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Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes
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We have developed a thermodynamic model of the catalytic growth of multiwall carbon nanotubes
from hydrocarbon precursors at elevated temperature. Using this model we have computed the heat
distribution, and carbon concentration in the catalyst. Calculations delivered a analytical formula
for the growth time and growth rate. We find that the growth is mainly driven by a concentration
gradient within the catalyst, rather than a temperature gradient.

I. INTRODUCTION

Since the discovery of carbon nanotubes in 1991 by
Iijima [1] there has been significant progress in their im-
proving synthesis [2, 3] and developing technological ap-
plications [4, 5, 6, 7]. However, the growth mechanism of
carbon nanotubes remains poorly understood. Indeed,
continuted optimization of carbon nanotube synthesis
will only be possible if the growth mechanisms are under-
stood quantitatively. Theoretical studies had been per-
formed on the growth mechanism of carbon nanotubes on
the atomic scale [8, 9], or on the role of the catalyst dur-
ing the construction of nanotubes [10, 11]. Most of them
consider the growth of singlewall nanotubes [12, 13]. Our
approach discusses the experimental and theoretical facts
relevant for the catalytic growth of multiwall nanotubes
by chemical vapor deposition (CVD), and takes them as
basis for a more macroscopic, thermodynamical model.
It allows considering the whole system of catalyst parti-
cle, nanotube and substrate, and calculating the growth
time and growth rate in a typical CVD process. The
model is inspired by earlier works [14, 15, 16] and we
extend the model to take into account the geometry and
thermal properties of the catalyst. We use a finite el-
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ement method (FEM) to compute the heat generation
and distribution, and the carbon migration in the cata-
lyst. It was found that the growth is mainly driven by
a concentration gradient as opposed to a thermal gradi-
ent, while the process temperature plays a key role in
terms of activating diffusion. Considering the catalytic
reactions of acetylene on iron facets one can draw con-
clusions on the dependence of the growth on the partial
pressure. Furthermore, a mechanism for the cessation
of the growth is discussed. The calculations and simula-
tions are demonstrated here exemplarily for the nanotube
growth at 650◦C using iron as catalyst but may easily be
adapted to different conditions. This article is an at-
tempt to understand the nanotube growth with classical
methods.

II. SUPPOSED GROWTH MECHANISM

It is widely believed that the mechanism of the cat-
alytic growth of carbon nanotubes is similar to the one
described by Kanzow et al. [17]. Acetylene is thermally
stable at temperatures below 800◦C and can be disso-
ciated only catalytically, in the case discussed here, on
the small metal (oxide) particles present on the substrate
(Fig. 1). In a first phase the acetylene reduces the metal
oxide particles to pure metal: Fe2O3 + 3C2H2 → 2Fe +
6C + 3H2O, whereas the iron remains on the substrate
surface, the carbon diffuses into the metal and the water
evaporates. The further catalytic dissociation of acety-
lene takes presumably place at facets of well-defined crys-
tallographic orientation [18]. The resulting hydrogen H2
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is removed by the gas flow while the carbon is dissolved
in the catalyst. For unsaturated hydrocarbons this pro-
cess is highly exothermic. When the particle is saturated
with carbon, the carbon leaves the particle at another,
less reactive surface of the particle. This process is en-
dothermic. The resulting density gradient of carbon in
the particle leads to diffusion of carbon through the par-
ticle. In order to avoid dangling bonds, the carbon atoms
assemble in an sp2 structure at a less reactive facet of the
particle, ultimately leading to nanotube formation.
The simple model presented in Fig. 1 describes the

growth with a catalyst particle at either the top or bot-
tom of the tube. In principle both cases work in the same
way, but in the latter one the particle adheres more firmly
to the substrate surface than in the former. There must
be free particle facets that are exposed to the gas for the
growth to proceed. In the second case the acetylene dif-
fuses from the sides into the particle and the nanotube is
constructed from the bottom up, whereas in the first case
the gas diffuses from the sides and top into the particle.
It was noted in [15] that the nanotube growth did not

begin immediately after the introduction of the hydrocar-
bon gas in the reactor, but that some carborized spots
appear before rapid nanotube growth occurs. This sug-
gests that a certain quantity of carbon must be dissolved
in the catalyst before the nanotube growth can start. In
addition, time is required for the oxided catalyst to be
reduced.

