Figure 2.  (a,b) Top view and side view of a generalized form of multiplanar hexagonal nano-structure. (The in-
plane angles θ and ψ are indicated in Fig. 2(a), wherein it is evident that ψ = − θ

90
2

. The out-of-plane angle α 
is indicated in Fig. 2(b)). (c) Energy components associated with the in-plane (1–2 plane) and out-of-plane (1–3 
plane) deformation mechanisms (Direction 1 and 2 are indicated in the figure. Direction 3 is perpendicular to 
the 1–2 plane. Here A and B indicate two different atoms).
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Validation and analytical predictions for the elastic moduli of heterostructures.  Results are pre-
sented for the effective elastic moduli of hexagonal multi-layer nano-heterostructures based on the formulae 
proposed in the preceding section. As investigations on nano-heterostructures is a new and emerging field of 
research, the results available for the elastic moduli of different forms of heterostructures is very scarce in scien-
tific literature. We have considered four different nano-heterostructures to present the results: graphene-MoS2, 
graphene-hBN, graphene-stanene and stanene-MoS2 (belonging to the three categories as depicted in the introduc-
tion section). Though all these four heterostructures have received attention from the concerned scientific com-
munity for different physical and chemical properties recently, only the graphene-MoS2 heterostructure has been 
investigated using molecular dynamics simulation for the Young’s modulus among all other elastic moduli20,21.  
Thus we have validated the proposed analytical formulae for Young’s moduli of graphene-MoS2 heterostruc-
ture with available results from literature. New results are presented for the two in-plane Poisson’s ratios of 
graphene-MoS2 heterostructure using the analytical formulae, which are validated by carrying out separate 
molecular dynamics simulations. Having the developed analytical formulae validated for the two Young’s moduli 
and Poisson’s ratios, new results are provided for the other three considered heterostructures accounting for the 
effect of stacking sequence. Moreover, it can be noted that for single layer of the heterostructure (i.e. for n = 1), 
the proposed analytical formulae can be used to predict the effective elastic moduli of monoplanar (i.e. α = 0) and 
multiplanar (i.e. α ≠ 0) materials. The analytical predictions for the Young’s moduli and Poisson’s ratios of such 
single-layer materials are further validated with reference results from literature, as available.

As shown in Tables 1–5, in the case of single-layer hexagonal nanostructures (n = 1) belonging to all the four 
classes as described in the preceding section (graphene, hBN, stanene and MoS2), the in-plane Young’s moduli 
obtained using the proposed analytical formulae are in good agreement with reported values in literature for 
graphene, hBN, stanene and MoS2. These observations corroborate the validity of the proposed analytical for-
mulae in case of a single-layer. However, in case of Poisson’s ratios, the reported values in scientific literature for 
graphene and hBN show wide range of variability, while the reference values of Poisson’s ratios for stanene and 
MoS2 are very scarce in available literature. The results predicted by the proposed formulae agree well with most 
of the reported values for Poisson’s ratios.

Table 1 presents the value of two Young’s moduli obtained from the proposed analytical formulae for 
nano-heterostructures considering different stacking sequences of graphene and MoS2. The results are compared 
with the numerical values reported in scientific literature. It can be noted that the difference between E1 and E2 is 
not recognized in most of the previous investigations and the results presented as E1 = E2. The Young’s moduli E1 
and E2 are found to be different for multiplanar single-layer nanostructural forms (such as stanene and MoS2). A 
similar trend has been reported before by Li41 for MoS2. Thus the effective Young’s moduli of the heterostructures 
with at least one layer of multiplanar structural form is expected to exhibit different E1 and E2 values. In Table 1 
it can be observed that for single and bi-layer of graphene E1 = E2, while for single and bi-layer of MoS2 E1 ≠ E2. 
In case of heterostructures consisting of both graphene and MoS2 the value of E2 is observed to be higher than E1. 
However, the numerical values of E1 for different stacking sequences are found to be in good agreement with the 
values of Young’s modulus reported in literature (presumably obtained for direction-1) corroborating the validity 
of the developed closed-form expressions. We have carried out separate molecular dynamics simulations for 
graphene – MoS2 heterostructures to validate the analytical predictions of Poisson’s ratios, as Poisson’s ratios have 
not been reported for graphene–MoS2 heterostructures in literature. The analytical predictions of Poisson’s ratios 
reported in Table 1 are found to be in good agreement with the results of molecular dynamics simulations. Similar 
to the results of Young’s moduli for graphene-MoS2 heterostructure, the two in-plane Poisson’s ratios (ν12 and ν21) 
are found to have different values when at least one multi-planar structural form is present in the heterostructure. 
Thus having the analytical formulae for all the elastic moduli validated, we have provided new results for three 
other nano-heterostructures in the following paragraphs based on Equations 3–6.

