This is an author produced version of a paper published in:
Leibniz International Proceedings in Informatics, LIPIcs

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa38365

Paper:
http://dx.doi.org/10.4230/LIPIcs.TYPES.2016.12

Released under the terms of a Creative Commons License (CC-BY).

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/
Defining Trace Semantics for CSP-Agda

Bashar Igried
The Hashemite University, Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology, Zarqa, Jordan
bashar.igried@yahoo.com
https://orcid.org/0000-0001-6255-236X

Anton Setzer
Swansea University, Dept. of Computer Science, Swansea, Wales, UK
a.g.setzer@swansea.ac.uk
http://orcid.org/0000-0001-5322-6060

Abstract

This article is based on the library CSP-Agda, which represents the process algebra CSP coinductively in the interactive theorem prover Agda. The intended application area of CSP-Agda is the proof of properties of safety critical systems (especially the railway domain). In CSP-Agda, CSP processes have been extended to monadic form, allowing the design of processes in a more modular way. In this article we extend the trace semantics of CSP to the monadic setting. We implement this semantics, together with the corresponding refinement and equality relation, formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic laws of CSP based on the trace semantics. Because of the monadic settings, some adjustments need to be made to these laws. The examples covered in this article are the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. All proofs and definitions have been type checked in Agda. Further proofs of algebraic laws will be available in the repository of CSP-Agda.

2012 ACM Subject Classification D.2.4 Software/Program Verification—Formal methods, D.3.1 Formal Definitions and Theory—Semantics, F.3.2 Semantics of Programming Languages, F.4.3 Formal Languages—Operations on languages

Keywords and phrases Agda, CSP, Coalgebras, Coinductive Data Types, Dependent Type Theory, IO-Monad, Induction-Recursion, Interactive Program, Monad, Monadic Programming, Process Algebras, Sized Types, Universes, Trace Semantics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.12

1 Introduction

Communicating Sequential Processes (CSP) [20, 28] is a formal specification language which was developed in order to model concurrent systems through their communications. It was developed by Hoare in 1978 [20]. It is a member of the family of process algebras. Process algebras are one of the most important concepts for describing concurrent behaviours of programs.
The starting point of this work was the modelling of processes of the European Railway Train Management System (ERTMS) in CSP by the first author. Having expertise in modelling railway interlocking systems in Agda (PhD project by Kanso [24, 25]), we thought that an interesting step forward would be to model CSP in Agda. A first step towards this project was the development of the library CSP-Agda [22, 21]. CSP-Agda represents CSP processes coinductively and in monadic form. The purpose of this article is to introduce CSP trace semantics in Agda, and carry out examples of proofs in CSP-Agda.

In CSP-Agda we developed a monadic extension of CSP, which is based on Moggi’s IO monad [27]. This IO monad \((\text{IO} A)\) is currently the main construct for representing interactive programs in pure functional programming. An element of \((\text{IO} A)\) is an interactive program, which may or may not terminate, and, if it terminates, returns an element of type \(A\). The monad provides the bind construct for combining elements of \((\text{IO} A)\): It composes a \(p : \text{IO} A\) with a function \(f : A \rightarrow \text{IO} B\) to form an element of \((\text{IO} B)\). The program is executed by first running \(p\). If \(p\) terminates with result \(a\), one continues running \((f a)\). This allows to write sequences of operations in a way which looks similar to sequences of assignments in imperative style programming languages.

Hancock and the second author [18, 17, 19] have developed a version of the IO monad in dependent type theory, which we call the HS-monad. The HS-monad reduces the IO monad to coinductively defined types. An element of \((\text{IO} A)\) is either a terminated program, or it is node of a non-well-founded tree having as label a command to be executed, and as branching degree the set of responses the real world gives in response to this command. The HS-Monad has been extensively used for writing interactive programs in the paper [4] on object-based programming in Agda.

In [22], we modelled processes in a similar way as a monad and developed the library CSP-Agda. In the IO monad a program can terminate or it can issue a command and depending on the response continue. Similarly, a CSP-Agda process can either terminate, returning a result. Or it can be a tree branching over external and internal choices, where for each such choice a continuing process is given. So instead of forming processes by using high level operators, as it is usually done in process algebras, our processes are given by these atomic one step operations. The high level operators are defined operations on these processes. CSP-Agda introduces a new concept to process algebra, namely that of a monadic processes. A monadic process may run or terminate. If it terminates, it returns a value. This facilitates the combination of processes in a modular way. Processes are defined coinductively, and therefore we can introduce processes directly corecursively without having to use the recursion combinator.

One can regard process with return type \(A\) as well as possibly non-well-founded trees, with each node branching over external and internal choice, and having leaves labelled by elements of the return type \(A\) (which are terminated processes).³

Abel, Pientka, Thibodeau and the second author have [5, 31] developed the notion of coinductive types as being defined by their elimination rules or observations. This notion has now been implemented in Agda. It turns out that classes and objects in object oriented programming are of similar nature: Classes are defined by their methods, and therefore given by their observations. The second author [30] has used this approach in order to develop the notion of objects in dependent type theory. This has recently been substantially extended together with Abel and Adelsberger [4] to a library [3] for objects in Agda including correctness proofs, state dependent objects, server side programs, and a methodology for

³ This way of viewing processes was suggested by one of the anonymous referees.
developing graphical user interfaces in Agda.

In CSP-Agda [22, 21] we made extensively use of the aforementioned representation of coinductive types by their elimination rules. Using a record type, we accessed directly for non-terminating processes the choice sets and corresponding subprocesses, without having to extract them first using auxiliary definitions. This gives rise to compact definitions, see for instance the definition of \(+ \mapsto - \) in Subsect. 4.2.1 below.

The goal of this paper is to extend CSP-Agda by adding (finite) trace semantics of CSP. Because of the monadic settings, possible return values need to be added to the traces. It turns out that in the algebraic laws of CSP, the return values of the left and right hand side of the laws are usually different. Therefore one needs to add an extra function `fmap` in these laws to adjust these return values. We show how to prove selected (adjusted) algebraic laws of CSP in Agda using this semantics: the laws of refinement, commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. Further proofs of algebraic laws will be available in the repository of CSP-Agda [21].

Use of literal Agda. All displayed proofs in this article have been written using literal Agda [7] (which allows to combine \LaTeX-code and Agda) and have been type checked in Agda. However, as usual when presenting formal code, only the most important parts of the definitions and proofs are presented. Full versions can be found in the repository of CSP-Agda [21].

The **structure of this paper** is as follows: In Sect. 2, we review the process algebra CSP. In Sect. 3, we give a brief introduction into the type theoretic language of Agda. In Sect. 4, we review CSP-Agda, and introduce the CSP operators used in the examples of this paper (monadic bind, interleaving, and parallel). In Sect. 5 we extend CSP-Agda by adding (finite) trace semantics of CSP. In Sect. 6 we prove selected algebraic laws of CSP processes. In Sect. 7, we will look at related work, give a short conclusion, and indicate directions for future research.