III. CALCULATIONS

A. Preconditions

The catalytic reaction C2H2
Fe→ 2Cgraphitic + H2 is

highly exothermic. At 650◦C this reaction frees an en-
ergy of about 262.8 kJ/mol [19]. The two carbon atoms
diffuse at a reactive facet into the catalyst particle and
the hydrogen is taken away by the gas flow. The carbon
diffuses through the particle to another less reactive facet
where the carbon concentration is smaller and the tem-
perature is lower. Similar models have been suggested by
other authors [17, 20, 21, 22, 23].
The crystalline properties and the availability of de-

fined facets are crucial points in the growth of carbon
nanotubes. In an extensive study on catalytic particles
on top of carbon fibers prepared by CO decomposition,
Audier et al. [18] found that there are relations between
the crystallographic structure of the catalyst particles
and the attached nanotubes. In the case of a bcc struc-
ture of the catalyst particle, the particle is a single crystal
with a [100] axis parallel to the axis of the fiber, and the
basal facets of the truncated cone, which appeared free
of carbon, are (100) facets. Anderson et al. [24] deter-
mined theoretically different activities of decomposition
of acetylene on iron facets. Hung et al. [25] mention that
a complete decomposition of acetylene takes place at the
Fe(100) facets with Fe(bcc), whereas molecular desorp-

tion was observed at the Fe(110) and Fe(111) facets. This
may be due to differences in surface roughness.
The crystalline character of the catalyst particles un-

der our typical experimental conditions was proven by
electron diffraction measurements and in situ real-space
TEM images [26]. At temperatures up to 1000◦C the
catalyst particles are solid but a high material mobility
and migration was observed during in situ heating of the
catalyst. It has already been shown in [16] that the di-
ameter of the nanotube is determined by the size of the
catalyst particle.
Lee et al. [27] found experimentally that the length of

the nanotubes increases linearly with time. This suggests
that the growth is a steady state process. Standard con-
tinuum modeling can then be used to calculate the heat
flow and carbon diffusion in the catalyst. We start to
calculate the carbon flow through the catalyst particle
assuming a steady state. The non-steady state will be
discussed later in the paper.

B. Heat and particle diffusion

The heat flow will be calculated with the particle flow
(carbon atoms):

jp = −D∇c Fick’s First Law (1)

where D is the diffusion constant, c the concentration,
and D is given by

D = Do · exp[−Ea/kT ] Arrhenius equation (2)

where Ea is the activation energy and Do the diffusion
factor.

We carry out the calculation exemplarily with carbon
in Fe(bcc) [28], Do = 2.2 cm2/s, and Ea = 1.27 eV (the
case of carbon in Fe(fcc) is discussed later). Thus,

D = 2.53 · 10−11 m2

s
at 923 K (650◦C) (3)

Following the iron-carbon-diagram, the maximal
solubility of carbon in iron at 650◦C is S =
65 ppm(weight) [29]. Exceeding this amoung leads to the
formation of iron carbide Fe3C. This limit determines the
maximal concentration gradient ∇c. With Eq. (1),

|∇c| = S

ddiff
· mmol[Fe]

mmol[C]
· 1

Vmol[Fe]
(4)

the diffusion distance ddiff (e.g. ddiff ≃ 1
2
dparticle),

mmol[Fe] = 55.8 g/mol, mmol[C] = 12.0 g/mol, and
Vmol[Fe] = 7.09 · 10−6 m3/mol, one obtains

|∇c| = 42.63
mol

m3
· 1

ddiff
(5)



3

With Eq. (1) and (3):

jp,mol(bcc) = 1.079 · 10−9 mol

m · s ·
1

ddiff
(6)

→֒ jp,N(bcc) = 6.499 · 1014 particle

m · s · 1

ddiff

Since C2H2 ⇒ 2C +H2, we get the maximal heat flow
through one facet with

jq = jp · 262.8
kJ

mol
· 1
2

(7)

jq(bcc) = 1.418 · 10−4 J

m · s ·
1

ddiff

Based on the results of many experiments we can de-
fine a typical nanotube: a hollow cylinder with a length
of lnt = 5 µm, an inner diameter of din = 10 nm and
an outer diameter of dout = 20 nm = dparticle (compare
with [14]). It has the volume of

Vnt =
π · lnt
4

(d2out − d2in) = 1.178 · 10−21 m3 (8)

∧
= 2.572 · 10−16 mol

∧
= 3.087 · 10−18 kg

with Vmol[C] = 4.58 · 10−6 m3

mol
(9)

and mmol[C] = 12.0 g = 0.012 kg

Then the total of converted energy would be

∆Qtotal = 262.8
kJ

mol
·2.572 ·10−16 mol · 1

2
= 3.38 ·10−11 J

(10)
And if all the heat was accumulated just in the catalyst

particle and the nanotube, without a transfer to another
reservoir, the nanotube would be heated up by