Table 2 provides the results for elastic moduli of graphene-hBN heterostructure considering different stacking 
sequences. It is observed that the two Young’s moduli and two in-plane Poisson’s ratios are equal (i.e. E1 = E2 and 
ν12 = ν21) in case of graphene-hBN heterostructure as these are consisted of only mono-planar structural forms. 

Configuration

Present results

Reference (E1 = E2)

Present results

Reference (ν12 = ν21)E1 E2 ν12 ν21

G 1.0419 1.0419 1.0519, 1 ± 0.167 0.2942 0.2942 0.3468, 0.19569

G/G 1.0419 1.0419 1.0619, 1.04 ± 0.170 0.2942 0.2942 0.2798 [MD]

M 0.1778 0.3549 0.1619, 0.27 ± 0.171 0.0690 0.1376 0.1019 [MD], 0.2172

M/M 0.1778 0.3549 0.2719, 0.2 ± 0.171 0.0690 0.1376 0.1018 [MD]

G/M 0.4893 0.6025 0.5319, 0.49 ± 0.0520 0.1672 0.2059 0.2153 [MD]

G/M/G 0.6357 0.7189 0.6819, 0.5621 0.2058 0.2328 0.1805 [MD]

M/G/M 0.3678 0.5059 0.4519 0.1318 0.1813 0.1859 [MD]

Table 1.  Results for two Young’s moduli (E1 and E2, in TPa) and two in-plane Poisson’s ratios (ν12 and ν21) 
of graphene-MoS2 (G–M) heterostructure with different stacking sequences (The results obtained using the 
proposed formulae are compared with the existing results from literature, as available. However, as the Poisson’s 
ratios for the heterostructures are not available in literature, we have conducted molecular dynamics (MD) 
simulations for the Poisson’s ratios. The thickness of single layer of graphene and MoS2 are considered as 
0.34 nm and 0.6033 nm, respectively).
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Table 3 presents the results for elastic moduli of graphene-stanene heterostructure considering different stacking 
sequences. As stanene has a multi-planar structural form, the two Young’s moduli and two in-plane Poisson’s 
ratios show different values (i.e. E1 ≠ E2 and ν12 ≠ ν21) when at least one of the constituent layers of the hetero-
structure is stanene. Table 4 presents the results for elastic moduli of stanene-MoS2 heterostructure considering 
different stacking sequences. As stanene and MoS2 both have multi-planar structural form, the two Young’s mod-
uli and two in-plane Poisson’s ratios show considerably different values (i.e. E1 ≠ E2 and ν12 ≠ ν21). The results of 
different elastic moduli corresponding to various stacking sequences are noticed to have an intermediate value 
between the respective elastic modulus for single layer of the constituent materials, as expected on a logical basis.