CSP

Process algebras were initiated in 1982 by Bergstra and Klop [9] in order to provide a formal semantics to concurrent systems. A “process” is a representation of the behaviour of a concurrent system. “Algebra” means that the system is dealt with in an algebraic and axiomatic way [8]. In this article we represent a process algebra in the interactive theorem prover Agda in order to prove properties of processes. The process algebra chosen is Communicating Sequential Processes (CSP). CSP [20, 28, 29] was developed by Hoare in 1978 [20].

Processes in CSP form a labelled transition system, where the one step transition is written as

\[
P \xrightarrow{\mu} Q
\]

where \(P, Q \) are processes and \(\mu \) is an action,

which means that process \(P \) can evolve to process \(Q \) by event \(\mu \). The event \(\mu \) can be a label, the silent transition \(\tau \), or the termination event \(\checkmark \). In case of the label \(\checkmark \), \(Q \) will always be the specific process \(\text{STOP} \). Using standard CSP syntax, the process \((a \rightarrow P) \) is the process which has an only transition \((a \rightarrow P) \xrightarrow{a} P \).

\footnote{In Agda we use an arrow which looks similar to the one used for the function type, but is a different Unicode character. The reason for this choice is to be as much as possible in accordance with standard CSP syntax.}

As an example, we give here the execution of the process \((a \rightarrow b \rightarrow \text{STOP}) \):
The operational semantics of CSP defines processes as states, and defines the transition rules between the states using firing rule. In CSP-Agda [22, 21] we introduced the firing rules for CSP operators (taken from [29]), and modelled them in Agda. We followed the version of CSP used in [29, 28]. All rules (as well those in this paper) are taken from [29]. In the rules we follow the convention of [29] that a ranges over $\text{Label} \cup \{✓\}$ and μ over $\text{Label} \cup \{✓, \tau\}$.

In the following table, we list the constructs for forming CSP processes. Here Q represent CSP processes (Page numbers refer to [29] where the constructs are introduced):

<table>
<thead>
<tr>
<th>Q ::= STOP</th>
<th>STOP</th>
<th>p.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SKIP</td>
<td>SKIP</td>
</tr>
<tr>
<td></td>
<td>prefix $a \rightarrow Q$</td>
<td>$a \rightarrow Q$</td>
</tr>
<tr>
<td></td>
<td>external choice</td>
<td>$Q \parallel Q$</td>
</tr>
<tr>
<td></td>
<td>internal choice</td>
<td>$Q \sqcap Q$</td>
</tr>
<tr>
<td></td>
<td>hiding</td>
<td>$Q \setminus a$</td>
</tr>
<tr>
<td></td>
<td>renaming</td>
<td>$Q[R]$</td>
</tr>
<tr>
<td></td>
<td>parallel</td>
<td>$Q \mathbin{</td>
</tr>
<tr>
<td></td>
<td>interleaving</td>
<td>$Q \mathbin{\triangle} Q$</td>
</tr>
<tr>
<td></td>
<td>interrupt</td>
<td>$Q \mathbin{\square} Q$</td>
</tr>
<tr>
<td></td>
<td>composition</td>
<td>$Q \mathbin{__} Q$</td>
</tr>
</tbody>
</table>

There are as well indexed versions of $\parallel, \sqcap, \mathbin{||}, \mathbin{\triangle}$. They are indexed over finite sets, and therefore can be reduced to the binary case.

3 Agda

In this chapter we introduce the main concepts of Agda [6, 10], a more extensive introduction can be found in [22].

Agda is based on dependent type theory. There are several levels of types in Agda, the lowest is for historic reasons called Set. Types in Agda are given as dependent function types, and inductive types. In addition, there exist record types (which are in the newer approach used as well for defining coinductive types) and a generalisation of inductive-recursive and inductive-inductive definitions. Inductive data type are dependent versions of algebraic data types as they occur in functional programming. Inductive data types are given as sets A together with constructors which are strictly positive in A. For instance, the set of vectors (i.e. lists of fixed length) of elements of A and of length n is given as

```agda
data Vec (A : Set) : ℕ → Set where
  [] : {n : ℕ} → Vec A zero
  _∷_ : {n : ℕ} (a : A) (l : Vec A n) → Vec A (suc n)
```

Here $\{n : \mathbb{N}\}$ is an implicit argument. Implicit arguments are omitted, provided they can be uniquely determined by the type checker. We can make a hidden argument explicit by writing for instance ($[] \{n\}$) for the application of $[]$ to the hidden argument n. The symbol $_∷__$ is Agda’s notation for mixfix symbols. The arguments of a mixfix operator are denoted by underscore ($_$). The expression $a :: l$ stands for ($_∷__ a l$).

The above definition introduces a new type $\text{Vec} : (A : \text{Set}) \rightarrow \mathbb{N} \rightarrow \text{Set}$, where $(\text{Vec} A n)$ is a type of vectors of type A of length n. A is a parameter, so the constructors always refer
to the same parameter A. The variable n is an index, and constructors refer to different
indices. The vectors have constructors $[]$ and $\cdot \cdot \cdot$. The elements of $(\text{Vec } A \ n)$ are those
constructed from applying these constructors. Therefore we can define functions by case
distinction on these constructors using pattern matching. The following defines the sum of
elements of a vector of type N:

$$
\text{sum} : \forall \{n\} \to \text{Vec } N \ n \to N
\text{sum } [] = 0
\text{sum } (n :: l) = n + \text{sum } l
$$

Here we used the notation $\forall \{n\} \to \cdots$, which stands for $\{n : A\} \to \cdots$, where A (here N)
can be inferred by Agda. Nested patterns are allowed. The coverage checker checks
completeness and the termination checker checks that the recursive calls follow a schema of
extended primitive recursion.

In this paper we use the approach of defining coinductive types in Agda by their elimination
rules as introduced in [5, 31]. The standard example is the set of streams:

```agda
code
record Stream (i : Size) : Set where
  coinductive
  field
    head : N
    tail : \{ j : Size< i \} \to Stream j
```

If we first ignore the arguments Size, $\text{Size}<$, which will be discussed below, we see that the
type Stream is given as a record type in Agda. It is defined coinductively by its observations
head, tail. So we have if $a : \text{Stream } i$ then $\text{head } a : N$ and $\text{tail } a : \{j : \text{Size}< i\} \to \text{Stream } j$.
Elements of Stream are defined by copattern matching, i.e. by determining the result of
applying head, tail to them. A simple (non-recursive) operation is the function cons for
adding a new element in front of a stream (the symbol \uparrow will be explained when discussing
Size below):

$$
\text{cons} : \{i : \text{Size}\} \to N \to \text{Stream } i \to \text{Stream } i \to \text{Stream } (\uparrow i)
\text{head (cons } n s) = n
\text{tail (cons } n s) = s
$$

Functions introduced by the principle of guarded recursion [11] or primitive corecursion can
only make corecursive calls to the same functions applied to arbitrary arguments. Especially,
no functions can be applied to the corecursive calls. However, there are no restrictions on
the arguments, the corecursive function calls can be applied to. As an example we give the
pointwise addition of two streams:

$$
\text{+_s_} : \forall \{i\} \to \text{Stream } i \to \text{Stream } i \to \text{Stream } i
\text{head (s +_s_ s')} = \text{head } s + \text{head } s'
\text{tail (s +_s_ s')} = \text{tail } s +_s_ \text{tail } s'
$$

+_s_ makes a corecursive call to $(\text{tail } s +_s_ \text{tail } s')$. Note that s, s' are arguments of +_s_,
so we can apply tail to them freely.