∆T =
∆Qtotal

cq[Fe] ·m[Fe] + cq[C] ·m[C]
= 6834 K (11)

With the heat capacity cq[Fe] = 449, 0 J
kg·K

,

m[Fe] = π

6
· (20 nm)3 · ρ[Fe] = 3.292 · 10−20 kg

(e.g. sphere as catalyst particle, diameter: 20 nm),
cq[C] = 710, 0 J

kg·K
, m[C] = 6, 945 · 10−18 kg.

This seems to be a very high temperature increase. But
one has to bear in mind that we have assumed an isolated
nanotube, without any contact to the environment. The
actual temperature rise will be much lower due to heat
conduction by the substrate, as is discussed below.

C. Growth time and rate

It is possible to estimate the growth time tgrowth for a
nanotube. With Eq. (6) and the number of moles of the
nanotube nnt, this is

tgrowth =
nnt

jp · 1
2
Aparticle

(12)

For the standard nanotube (nnt = 2.572 · 10−16 mol),
we get tgrowth(bcc) = 3.8 s. Using the parameters
for carbon in Fe(fcc) [28] (Do = 0.15 cm2/s, Ea =
1.47 eV, thus D = 1.33 · 10−13 m2/s at 923 K) yields
tgrowth(fcc) = 722 s. Analogously, the growth rate is
vgrowth = lnt/tgrowth, yielding vgrowth(bcc) = 1.3 µm/s
and vgrowth(fcc) = 6.9 nm/s for bcc and fcc iron, resp.
In the following we regard just Fe(bcc) because experi-
mental results indicate growth rates in the order of 0.1 -
5 µm/s assuming typical CVD conditions.
In order to evaluate the influence of the temperature

on the growth time, Eq. (12) can be written (by using
Eq. (1), (8) and (9)) as

tgrowth =
lnt · (d2out − d2in)

2 · Vmol[C] · d2particle ·D · |∇c| (13)

The solubility S of carbon in iron as function of tem-
perature in the range from 500 to 740◦C shows an es-
sentially exponential dependence on temperature S =
So · exp[−β/T ], with So = 30.593 and β = 12028.62 K.
β can be expressed in units of an energy as ES = βk =
1.036 eV. The temperature dependance of the diffusion
coefficient D is descripted by Eq. (2). We assume that
only the solubility and diffusion constant are temperature
dependent. With Eq. (4), this leads to

tgrowth =
ρ[C]

ρ[Fe]
· lnt · ddiff · (d2out − d2in)

2d2particle ·Do · So

· exp[Ea + ES

kT
]

(14)
With dnt = dparticle = dout = 2 · din = 2 · ddiff , the

growth rate vgrowth = lnt/tgrowth turns then out to be:

vgrowth =
16

3
· ρ[Fe]
ρ[C]

· Do · So

dnt
· exp[−Ea + ES

kT
] (15)

The growth rate vgrowth is proportional to exp[−(Ea +
ES)/kT ] (which obviously has a strong temperature de-
pendence) and to 1/dnt. This is in accordance with the
experimental fingings of Lee et al. [27] for carbon nano-
tubes, and similar to the result Baker [20] found exper-
imentally for carbon filaments vgrowth ∝ 1/

√

dparticle.
The 1/dnt behavior is demonstrated in Fig. 2. The calcu-
lated growth rate is shown as function of the deposition
temperature in the range between 500 and 750◦C and the
nanotube diameter (5-35 nm in 5 nm increments).
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In order to incorporate the effect of catalytic reactions
at the surface of the catalyst particle, we start with

vgrowth,N = jp,N · Acreation = jp,N · 1
2
Aparticle (16)

where Acreation is the surface of nanotube genera-
tion. For the standard nanotube this is vgrowth,N =
4.083 · 107 particle/s. This may also be the rate of car-
bon atoms converted at the facets. Thus the reaction
rate is vreaction = 1

2
· vgrowth,N = 2.042 · 107 reaction/s

(C2H2 ⇒ 2C + H2). The reaction flow is then

jreaction = vreaction/(
1
2
Aparticle) = 1

2
· jp,N = 3.25 ·

1022 reaction/(m2 · s).
If one assumes that the carbon stock is an ideal gas,

the impingement rate of gas particles on the catalyst is

jimpact =
p√

2πmkT
(17)

where m is the mass of the gas molecule (here:
m[C2H2] = 4.324 · 10−26 kg, T = 923 K) and p the
pressure. At e.g. 20 mbar = 2000 Pa (standard ex-
periment) we have then an impact rate of jimpact =
3.4 · 1025 hits/(m2 · s). Compared with the reaction
rate jreaction = 3.25 · 1022 reaction/(m2 · s) this means
that the surface is always saturated. A reduction of
the growth rate should then occur at pressures under
p = jreaction ·

√
2πmkT = 1.913 Pa = 1.913 · 10−2 mbar.