The physics based analytical formulae for nano-heterostructures presented in this article are capable of 
obtaining the elastic moduli corresponding to any stacking sequence of the constituent layer of nano-materials. 
However, from the expressions it can be discerned that the numerical values of elastic moduli actually depend 
on the number of layers of different constituent materials rather than their exact stacking sequences. From a 
mechanics view-point, this is because of the fact that the in-plane properties are not a function of the distance 
of individual constituent layers from the neutral plane of the entire heterostructure. Figures 3, 4, 5, 6 present 
the variation of different elastic moduli with number of layers of the constituent materials considering the four 
different heterostructures belonging from the three different categories, as described in the preceding section. It 
is observed that the trend of variation for two Young’s moduli and two in-plane Poisson’s ratios are similar for 
graphene-MoS2 and graphene-stanene heterostructures with little difference in the actual numerical values. The 
variation of elastic moduli for graphene-hBN heterostructure are presented for E1 and ν12 as the numerical values 
are exactly same for the two Young’s moduli and two in-plane Poisson’s ratios, respectively. The plots furnished in 
this section can readily provide an idea about the trend of variation of elastic moduli with stacking sequence of 

Configuration E1 E2 ν12 ν21

G 1.049 1.049 0.2942 0.2942

G/G 1.049 1.049 0.2942 0.2942

H 0.8056 0.8056 0.2901 0.2901

H/H 0.8056 0.8056 0.2901 0.2901

G/H 0.9255 0.9255 0.2925 0.2925

G/H/G 0.9647 0.9647 0.2931 0.2931

H/G/H 0.8859 0.8859 0.2918 0.2918

Table 2.  Results for two in-plane Young’s moduli (E1 and E2, in TPa) and two in-plane Poisson’s ratios (ν12 and 
ν21) of graphene-hBN (G–H) heterostructure with different stacking sequences (The thickness of single layer of 
graphene and hBN are considered as 0.34 nm and 0.33 nm, respectively).

Configuration E1 E2 ν12 ν21

G 1.049 1.049 0.2942 0.2942

G/G 1.049 1.049 0.2942 0.2942

S 0.3166 0.3736 0.1394 0.1645

S/S 0.3166 0.3736 0.1394 0.1645

G/S 0.7982 0.8174 0.2563 0.2625

G/S/G 0.8955 0.9070 0.2726 0.2761

S/G/S 0.6771 0.7058 0.2333 0.2432

Table 3.  Results for two in-plane Young’s moduli (E1 and E2, in TPa) and two in-plane Poisson’s ratios (ν12 and 
ν21) of graphene-stanene (G–S) heterostructure with different stacking sequences (The thickness of single layer 
of graphene and stanene are considered as 0.34 nm and 0.172 nm, respectively).

Configuration E1 E2 ν12 ν21

S 0.3166 0.3736 0.1394 0.1645

S/S 0.3166 0.3736 0.1394 0.1645

M 0.1778 0.3549 0.0690 0.1376

M/M 0.1778 0.3549 0.0690 0.1376

S/M 0.2086 0.3591 0.0831 0.1430

S/M/S 0.2282 0.3617 0.0925 0.1466

M/S/M 0.1951 0.3573 0.0768 0.1406

Table 4.  Results for two in-plane Young’s moduli (E1 and E2, in TPa) and two in-plane Poisson’s ratios (ν12 and 
ν21) of stanene-MoS2 (S–M) heterostructure with different stacking sequences (The thickness of single layer of 
stanene and MoS2 are considered as 0.172 nm and 0.6033 nm, respectively).
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multi-layer nano-heterostructures in a comprehensive manner; exact values of the elastic moduli corresponding 
to various stacking sequences can be easily obtained using the proposed computationally efficient closed-form 
formulae.

Discussion
We have presented computationally efficient analytical closed-form expressions for the effective elastic moduli of 
multi-layer nano-heterostructures, wherein individual layers may have multiplanar (i.e. α ≠ 0) or monoplanar 
(i.e. α = 0) configurations. It is interesting to notice that the generalized analytical formulae developed for the 
Young’s moduli of heterostructures can be reduced to the closed-form expressions provided by Shokrieh and 
Rafiee31 for graphene considering single-layer (i.e. n = 1), α = 0 and ψ = 30°.
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E E k k

t k

4 3

9
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4
r
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Material Present Results Reference results from literature (E1 = E2 and ν12 = ν21)