Without the guarded recursion restriction, one could define non productive definitions,
e.g. define \(\text{tail} \ (f \ x) = \text{tail} \ (f \ x) \). However, the guardedness restriction makes it difficult to define streams in a modular way, since we cannot in a corecursive call refer to other functions for forming streams at all, although many operations will not cause problems. Therefore Abel has introduced sized types \([1, 2]\) in the context of coinductive types, which allow to apply size preserving and size increasing functions to corecursive calls.

Sizes are essentially ordinals (without infinite branching one can think of them as natural numbers), however there is an additional infinite size \(\infty \). We have as operations for forming sizes the infinite size \(\infty \), the successor operation on sizes \(\uparrow \), and have the type of sizes less than \(i \) denoted by \(\text{Size}<i \).

For ordinal sizes \(i \neq \infty \), a stream \(s : \text{Stream} \ i \) allows up to \(i \) applications of \(\text{tail} \). The true streams is the set \(\text{Stream} \ \infty \) and \(s : \text{Stream} \ \infty \) allows arbitrary many applications of \(\text{tail} \). When defining an element \(f : (i : \text{Size}) \rightarrow A \ i \rightarrow \text{Stream} \ i \) by corecursion, \((\text{tail} \ (f \ i \ a) \ [j]) \) must be an element of size \(\geq j \) which can refer to a corecursive call \((f \ j \ a')\), and we can apply functions to it as long as the resulting size is \(\geq j \). Elimination on the corecursive call is prevented, since we do not have access to any size \(<j \). However, we can apply size preserving and size increasing functions to the corecursive call. This guarantees that streams are productive. We have \(\infty : \text{Size}<\infty \), so a corecursive definition of elements of \(\text{Stream} \ \infty \) can refer to itself.

Agda offers \(\text{let} \) and \(\text{where} \) expressions in order to declare a local definition. In comparison, \(\text{where} \) expressions allow a pattern matching or recursive function, whereas pattern matching and recursive functions are not allowed in \(\text{let} \) expressions. In Agda the \(\text{let} \) expressions can be represented as follows:

\[
\text{let}
\begin{align*}
a_1 &: A_1 \\
a_1 &= s_1 \\
a_2 &: A_2 \\
a_2 &= s_2 \\
& \ldots \\
an &: A_n \\
an &= s_n
\end{align*}
\text{in } t
\]

In the above definition, we use \(\text{let} \) expressions in order to introduce new local constants:

\[
\begin{align*}
a_1 &: A_1 \ s.t. \ a_1 &= s_1, \\
a_2 &: A_2 \ s.t. \ a_2 &= s_2, \\
& \ldots \\
an &: A_n \ s.t. \ an &= s_n
\end{align*}
\]

The syntax for \(\text{where} \) is similar, except that the auxiliary definitions introduced by \(\text{where} \) occur after the main definition they are used in, whereas for \(\text{let} \) they occur before it.

\section{The Library CSP-Agda}

In this section we repeat the main definition of processes in CSP-Agda from \([22]\). The reader might consult that paper for a more detailed motivation of the definitions in CSP-Agda.
4.1 Representing CSP Processes in Agda

As outlined before, we represent processes in Agda in a monadic way. Therefore, a process $P : \text{Process} A$ is either a terminating process (terminate a), which has return value $a : A$, or it is process (node Q) which progresses. Here $Q : \text{Process}+ A$, where ($\text{Process}+ A$) is the type of progressing processes. A progressing process can proceed at any time with labelled transitions (external choices), silent transitions (internal choices), or ✓-events (termination).

After a ✓-event, the process becomes deadlocked, so there is no need to determine the process after that event. We will however add a return value $a : A$ to ✓-events. Note that there is a subtle difference between terminated processes and processes with termination events (see [23] for full details). Elements of ($\text{Process}+ A$) are therefore determined by

1. an index set E of external choices, and for each external choice e the Label (Lab e) and the next process (PE e);
2. an index set of internal choices I, and for each internal choice i the next process (PI i); and
3. an index set of termination choices T corresponding to ✓-events, and for each termination choice t the return value $\text{PT} t : A$.

In addition we add in CSP-Agda a type ($\text{Process} \infty A$). This makes it easy to define processes by guarded recursion, when the right hand side is defined directly and without having to define all 8 components\(^6\) of ($\text{Process}+ A$). Furthermore, in order to display processes, we add eliminators Str+ and Str∞ to ($\text{Process}+ A$) and ($\text{Process} \infty A$), respectively. They return a string representing the process. In case of ($\text{Process} \infty A$), this cannot be reduced to the string component of ($\text{Process}+ A$): in order to do this one would need a smaller size, which we do not have in general for arbitrary sizes.

We model the sets of external, internal, and termination choices as elements of an inductive-recursively defined universe Choice. Elements c of Choice are codes for finite sets, and (ChoiceSet c) is the set it denotes. In addition we define a string (choice2Str c) representing c, and a function choice2Enum which computes from c a list of all choices. This can be used to print a list of choices, for instance for testing or simulating CSP processes.

We require as well that the set of return values are elements of Choice. This allows us to print the result returned when a process terminates. However, for the return types it is not needed that they are finite sets. So one could use a different universe for the return values of processes, which would allow for instance the set of natural numbers as a return type.

The resulting code for processes in Agda is as follows\(^7\):

\[
\begin{aligned}
\text{record } \text{Process} \infty (i : \text{Size}) (c : \text{Choice}) : \text{Set} \text{ where} \\
\text{coinductive} \\
\text{field} \\
\end{aligned}
\]

\(^5\) For instance, let P_0 have a τ-transition to (terminate a), and an l'-transition to STOP. Let P_1 having a ✓-event with return value a and the same l'-transition to STOP. Process ($P_0 \parallel R$) can have a τ transition to (($\text{terminate} a$) $||$ R), a state in which it can refuse l'. Process ($P_1 \parallel R$) cannot execute the ✓-transition, since it needs to synchronise with a ✓-transition for R. It is stable, and cannot refuse l'.

\(^6\) The 8th component Str+ is introduced in the next sentence.