A sticking coefficient less than 1 will influence these re-
sults. Note that, in principle, the variation of growth
rate with pressure can be used to control the length of
the nanotubes.

IV. SIMULATIONS

We used two-dimensional finite element method
(FEM) simulations to compute the temperature distribu-
tion in the particle, the nanotube and the substrate. The
carbon concentration in the catalyst particle was simu-
lated as well. Specifically for the temperature distribu-
tion we compute ∂T/∂t−κ△T = 0 and in the stationary
case −κ△T = 0. The boundary conditions for a constant
heat flow through the facet is∇T = −jq/λ |facet (with the
heat conductivity λ) and for a constant temperature at
the facet T = Tb |facet. Accordingly for the distribution of
the carbon concentration we compute ∂c/∂t−D△c = 0
and in the stationary case −D△c = 0. The boundary
conditions for a constant particle flow through the facet is
∇c = −jp/D |facet (with the diffusion constantD) and for
a constant carbon concentration at the facet T = cb |facet.
At the boundary we assume a heat penetration of jq

at the horizontal and vertical facets of a model catalyst
particle (bcc(100)-like facets, see Section IIIA) and con-
stant temperature of Tb at the three outer sides of the
silicon substrate (Fig. 1). A distribution of temperature
rise is then obtained for the defined geometry. The shape

of the model particle is chosen to approximate those ob-
served in experiments (e.g. [14]). The particle can be
on top of the nanotube (pushed up by the nanotube) or
sticking to the substrate surface (while pushing up the
nanotube). The silicon substrate has a length of 10 µm
and height of 5 µm, which seems to be sufficient (a fur-
ther enlargement did not cause a change in temperature
in the simulations).
For the heat conductivity of the nanotube, the value for

graphite in the direction parallel to the graphitic layers is
assumed, rather than the (much higher) value for perfect
single-wall nanotubes (λ = 2980.0 W/(m ·K) [30]). We
therefore obtain an upper limit for the temperature rise.
For iron, λ is taken at the same temperature as the value
for silicon and graphite (373.2 K) although a value at
900 K has been reported (for iron only).
The particle-on-top setting is highly parameter depen-

dent. The dependence of the maximum temperature in
the particle on the nanotube length is approximately lin-
ear Tmax ∼ lnt (Fig. 3a), while the dependence on nano-
tube radius varies as 1/x law: Tmax ∼ 1/rnt (Fig. 3b).
The standard nanotube (lnt = 5 µm, rnt = 10 nm,
ddiff = 20 nm) reaches a temperature rise of ∆Ttop =
6.474 · 10−4 K with the particle on top (Fig. 1). For
the standard tube 90 % of the final temperature rise
is reached already after 1.65 µs. In contrast, in the
particle-on-bottom configuration the temperature rise is
independent of the tube geometry. In this configura-
tion the standard setting reaches a temperature rise of
∆Tbottom = 5.036 · 10−5 K.
According simulation have been undertaken also for

the distribution of the carbon concentration in the cata-
lyst particle in the non-steady state mode. At the highly
reactive facets we assume a flow corresponding to Eq. 6.
On the less reactive facets a carbon concentration of
0 ppm is asssumed. It turned out that, for the stan-
dard nanotube, it takes about 100 µs to reach 90 % of
the final carbon concentration at one facet. This satisfies
the assumption of steady state conditions in the catalyst
particle during the growth, since the time for the com-
plete growth lies in the range of seconds.
As the maximal temperature rise in the particle is very

low, the diffusion of carbon through the particle can be
considered to be driven solely by the concentration gra-
dient. It is assumed that the concentration of carbon is
65 ppm(weight) on the facets where the catalytic decom-
position takes place and 0 ppm where the nanotube is
assembled. The diffusion through the particle is hence
determined by Eq. (1).