Graphene

E1 = 1.0419 1.00 ± 0.1 TPa67, 1.05 TPa73,74, 1.041 TPa31

E2 = 1.0419 1.00 ± 0.1 TPa67, 1.05 TPa73,74, 1.041 TPa31

ν12 = 0.2942 0.3468, 0.1774, 0.4175, 0.19569, 0.653–0.8487

ν21 = 0.2942 0.3468, 0.1774, 0.4175, 0.19569, 0.653–0.8487

hBN

E1 = 0.8056 0.76 ± 0.04576, 0.82177, 0.84278, 0.81579

E2 = 0.8056 0.76 ± 0.04576, 0.82177, 0.84278, 0.81579

ν12 = 0.2901 0.2–0.380, 0.2–0.2480, 0.384–0.3898, 0.384–0.3898, 0.2118, 0.2–0.481

ν21 = 0.2901 0.2–0.380, 0.2–0.2480, 0.384–0.3898, 0.384–0.3898, 0.2118, 0.2–0.481

Stanene

E1 = 0.3166 0.30756

E2 = 0.3736 0.30756

ν12 = 0.1394 —

ν21 = 0.1645 —

MoS2

E1 = 0.1778 0.27 ± 0.099 TPa71, 0.233 TPa82, 0.248 TPa83

E2 = 0.3549 0.27 ± 0.099 TPa71, 0.233 TPa82, 0.248 TPa83

ν12 = 0.0609 0.2172, 0.2963

ν21 = 0.1376 0.2172, 0.2963

Table 5.  Results for Young’s moduli (TPa) and Poisson’s ratios of single-layer hexagonal nanostructures).

Figure 3.  (a,b) Variation of in-plane Young’s moduli (E1 and E2) with number of layers in a graphene-MoS2 
heterostructure. (c,d) Variation of the in-plane Poisson’s ratios (ν12 and ν21) with number of layers in a 
graphene-MoS2 heterostructure.
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It can be noted from the presented results that the single-layer materials having regular monoplanar hexagonal 
nano-structures (such as graphene and hBN) have equal value of elastic modulus in two perpendicular direc-
tions (i.e. E1 = E2 and ν12 = ν21). However, for single-layer materials with multiplanar nanostructure, the elastic 
modulus for direction-2 is more than that of direction-1, even though the difference is not significant. Similar 
observation is found to be reported in literature41. For single-layer of materials, the formulae of elastic moduli 
deduced from Equations 3–6 by replacing n = 1, perfectly obeys the Reciprocal theorem (i.e. E1ν21 = E2ν12)42. In 
case of nano-heterostructures, the Young’s moduli and Poisson’s ratios possess different values if at least any one 
of the layers have a material with multiplanar hexagonal nano-structure (i.e. E1 ≠ E2 and ν12 ≠ ν21). An advantage 
of the proposed bottom-up approach of considering layer-wise equivalent material property is that it allows us 
to neglect the effect of lattice mismatch in evaluating the effective elastic moduli for multi-layer heterostruc-
tures consisting of different materials. In the derivation for effective elastic moduli of such heterostructues, the 
deformation compatibility conditions of the adjacent layers are satisfied. This is expected to give rise to some 
strain energy locally at the interfaces, which is noted in previous studies21. From the derived expressions it can 
be discerned that the numerical values of elastic moduli actually depend on the number of layers of different 
constituent materials rather than their stacking sequences. In case of multi-layer nanostructures constituted of 
the layers of same material (i.e. bulk material), it can be expected from Equations 3 and 4 that the Young’s moduli 
would reduce due to the presence of inter-layer distances, which, in turn, increase the value of overall thickness t.

Figure 4.  (a) Variation of in-plane Young’s modulus (E1) with number of layers in a graphene-hBN 
heterostructure (Variation of E2 with number of layers in a graphene-hBN heterostructure is same as E1). 
(b) Variation of the in-plane Poisson’s ratio (ν12) with number of layers in a graphene-hBN heterostructure 
(Variation of ν21 with number of layers in a graphene-hBN heterostructure is same as ν12).