\(^7\) Both occurrences of coinductive are needed by the current version of Agda; one could argue that in case of Process+ Agda should allow to omit it, allowing η-equality for Process+.
Define Trace Semantics for CSP-Agda

\[\text{forcep} : \{ j : \text{Size} < i \} \to \text{Process } j \ c \]
\[\text{Str}_\infty : \text{String} \]

\[
\text{data Process } (i : \text{Size}) (c : \text{Choice}) : \text{Set where}
\]
\[\text{terminate} : \text{ChoiceSet } c \to \text{Process } i \ c \]
\[\text{node} : \text{Process+ } i \ c \to \text{Process } i \ c \]

\[
\text{record Process+ } (i : \text{Size}) (c : \text{Choice}) : \text{Set where}
\]
\[\text{constructor process+} \]
\[\text{coinductive} \]
\[\text{field} \]
\[E : \text{Choice} \]
\[\text{Lab} : \text{ChoiceSet } E \to \text{Label} \]
\[\text{PE} : \text{ChoiceSet } E \to \text{Process}_\infty \ i \ c \]
\[I : \text{Choice} \]
\[\text{PI} : \text{ChoiceSet } I \to \text{Process}_\infty \ i \ c \]
\[T : \text{Choice} \]
\[\text{PT} : \text{ChoiceSet } T \to \text{ChoiceSet } c \]
\[\text{Str}_+ : \text{String} \]

So an element of \text{Process+} is defined by copattern matching, e.g. by determining its components \(E, \text{Lab}, \text{PE}, \) etc. Note that the Agda notation \(E : \text{Choice} \) means that if we apply \(E \) to an element of \((\text{Process+ } i \ c)\) we obtain an element of \(\text{Choice} \), so the full type is \(\text{Process+ } i \ c \to \text{Choice} \). Therefore, an element of \(Q : \text{Process+} \) is determined by determining \(E \, Q \, : \text{Choice}, \text{Lab} \, Q \, l : \text{Label}, \) etc. An example of a process is as follows:

\[
P = \text{node } Q : \text{Process String} \text{ where}
\]
\[
P \ E \, Q \ = \ \text{code for } \{1, 2\} \quad I \ Q \ = \ \text{code for } \{3, 4\}
\]
\[
P \ T \ Q \ = \ \text{code for } \{5\}
\]
\[
P \ \text{Lab} \, Q \, 1 \ = \ a \quad \text{Lab} \, Q \, 2 \ = \ b \quad \text{PE} \, Q \, 1 \ = \ P_1
\]
\[
P \ \text{PE} \, Q \, 2 \ = \ P_2 \quad \text{PI} \, Q \, 3 \ = \ P_3 \quad \text{PI} \, Q \, 4 \ = \ P_4
\]
\[
P \ \text{PT} \, Q \, 5 \ = \ "STOP"
\]

The universe of choices is given by a set \text{Choice} of codes for choice sets, and a function \text{ChoiceSet}, which maps a code to the choice set it denotes. Universes were introduced by Martin-Löf (e.g. [26]) in order to formulate the notion of a type consisting of types. Universes are defined in Agda by an inductive-recursive definition [13, 12, 14, 15]: we define inductively the set of codes in the universe while recursively defining the decoding function.

We give here the code expressing that \text{Choice} is closed under \(\text{fin}, \psi', \times', \subset', \Sigma' \), and \text{namedElements}, which correspond to the set operations \(\text{Fin}, \psi, \times, \subset, \Sigma, \) and \text{NamedElements}. Here \(\text{fin } n \) denotes the set \(\text{(Fin } n \)\), which is the finite set having \(n \) elements. The element \((\Sigma' a \ b) \) denotes the set \(\left(\Sigma[x \in \text{ChoiceSet } a] \right) \left(\text{ChoiceSet } (b \ x) \right) \),
where $\{ x \in A \mid B \}$ is the set of pairs (x, y) where $x : A$ and $y : B$, and B might depend on x.\(^8\) The element $(\text{NamedElements } l)$ denotes the type $(\text{NamedElements } l)$, which is essentially $(\text{Fin } (\text{length } l))$.\(^9\) The function choice2Str will for elements of this set print the nth element of l, giving them more meaningful names.\(^10\) We do not equate $(\text{NamedElements } l)$ with $(\text{Fin } (\text{length } l))$. This facilitates type inference.\(^11\)

The set $(\text{subset } A f)$ is the set of $a : A$ such that $(f a)$ is true. The definition of ChoiceSet is as follows:

\[
\begin{align*}
data \text{ Choice} & : \text{ Set where} \\
\text{fin} & : \mathbb{N} \rightarrow \text{ Choice} \\
\text{\^} & : \text{ Choice} \rightarrow \text{ Choice} \rightarrow \text{ Choice} \\
\times & : \text{ Choice} \rightarrow \text{ Choice} \rightarrow \text{ Choice} \\
\text{namedElements} & : \text{ List String} \rightarrow \text{ Choice} \\
\text{subset'} & : (E : \text{ Choice}) \rightarrow (\text{ChoiceSet } E \rightarrow \text{ Bool}) \\
& \quad \rightarrow \text{ Choice} \\
\Sigma' & : (E : \text{ Choice}) \rightarrow (\text{ChoiceSet } E \rightarrow \text{ Choice}) \\
& \quad \rightarrow \text{ Choice} \\
\end{align*}
\]

$\text{ChoiceSet} : \text{ Choice} \rightarrow \text{ Set}$

$\text{ChoiceSet } (\text{fin } n) = \text{ Fin } n$

$\text{ChoiceSet } (s _\text{\^}_ t) = \text{ ChoiceSet } s _\text{\^}_ \text{ ChoiceSet } t$

$\text{ChoiceSet } (E \times' F) = \text{ ChoiceSet } E \times \text{ ChoiceSet } F$

$\text{ChoiceSet } (\text{namedElements } s) = \text{ NamedElements } s$

$\text{ChoiceSet } (\text{subset'} E f) = \text{ subset } (\text{ChoiceSet } E) f$

$\text{ChoiceSet } (\Sigma' A B) = \Sigma[x \in \text{ ChoiceSet } A] \text{ ChoiceSet } (B x)$

$\text{choice2Str} : \{ c : \text{ Choice} \} \rightarrow \text{ ChoiceSet } c \rightarrow \text{ String}$

$\text{choice2Str } \{ \text{fin } n \} = \text{ showN } (\text{toN } m)$

\[
\ddots
\]

$\text{choice2Enum} : \{ c : \text{ Choice} \} \rightarrow \text{ List } (\text{ChoiceSet } c)$

$\text{choice2Enum } \{ \text{fin } n \} = \text{ fin2Option0 } n$

\[
\ddots
\]

\(^8\) The type $(A \times' B)$ has essentially the same elements as $(\Sigma[x \in A] \mid B)$ for some fresh x. However, if we know a type C is of the form $(A \times' B)$, we can pattern match and obtain A and B from it, whereas from the form $(\Sigma[x \in A] \mid B)$ we can only infer A because B is a function type. This requires to make frequently hidden arguments A and B explicit.