V. DISCUSSION

We have computed the growth rate of carbon nano-
tubes based on a new growth mechanism. We show that
for realistic tube/particle geometries the expected tem-
perature rise is negligible. Thus thermal radiation is also
negligible and the carbon diffusion through the particle
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is not thermally driven but is determined by the carbon
concentration gradient.

The difference between the calculated temperature rise
∆T = 6834 K if all the produced heat is retained in the
particle and the nanotube (Eq. (11)) and the simulated
∆T = 6.474 · 10−4 K is due to the thermal coupling to
the substrate in the latter case and the high thermal con-
ductivities of iron, graphite and silicon. The produced
heat is distributed in the material very rapidly (diffu-
sive flux through the iron particle, the nanotube, the
silicon substrate and out of the considered volume). In
the particle-on-bottom scenario this flux is led away even
more rapidly and the temperature rise is consequently
smaller (diffusion direct into silicon substrate).

At first glance there seems to be no reason why the
nanotubes should grow in one particular direction. But
the silicon surface breaks the symmetry. The diffusion
and the catalytic decomposition is favored at the top
facets and the catalyst particle is pushed up by the grow-
ing nanotube. Only if the particle is bonded too strongly
to the silicon surface the nanotube grows in upward di-
rection while the particle remains on the surface.

Under the considered conditions, growth by surface dif-
fusion is unlikely because it cannot explain the growth of
multiwall nanotubes (growth of several walls with the
same velocity, diffusion of carbon through the already
created walls). Hung et al. [25] report that carbon dif-
fuses into bulk iron starting at temperatures T > 773 K
(500◦C). This means that multiwall carbon nanotubes
cannot be created below this temperature. The mobility
of carbon in iron will increase with the temperature since
the diffusion coefficient D is highly temperature depen-
dent. This explains why the nanotube growth is a ther-
mal process. A certain mobility of the carbon atoms in
the catalyst particle is essential for the growth. Accord-
ing to Hung et al. [25] C2H2 decomposes catalytically
to pure C at temperatures T > 400 K (127◦C). Thus
there is a well defined window for the growth of pure
nanotubes between 500◦C and 800◦C. At higher tem-
peratures polycrystalline carbon adsorbes on the nano-
tube surface [14]. In the frame of the experiments dis-
cussed in [14, 15] the lowest growth temperature was
620◦C. For plasma-enhanced CVD lower deposition tem-
peratures are reported: e.g. Choi et al. observed the
experimental growth of nanotubes at 550◦C [31].

The cessation of the catalytic growth may be caused
by the formation of amorphous carbon on the catalyst
particle. This can be generated catalytically or by con-
densation of decomposed hydrocarbons [14]. Acetylene
can be cracked at relative low temperatures due to the
Boltzmann distribution of the thermal energy of the gas.
There are always some gas molecules with enough en-
ergy for the cracking. Of course, the proportion increases
with higher temperatures and thus finally there will be
more amorphous carbon. Hung et al. [25] report a block-
ing of the reaction sites in case of high carbon cover-
age. Additionally an oversupply of carbon (more then
65 ppm(weight) on the reaction surface) can cause the

formation of iron carbide Fe3C. The diffusion of car-
bon through Fe3C is very low (D = 6 · 10−16m2/s at
650◦C [32]). If Fe3C is generated on the reaction sur-
faces, this can also stop the growth of the nanotubes. H2

in the gas flow can etch the oversupply of amorphous car-
bon [33] and extend the growth time and thus the nano-
tube length. Indeed, this prolongation of the nanotubes
was observed experimentally (e.g. by Kim et al. [3]). A
reduction of pressure may help as well, but this would
also slow down the growth of nanotubes.

The calculations allow us to estimate the growth time
and growth rate. It is questionable if continuum mod-
eling is valid on the nanometer scale, but the calculated
results correlate well with the experimental data. In Ta-
ble I, some experimental data for the nanotube growth
are listed and compared with calculated values. The cal-
culated values for the growth rate fall quite well in the
range of the experimental data of our own group, and
the calculated growth time is at the lower limit of the
experimental data. From other experimental groups just
limited data are available, and their conditions can differ
considerably from ours. Thus, the growth rate could be
limited by factors not considered here (gas pressure/flow,
homogeneity of temperature, catalyst preparation, etc.).
Two examples for growth rates obtained by other groups
are mentioned in Table I. Their values are about one
order of magnitute lower than our results. It has to be
considered that the calculated values are for ideal stan-
dard tubes. However, the diameter of the tubes in the
experiments vary usually between 5 and 50 nm and the
length between 2 and 10 µm and not all conditions of
CVD processes are well known. Maiti et al. [34, 35] eval-
uated a catalyst free growth model by molecular dynam-
ics and found a growth rate of 160 nm/s at 1000 K. This
is substantially lower than what we found experimen-
tally as well as with the calculations presented here. The
reason for this might lie in the importance of the cat-
alytic growth by the according particle. The catalytic
decomposition and the accompanying diffusion seem to
accelerate the growth considerably.