Figure 5.  (a,b) Variation of in-plane Young’s moduli (E1 and E2) with number of layers in a graphene-stanene 
heterostructure. (c,d) Variation of the in-plane Poisson’s ratios (ν12 and ν21) with number of layers in a 
graphene-stanene heterostructure.
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Effective mechanical properties such as Young’s moduli and Poisson’s ratios are of utmost importance to 
access the viability for the use of nano-heterostructures in various nanoelectromechanical applications. The 
major contribution of this work is to develop the generalized closed-form analytical formulae for multi-layer 
nano-heterostructures. Thses formulae are also applicable to single-layer of materials with monoplanar as well 
as multiplanar nanostructures. Thus the developed analytical formulae for elastic moduli can be used as an effi-
cient reference for the entire spectrum of materials with lattice-like structural form and the heterostructures 
obtained by combining multiple layers of different such materials with any stacking sequence. Such generalization 
in the derived formulae, with the advantage of being computationally efficient and easy to implement, opens up 
a tremendous potential scope in the field of novel application-specific heterostructure development. We have 
validated the proposed expressions considering multiple stacking sequences with existing results of literature 
and separate molecular dynamics simulations for the Young’s moduli and Poisson’s ratios of graphene-MoS2 het-
erostructure, respectively. In-depth new results are presented for the Young’s moduli and Poisson’s ratios of three 
other nano-heterostructures (graphene-hBN, graphene-stanene and stanene-MoS2). Even though the results are 
presented in this article considering only two different constituent materials in a single heterostructure (such 
as graphene-MoS2, graphene-hBN, graphene-stanene and stanene-MoS2), the proposed formulae can be used 
for heterostructures containing any number of different materials26. The physics-based analytical formulae are 
capable of providing a comprehensive in-depth insight on the behaviour of such multilayer heterostructures. 
Noteworthy feature of the present analytical approach is the computational efficiency and cost-effectiveness com-
pared to conducting nano-scale experiments or molecular dynamics simulations. Thus, besides deterministic 
analysis of elastic moduli, as presented in this paper, the efficient closed-form formulae could be an attractive 
option for carrying out uncertainty analysis43–50 based on a Monte Carlo simulation based approach (refer to 
section 8 of the supplementary material). The bottom-up approach based concept to develop expressions for 
hexagonal nano-heterostructures can be extended to other forms of nanostrcutures in future.

After several years of intensive investigation, research concerning graphene has logically reached to a rather 
mature stage. Thus investigation of other two dimensional and quasi-two dimensional materials have started 
receiving the due attention recently. However, the possibility of combining single layers of different two dimen-
sional materials (heterostructures) has expanded this field of research dramatically; well beyond the scope of con-
sidering a simple single layer graphene or other 2D material. The interest in such heterostructures is growing very 
rapidly with the advancement of synthesizing such materials in laboratory22,23, as the interest in graphene did few 
years ago. The attentiveness is expected to expand further in coming years with the possibility to consider differ-
ent tunable nanoelectromechanical properties of the prospective combination (single and multi-layer structures 
with different stacking sequences) of so many two dimensional materials. This, in turn introduces the possibility 
of opening a new dimension of application-specific material development that is analogous to metamaterials51,52 
in nano-scale. The present article can contribute significantly in this exciting endeavour.

In summary, we have developed computationally efficient physics-based analytical expressions for predicting 
the equivalent elastic moduli of multi-layer nano-heterostructures. The proposed expressions are validated for 
graphene–MoS2 heterostructures by carrying out separate molecular dynamics simulations and available results 
from literature. New results are presented for graphene–hBN, graphene–stanene and stanene–MoS2 heterostruc-
tures using the developed analytical framework. As the proposed closed-form formulae are general in nature and 

Figure 6.  (a,b) Variation of in-plane Young’s moduli (E1 and E2) with number of layers in a stanene-MoS2 
heterostructure. (c,d) Variation of the in-plane Poisson’s ratios (ν12 and ν21) with number of layers in a stanene-
MoS2 heterostructure.
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applicable to wide range of materials and their combinations with hexagonal nano-structures, the present article 
can serve as a ready reference for characterizing the material properties in future nano-materials development.