\(^9\) It was suggested to us to let NamedElements depend on an n and an element of $(\text{Vec String } n)$. But those two elements are just a long form for writing an element of (List String). The only advantage of Vec is that the standard library has a lookup function for it, which should be added as well for List.

\(^10\) As pointed out by one of the anonymous referees, $(\text{fin } n)$ is redundant and could be replace by $(\text{namedElements } l)$ for some fresh l. We keep it because when developing proofs, $(\text{fin } n)$ behaves better because one does not have length expressions of the form $(\text{length } l)$ for some long expression l.

\(^11\) Assume c is a hidden argument of type Choice, and $l : \text{ ChoiceSet } c$. If we equated $(\text{NamedElements } l)$ with $(\text{Fin } (\text{length } l))$, then from the type of l we could not infer c, since in case $l : \text{Fin } n$ we could have $c = \text{fin } n$ and $c = \text{namedElements } l$ for some l. Therefore, one would need to make the hidden argument explicit.
4.2 Definition of the Monadic Bind, Interleaving, and the Parallel Operators

We introduce the three operators, for which we will prove algebraic properties in this paper: monadic bind, interleaving and the parallel operator. Monadic bind and interleaving have already been defined in [22], and are repeated here to make it easier to follow the proofs of the algebraic laws.

As in [22], when defining operators on processes, we introduce in most cases simultaneously operators on the three categories of processes Process\(\infty\), Process, and Process\(+\). We use qualifiers \(\infty\), \(p\), \(+\) attached to the operators for refer to the 3 categories of processes, respectively. For infix operators they will occur before the infix symbol if they refer to the first argument, otherwise after the infix symbol. Note that we deviate from [22], where all qualifiers were put after the symbol. We often omit \(p\). We have as well a string forming operation indicated by \(Str\). For some binary operators we need versions where the arguments are from different categories of processes, in which case we add two qualifiers to the operators, one before and one after the operator, and sometimes we need even 3 or more qualifiers. We will only present the main cases of the operators. Especially, we will usually omit the functions involving Process\(\infty\), which follow usually the same pattern (an example can be found in Subsect. 4.2.1 below when defining \(\infty\gg_\)) The full code can be found at [21].

4.2.1 The Monadic Bind Operator

In our article [22] we introduced the monadic bind operation. In Sect. 6.2 we will prove the monadic laws and therefore will briefly repeat the definition of the monadic bind. A more extensive motivation can be found in [22]. The monadic bind \((P \gg__Q)\) allows to compose two processes \(P\) and \(Q\) while allowing the second process depend on the return type \(c_0\) of \(P\). So \(Q\) has an an extra argument of the return type \((ChoiceSet c_0)\).

Let us consider first the version \(_+\gg_\) where the first process is an element of set of progressing processes Process\(+\). The transitions of \((P + \gg_ Q)\) are as follows: First they follow external and internal choices of \(P\). If \(P\) is the terminated process with return type \(a\), the process continues as process \((Q a)\). A special case is a termination event in \(P\) with return value \(a\). Following the operational semantics of CSP, \((P + \gg_ Q)\) has in this case an internal choice (i.e. a \(\tau\)-transition) to process \((Q a)\). In total, \((P + \gg_ Q)\) has two possible internal choice events, namely internal choices of \(P\) and termination events of \(P\). It has no termination events.

In case of the monadic bind \(_\gg_\) on Process, we have a special case, when \(P = terminate x\). In this case \(P \gg_ Q\) is equal to \((Q x)\) (one needs to apply forcep in order to obtain an element of Process). This is different from termination events for \(P\), where a silent transition is required before obtaining \((Q x)\). In case of progressing processes \(P \gg_ Q\) makes a direct call to \(_\gg_\). The function \(_\gg_\) makes as well a direct call to \(_\gg_\).

The full definition of monadic bind is as follows (the symbol “()” in the definition of \(PT\) below denotes the empty case distinction on the empty type \((ChoiceSet \emptyset)\))\(^{12}\):

\[
_\gg__Str_ : \{c_0 : Choice\} \to String
\to (ChoiceSet c_0 \to String) \to String
s \gg__Str f = s + +s " ; " + +s choice2Str2Str f
\]

\(^{12}\) Note that \(+ +s \) is concatenation of string.
4.2.2 The Interleaving Operator

The interleaving operator executes the external and internal choices of its arguments \(P \) and \(Q \) completely independently of each other. The CSP rules are as follows (having two conclusions of a rule is an abbreviation for two rules having the same premises: one deriving the first and one deriving the second conclusion):

\[
\frac{P \xrightarrow{} \bar{P}}{P || Q \xrightarrow{} \bar{P} || Q} \quad \quad \frac{P \xrightarrow{\mu} \bar{P}}{P || Q \xrightarrow{\mu} \bar{P} || Q} \quad \quad \mu \neq \checkmark
\]

The definition of the two main cases in CSP-Agda is as follows:

\[_ ||_ : \{i : \text{Size}\} \rightarrow \{c_0, c_1 : \text{Choice}\} \rightarrow \text{Process} \ i \ c_0 \rightarrow \text{Process} \ i \ c_1 \]

\[\node \ P || \node \ Q = \node \ (P +||+ \ Q) \]

\[\text{terminate} \ \ a \ || \ Q = \text{fmap} \ (\lambda \ b \rightarrow (a ,, b)) \ Q \]

\[\text{terminate} \ b = \text{fmap} \ (\lambda \ a \rightarrow (a ,, b)) \ P \]

\[_ +|||_ : \{i : \text{Size}\} \rightarrow \{c_0, c_1 : \text{Choice}\} \rightarrow \text{Process}^+ \ i \ c_0 \rightarrow \text{Process}^+ \ i \ c_1 \]

\[\text{E} \ (P +||| = Q) = \text{E} \ P \]

\[\text{Lab} \ (P +||| = Q) = \text{Lab} \ P \]

\[\text{PE} \ (P +||| = Q) \ c = \text{PE} \ P \ c _||| = Q \]

\[\text{I} \ (P +||| = Q) = \text{I} \ P \ ||| \ T \ P \]

\[\text{PI} \ (P +||| = Q) \ (\text{inj}_1 \ c) = \text{PI} \ P \ c _||| = Q \]

\[\text{PI} \ (P +||| = Q) \ (\text{inj}_2 \ c) = Q \ (\text{PT} \ P \ c) \]

\[\text{T} \ (P +||| = Q) = \emptyset' \]

\[\text{Str}^+ \ (P +||| = Q) = \text{Str}^+ \ P _||| = \text{Str}^+ \ (\text{Str}^+ \ o \ Q) \]

\[\text{Types} \ 2016 \]
12:12 Defining Trace Semantics for CSP-Agda

→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×′ c1)