According to our calculations the growth rate is not
influenced by a varying length but just by the diameter
of the nanotube as vgrowth ∝ 1/dnt. Baker et al. [21]
found experimentally a dependence of vgrowth ∝ 1/

√
dnt

for carbon filaments. The difference between the 1/
√
dnt

dependence for filaments and the calculated dependence
1/dnt for nanotubes may lie in the fact that carbon nano-
tubes are hollow graphite-like structures and the car-
bon filaments consist of monolithic amorphous carbon,
which may result in a slower growth. However, Lee et
al. [27] found experimentally the same vgrowth ∝ 1/dnt
dependence for carbon nanotubes. They also found that
the growth time is linearly proportional to the nanotube
length tgrowth ∝ lnt. This is another hint that the growth
is mainly a steady state process and thus the usage of
Fick’s First law is justified. Our model also reflects their
finding that the growth rate increases superproportion-
ally with temperature [36].
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The discussed activation time (time when the catalyst
is already exposed to acetylene but the nanotube growth
has not yet started) was observed as well [15]. This pe-
riod might be due to the reduction of Fe2O3 to pure iron.
In order to directly compare the experimental data

with the calculations the growth needs to be observed
in situ to determine the growth time of one individual
nanotubes and to determine at the same time the length
of this tube and its diameter. For carbon filaments this
has was done as early as 1972 by Baker et al. [21]. But
detailed studies for carbon nanotubes are still lacking
because in situ growth measurements on nanotubes are
difficult to perform.
We have shown that the growth rate is a function

of the applied partial pressure, and that effects should
be evident below a pressure of about 2 · 10−2 mbar.
In [37] and [38] the influence of the partial pressure on
the growth velocity is addressed, e.g. in [37] for the pres-
sures 10−4, 10−3 and 10−2 mbar growth rates of 1.5, 3.7
and 4.7 µm/s are measured.
While our calculations are necessarily approximate,

they give clear quantitative picture of the nanotube gen-
eration process. Naturally, a different tube/catalyst ge-

ometry will lead to different values of vgrowth and tgrowth.
The calculations can easily be repeated with other ma-
terial parameters (e.g. for CH4 as carbon source gas and
nickel as catalyst particle).

VI. CONCLUSIONS

We performed thermodynamic modeling of the cat-
alytic generation of carbon nanotubes which allow us to
estimate the growth time and growth rate. The conclu-
sions of the model are supported by experimental results.
We find that the growth is mainly driven by carbon con-
centration gradients in the catalyst particle, rather than
by temperature gradients.
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Figures

FIG. 1: Model for the suggested growth mechanism of catalyt-
ically grown carbon nanotubes and FEM simulations: Heat
flow generated by the decomposition of acetylene at certain
facets of the iron particle assuming a constant temperature at
the silicon sample. Left: particle-on-top, right: particle-on-
bottom setting. Arbitrary units for all dimensions (light: high
temperature, dark: low temperature).

FIG. 2: Calculated growth rate as function of deposition tem-
perature (500-750◦C) and nanotube diameter (5-35 nm in
5 nm increments). The inset shows the curves as Arrhenius
plot.

FIG. 3: Dependence of the maximal temperature rise on (a)
the nanotube length and (b) the particle radius using the
particle-on-top and the particle-on-bottom setting. The simu-
lated values for the particle-on-top setting fit well with a linear
behavior in (a) and with a 1/x behavior in (b). The solid lines
are according guides to the eye.
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Tables

TABLE I: Comparison of calculated values with available ex-
perimental data for growth time and growth rate.

Source Growth time [s] Growth rate [µm/s] Temperature [◦C] Diameter [nm]
Calculated (in text) 3.8 1.3 650 20

Calculated (not shown) 0.4 12.1 700 10
Ref. [15] < 60 > 0.16 720 -
Ref. [16] < 10 > 0.1 720 5
Ref. [37] 10 0.9 - 5.1 700 5 - 10
Ref. [38] 10 - 15 0.9 - 8.0 700 5 - 10
Ref. [39] - 0.1 650 -
Ref. [40] - 0.27 800 15 - 25