Methods
Analytical framework for equivalent elastic moduli of nano-heterostructures.  A concise descrip-
tion of the basic philosophy behind the developed analytical framework is explained in this section (detail der-
ivations are provided as supplementary material with this manuscript). A multi-stage bottom-up idealization 
scheme is adopted for deriving the closed-form expressions, as depicted in Fig. 7. In the first stage, the effective 
elastic moduli of each individual layer are determined based on a continuum based approach. This is equivalent to 
the effective elastic properties of a single-layer nanostructure. The multi-layer heterostructure can be idealized as 
a layered plate-like composite structural element with respective effective elastic properties and geometric dimen-
sions (such as thickness) of each layer. To ensure the consistency in deformation of the adjacent layers, each of the 
layers are considered to have equal effective deformation in a particular direction. The equivalent elastic property 
of the entire heterostructure is determined based on force equilibrium and deformation compatibility conditions. 
The molecular mechanics parameters (kr and kθ), bond length and bond angles for different materials, which are 
used to obtain numerical results based on Equations 3–6, are provided in the next paragraph.

The molecular mechanics parameters and geometric properties of the bonds are well-documented in scien-
tific literature. In case of graphene, the molecular mechanics parameters kr and kθ can be obtained from literature 
using AMBER force filed53 as kr = 938 kcal mol−1 nm−2 = 6.52 × 10−7 Nnm−1 and kθ = 126 kcal mol−1 rad−2 
= 8.76 × 10−10 Nnm rad−2. The out-of-plane angle for graphene is α = 0 and the bond angle is θ = 120° (i.e. ψ 
= 30°), while bond length and thickness of single-layer graphene can be obtained from literature as 0.142 nm 
and 0.34 nm respectively7. In case of hBN, the molecular mechanics parameters kr and kθ can be obtained from 
literature using DREIDING force model54 as kr = 4.865 × 10−7 Nnm−1 and kθ = 6.952 × 10−10 Nnm rad−2 55. The 
out-of-plane angle for hBN is α = 0 and the bond angle is θ = 120° (i.e. ψ = 30°), while bond length and thickness 
of single-layer hBN can be obtained from literature as 0.145 nm and 0.098 nm respectively8. In case of stanene, the 
molecular mechanics parameters kr and kθ can be obtained from literature as kr = 0.85 × 10−7 Nnm−1 and kθ = 
1.121 × 10−9 Nnm rad−2 56,57. The out-of-plane angle for stanene is α = 17.5° and the bond angle is θ = 109° (i.e. 
ψ = 35.5°), while bond length and thickness of single layer stanene can be obtained from literature as 0.283 nm 
and 0.172 nm respectively56–59. In case of MoS2, the molecular mechanics parameters kr and kθ can be obtained 
from literature as kr = 1.646 × 10−7 Nnm−1 and kθ = 1.677 × 10−9 Nnm rad−2, while the out-of-plane angle, bond 
angle, bond length and thickness of single layer MoS2 are α = 48.15°, θ = 82.92° (i.e. ψ = 48.54°), 0.242 nm and 
0.6033 nm respectively15,60–62.

Molecular dynamics simulation for Poisson’s ratios of graphene–MoS2 heterostructures.  We 
have followed a similar method as reported in literature21,63,64 for calculating the Poisson’s ratios of graphene–
MoS2 bilayers and heterostructures through molecular dynamics simulation. The interatomic potential used for 
carbon-carbon, molybdenum-sulfur interactions are the second-generation Brenner interatomic potential65,66. 

Figure 7.  (a) Idealization scheme for the analysis of a three-layer nano-heterostructure. (b) Idealization scheme 
for the analysis of a two-layer nano-heterostructure.
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We have stabilized the heterostructures following the same method as described in literature21. The MoS2 
and graphene layers of the heterostructures are coupled by van der Waals interactions, as described by the 
Lennard-Jones potential. The adopted cut-off is 10.0A° for M/G/M and 5.0A° for G/M/G heterostructures. These 
cut-off values are determined by stabilizing and minimizing the M/G/M and G/M/G heterostructures21.
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