E (P +||| Q) = E P ⊔ E Q
Lab (P +||| Q) (inj1 c) = Lab P c
Lab (P +||| Q) (inj2 c) = Lab Q c
PE (P +||| Q) (inj1 c) = PE P c∞||| Q c
PE (P +||| Q) (inj2 c) = P +|||∞ PE Q c
I (P +||| Q) = I P ⊔ I Q
Pl (P +||| Q) (inj1 c) = Pl P c∞||| Q c
Pl (P +||| Q) (inj2 c) = P +|||∞ Pl Q c
T (P +||| Q) = T P ×′ T Q
PT+ (P +||| Q) (c , c1) = (PT P c , PT Q c1)
Str+ (P +||| Q) = Str+ P |||Str Str+ Q

When processes P and Q have not terminated, then (P ||| Q) will not terminate. The external choices are the external choices of P and Q. The labels are the labels from the processes P and Q, and we continue recursively with the interleaving combination. The internal choices are defined similarly. A termination event can happen only if both processes have a termination event.

If one process terminates but the other not, the rules of CSP express that one continues as the other process, until it has terminated. We can therefore equate, if P has terminated, (P ||| Q) with Q. However, we record the result obtained by P, and therefore apply fmap to Q in order to add the result of P to the result of Q when it terminates. Here (fmap f P) is the process obtained from P by applying f to any termination results.

If both processes terminate with results a and b, then, the interleaving combination terminates with result (a , b), since (fmap (λ b → (a , b)) (terminate b)) evaluates to this expression.

4.2.3 The Parallel Operator

The parallel operator gives the possibility to enforce two processes to work together and interact through synchronous events. For each of the two processes sets of labels A, B are given. For labels which are not in the intersection, both processes can execute independently, as long as their processes are in A or B, respectively. For labels in the intersection, both processes need to synchronise on that event. The transition rules for the parallel operator are as follows:

\[
\frac{P \xrightarrow{a} \bar{P} \quad Q \xrightarrow{a} \bar{Q}}{P \parallel_B Q \xrightarrow{a} \bar{P} \parallel_B \bar{Q}} \quad \text{[} a \in A' \cap B' \text{]} \quad \frac{P \xrightarrow{\mu} \bar{P}}{P \parallel_B Q \xrightarrow{\mu} P \parallel_B \bar{Q}} \quad \text{[} \mu \in ((A \cup \tau) \setminus B) \text{]} \quad \frac{Q \parallel_B P \xrightarrow{a} \bar{Q} \parallel_B \bar{P}}{Q \parallel_B P \parallel_B Q \xrightarrow{a} Q \parallel_B \bar{P} \parallel_B \bar{Q}}
\]

In CSP-Agda we define the parallel operator as follows: Assume A B : Label → Bool, which determine the label sets A and B as above. The external choices of (P [A] +|+[B] Q) are:

= The external choices of c : E P, for which the label in P is in (A \ B), i.e. such that ((A \ B) (Lab P c)) = true. Here (A \ B) : Label → Bool is defined by (A \ B) b = true if and only if A b = true and B b = false. For such c the label for this external choice is the label of P for choice c, and the process obtained following this transition is the parallel construct applied to (PE P c) and Q.
The external choices of $c : E \ Q$, for which the label in Q is in $(B \setminus A)$, with similar definitions of the label and next process obtained.

The combined external choices for P and Q, i.e. pairs (e_1, e_2) s.t. $e_1 : E P$ and $e_2 : E Q$, and s.t. their labels are equal, and the labels are in A and in B, i.e. such that

$$(\text{Lab } P e_1 \equiv_l \text{Lab } Q e_2) \land A (\text{Lab } P e_1) \land B (\text{Lab } Q e_2) = \text{true}$$

Here \equiv_l is Boolean valued equality on Labels, and \land is Boolean valued conjunction. The label for this external choice is the label of P (which is w.r.t. \equiv_l equal to the corresponding label of Q). The process obtained when following this external choice is the parallel construct applied to the result of following the external choices in both P and Q.

Furthermore

The internal choices are the internal choices of P and Q, and the process obtained when following those transitions is obtained by following the corresponding transition in process P or Q, respectively.

A termination event can happen only if both processes have a termination event. If they terminate with results a and b, then the parallel combination terminates with result (a, b). Therefore the result type of the parallel construct is the product of the result type of the first and second process.

In order to define the above we use the $\operatorname{subset'}$ constructor of Choice which has equality rule

$$\operatorname{ChoiceSet}(\operatorname{subset'} E f) = \operatorname{subset} (\operatorname{ChoiceSet} E) f$$

Here, $(\operatorname{subset'} a f)$ is the set of pairs $(\operatorname{sub} a b)$ such that $a : A$ and $b : T (f a)$, i.e. it is essentially the set $\{a : A \mid f a = \text{true}\}$. We have $T : \text{Bool} \rightarrow \text{Set}$, such that $(T \text{ true})$ is provable and $(T \text{ false})$ is empty, i.e. not provable.

The definition of the parallel operator in CSP-Agda for $\text{Process}+$ is as follows:

$$\begin{align*}
\equiv_l & : \{i : \text{Size}\} \rightarrow \{c_0, c_1 : \text{Choice}\} \\
& \rightarrow \text{Process} + i c_0 \\
& \rightarrow (A B : \text{Label} \rightarrow \text{Bool}) \\
& \rightarrow \text{Process} + i c_1 \\
& \rightarrow \text{Process} + i (c_0 \times' c_1) \\
\equiv_l & (E (P [A] +||+[B] Q)) = \operatorname{subset'} (E P) ((A \setminus B) \circ (\text{Lab } P)) \omega' \\
& \operatorname{subset'} (E Q) ((B \setminus A) \circ (\text{Lab } Q)) \omega' \\
& \operatorname{subset'} (E P \times' E Q) \\
& (\lambda \{(c_1, c_2)\}) \\
& \rightarrow \text{Lab } P e_1 \equiv_l \text{Lab } Q e_2 \land A (\text{Lab } P e_1) \land B (\text{Lab } Q e_2)) \\
\text{Lab} & (P [A] +||+[B] Q) (\text{inj}_1 (\text{inj}_2 (\operatorname{sub} c p))) = \text{Lab } P c \\
\text{Lab} & (P [A] +||+[B] Q) (\text{inj}_1 (\operatorname{sub} c p)) = \text{Lab } Q c \\
\text{Lab} & (P [A] +||+[B] Q) (\text{inj}_2 (c_0 \times' c_1)) = \text{Lab } P c_0 \\
\text{PE} & (P [A] +||+[B] Q) (\text{inj}_1 (\operatorname{sub} c p)) = \text{PE } P e [A] +||+[B] Q \\
\text{PE} & (P [A] +||+[B] Q) (\text{inj}_2 (\operatorname{sub} c p)) = P [A] +||+[B] \text{ PE } Q c \\
\text{PE} & (P [A] +||+[B] Q) (\text{inj}_2 (c_0 \times' c_1)) = \text{PE } P c_0 [A] +||+[B] \text{ PE } Q c_1 \\
\text{I} & (P [A] +||+[B] Q) = 1 P \omega' 1 Q \\
\text{PI} & (P [A] +||+[B] Q) (\text{inj}_1 c) = \text{PI } P c [A] +||+[B] Q \\
\text{PI} & (P [A] +||+[B] Q) (\text{inj}_2 c) = P [A] +||+[B] \text{ PI } Q c
\end{align*}$$
Defining Trace Semantics for CSP-Agda

\[
\begin{align*}
T \ (P [A] || B) Q & = T \times T Q \\
PT \ (P [A] || B) Q (c_0 \ldots c_1) & = (PT P c_0 \ldots PT Q c_1) \\
Str+ (P [A] || B) Q & = Str+ P [A] || Str[B] Str+ Q
\end{align*}
\]

When defining the parallel construct for elements of Process, we need to deal with the case one of the processes is the terminated process. As for \(-\|-\) one continues in this case as the other process, until it has terminated. However, in case of \(P\) having terminated, only labels in the set \((B \setminus A)\) are allowed for \(Q\). We can therefore equate, if \(P\) has terminated, \((P [A] || B) Q\) with \((Q \setminus (B \setminus A))\). Here for a process \(P^*\) and a set of labels \(A'\) the process \(P \uparrow A'\) is the process obtained by restricting the external transitions to those with label in \(A'\). Note that this is different from hiding, external transitions with labels not in \(A'\) are not turned into \(\tau\)-transitions. As for \(-\|-\) we need to record the result obtained by \(P\), and therefore apply \(fmap\) to \(Q\) in order to add the result of \(P\) to the result of the restriction of \(Q\), when it terminates.

The definition of the parallel operator for Process is therefore as follows:

\[
\begin{align*}
-[-][-]: \{i: \text{Size}\} \to \{c_0 \ldots c_1: \text{Choice}\} \\
& \to \text{Process} i c_0 \\
& \to (A B: \text{Label} \to \text{Bool}) \\
& \to \text{Process} i c_1 \\
& \to \text{Process} (c_0 \times c_1) \\
\text{node} P [A][B] \text{ node } Q & = \text{node} (P [A] || B) Q \\
\text{terminate} a [A][B] Q & = \text{fmap} (\lambda b \to (a \ldots b)) (Q \setminus (B \setminus A)) \\
P [A][B] \text{ terminate } b & = \text{fmap} (\lambda a \to (a \ldots b)) (P \setminus (A \setminus B))
\end{align*}
\]

5 Defining Trace Semantics for CSP-Agda

In CSP, traces of a process are the sequences of actions or labels of external choices a process can perform. Since the processes in CSP, are non-deterministic, a process can follow different traces during its execution. The trace semantics of a process is the set of its traces. Since in CSP-Agda processes are monadic, we need to record, in case after following a trace we obtain a terminated process, the result returned by the process following this trace. So we add a possible element of the result set to the trace. We can use for the set of possible elements the set \((\text{Maybe} (\text{ChoiceSet} c))\). Here the type \((\text{Maybe} A)\) has elements \((\text{just} a)\) for \(a: A\), denoting defined elements, and an undefined element \(\text{nothing}\). So \((\text{just} a)\) denotes that the process has terminated with result \(a\), whereas \(\text{nothing}\) means that it has not terminated (or more precisely not been determined to have terminated\(^\text{13}\)).

Taking this together, we obtain that traces are given by a list of labels and an element of \((\text{Maybe} (\text{ChoiceSet} c))\). We define the set of traces \((\text{Tr} l m P)\) as a predicate which determines for a process the lists of labels \(l\) and elements \(m: \text{Maybe} (\text{ChoiceSet} c)\), which form a trace. We define as well traces \((\text{Tr}+ l m P)\) and \((\text{Tr}\infty l m P)\) for processes in \text{Process}+ and \text{Process}\infty, respectively.

In the trace semantics of CSP, a process having a termination event has two traces, the empty list, and the list consisting of a \(✓\)-event. In order to be consistent with CSP, we will add therefore in case of a termination event or terminated process two traces: the empty list

\(^{13}\) A process having trace \(l\) with result \((\text{just} a)\) has as well trace \(l\) with result \(\text{nothing}\), see below.
For an element of \((\text{Process}^+ \, \infty \, c)\) we obtain the following traces:

- The empty trace without termination is a trace of any process, and we denote the proof by \(\text{empty}\).
- If a process \(P\) has external choice \(x\), then from every trace for the result of following this choice, consisting of a list of labels \(l\) and a possible result \(res\), we obtain a trace of \(P\) consisting of the result of adding in front of \(l\) the label of that external choice, and of the same possible result \(res\). The resulting proof will be denoted by \((\text{extc} \, l \, res \, x \, tr)\).
- Internal choices are ignored in traces. Therefore if a process \(P\) has an internal choice \(x\), every trace of the result of following this choice is as well a trace of \(P\). The proof is denoted by \((\text{intc} \, l \, res \, x \, tr)\).
- If a process has a termination event \(x\) with return value \(t\), then the empty trace with termination choice \((\text{just} \, t)\) is a trace of process, having proof \((\text{terc} \, x)\).

The corresponding definition for \(\text{Process}^+\) is as follows:

```haskell
data Tr+ {c : Choice} : (l : List Label) \rightarrow \text{Maybe} ((\text{ChoiceSet} \, c)) \rightarrow (P : \text{Process}^+ \, \infty \, c) \rightarrow \text{Set} where
empty : \{P : \text{Process}^+ \, \infty \, c\} \rightarrow Tr+ [] \text{nothing} \, P
extc : \{P : \text{Process}^+ \, \infty \, c\} \rightarrow (l : \text{List Label}) \rightarrow (res : \text{Maybe} ((\text{ChoiceSet} \, c))) \rightarrow (\text{ChoiceSet} \, (\text{E} \, P)) \rightarrow Tr\infty \, l \, res \, (\text{PE} \, P \, x) \rightarrow Tr+ (\text{Lab} \, P \, x :: l) \, res \, P
intc : \{P : \text{Process}^+ \, \infty \, c\} \rightarrow (l : \text{List Label}) \rightarrow (res : \text{Maybe} ((\text{ChoiceSet} \, c))) \rightarrow (\text{ChoiceSet} \, (\text{I} \, P)) \rightarrow Tr\infty \, l \, res \, (\text{IP} \, P \, x) \rightarrow Tr+ \, l \, res \, P
terc : \{P : \text{Process}^+ \, \infty \, c\} \rightarrow (x : \text{ChoiceSet} \, c) \rightarrow Tr+ [] (\text{just} \, (\text{PT} \, P \, x)) \, P
```

In case of \(\text{Process}\) we need to consider the termination events:

- The terminated process has two traces, namely the empty list of labels \([]\) with termination event \(\text{nothing}\), and the same list but with termination event \((\text{just} \, x)\), where \(x\) is the return value.
- The traces of a non-terminated process are the traces of the corresponding element of \(\text{Process}^+\).

We obtain the following definition of the traces of \(\text{Process}\):

```haskell
data Tr {c : Choice} : (l : List Label) \rightarrow \text{Maybe} ((\text{ChoiceSet} \, c)) \rightarrow (P : \text{Process} \, \infty \, c) \rightarrow \text{Set} where
ter : (x : \text{ChoiceSet} \, c) \rightarrow Tr [] (\text{just} \, x) \, (\text{terminate} \, x)
empty : (x : \text{ChoiceSet} \, c) \rightarrow Tr [] \text{nothing} \, (\text{terminate} \, x)
tnode : \{l : \text{List Label}\} \rightarrow \{x : \text{Maybe} ((\text{ChoiceSet} \, c))\} \rightarrow (P : \text{Process} \, \infty \, c) \rightarrow Tr+ \, (\text{node} \, P)
```

Finally the traces for \(\text{Process}\infty\) are just the traces of the underlying \(\text{Process}\):

```haskell
record Tr\infty {c : Choice} (l : List Label) (res : \text{Maybe} ((\text{ChoiceSet} \, c))) (P : \text{Process}\infty \, c) : \text{Set} where
coinductive
field
forcet : Tr l res (forcep P)
```

In CSP, a process P refines a process Q, written $(P \sqsubseteq Q)$ if and only if any observable behaviour of Q is an observable behaviour of P, i.e. if $\text{traces}(Q) \subseteq \text{traces}(P)$:

$$
\sqsubseteq: \{(c: \text{Choice}) \mid (P: \text{Process } \infty c) (Q: \text{Process } \infty c) \rightarrow \text{Set} \} \\
\sqsubseteq (e) \triangleright Q = (l: \text{List Label}) \rightarrow (m: \text{Maybe (ChoiceSet } c)) \rightarrow \text{Tr } l \ m \ Q \rightarrow \text{Tr } l \ m \ P
$$

Two processes P, Q are equal w.r.t. trace semantics, written $P \equiv Q$, if they refine each other, i.e. if $\text{traces}(P) = \text{traces}(Q)$:

$$
\equiv: \{(c_0: \text{Choice}) \rightarrow (P Q: \text{Process } \infty c_0) \rightarrow \text{Set} \} \\
\equiv P Q = P \sqsubseteq Q \times Q \sqsubseteq P
$$

6 Proof of the Algebraic Laws

Trace equivalence gives rise to algebraic laws for individual operators, and also concerning the relationships between different operators. Laws for individual operators are concerned with general algebraic properties such as commutativity and associativity of operators, the identification of zeros and units for specific operators, and idempotence of operators; these properties allow a process to be composed in any order, and allow process descriptions to be simplified. An example of the relationship between different operators is the expansion of the interleaving of processes, each of which is introduced by an event prefix, into a prefix choice process. We will present examples of how to prove algebraic laws of CSP in Agda using this semantics. The examples covered in this article are commutativity of interleaving and parallel, and the monad laws for the monadic extension of CSP. Further examples will be available in the repository of CSP-Agda.

6.1 Proof of the Laws of Refinement

The refinement relation is reflexive, anti-symmetric and transitive, i.e. fulfills the following laws:

- $P \sqsubseteq P$
- $P_0 \sqsubseteq P_1 \land P_1 \sqsubseteq P_0 \Rightarrow P_0 = P_1$
- $P_0 \sqsubseteq P_1 \land P_1 \sqsubseteq P_2 \Rightarrow P_0 \sqsubseteq P_2$

These laws are a direct consequence of the fact that $P \sqsubseteq Q$ means essentially $\text{traces}(Q) \subseteq \text{traces}(P)$ and $P \equiv Q$ means $\text{traces}(P) = \text{traces}(Q)$:

$$
\sqsubseteq: \{(c: \text{Choice}) \mid (P: \text{Process } \infty c) \rightarrow P \sqsubseteq P \} \\
\sqsubseteq e \triangleright P l m x = x
$$

$$
\equiv: \{(c_0: \text{Choice}) \rightarrow (P Q: \text{Process } \infty c_0) \rightarrow P \sqsubseteq Q \rightarrow Q \sqsubseteq P \rightarrow P \equiv Q \} \\
\equiv P Q PQ QP = PQ \times QP
$$

$$
\subseteq: \{(c: \text{Choice}) \mid (P: \text{Process } \infty c) (Q: \text{Process } \infty c) (R: \text{Process } \infty c) \rightarrow P \sqsubseteq Q \rightarrow Q \sqsubseteq R \rightarrow P \sqsubseteq R \} \\
\sqsubseteq e \triangleright P l m x = x
$$
6.2 Proof of the Monadic Laws

We defined processes in a monadic way, and will in this section prove the monad laws for processes.

In functional programming, a monad is given by a functor \mathcal{M} together with morphisms $\Rightarrow : \mathcal{M} A \to (A \to \mathcal{M} B) \to \mathcal{M} B$ and $\text{return} : A \to \mathcal{M} A$ such that the following laws hold:

\[
\begin{align*}
\text{return } a & \Rightarrow f = f a \\
 p \Rightarrow \text{return} & = p \\
 (p \Rightarrow f) \Rightarrow g & = \left(\lambda x \to f \Rightarrow g\right)
\end{align*}
\]

For each monadic law we have to prove 2 directions, (“\(\sqsubseteq\)” and “\(\sqsupseteq\)”). Furthermore the laws need to be shown for Process^+, Process and $\text{Process}\infty$. We will present only one direction and one version of the processes for each law. Since proofs of \equiv just follow from the left to right and right to left refinement, we will present this proof only for the first monadic law.

The proof of the first monadic law is trivial since $\text{terminate } a \Rightarrow P$ is definitionally equal to P:

\[
\begin{align*}
\text{monadLaw}_{1} : \{c_0 \ c_1 : \text{Choice}\} \ (a : \text{ChoiceSet} c_0) (P : \text{ChoiceSet} c_0 \to \text{Process} \infty c_1) & \to (\text{terminate } a \Rightarrow P) \sqsubseteq P a \\
\text{monadLaw}_{1} a P l m q & = q \\
\equiv \text{monadLaw}_{1} : \{c_0 \ c_1 : \text{Choice}\} \ (a : \text{ChoiceSet} c_0) (P : \text{ChoiceSet} c_0 \to \text{Process} \infty c_1) & \to (P a) \equiv (\text{terminate } a \Rightarrow P) \\
\equiv \text{monadLaw}_{1} \{c_0\} \ c_1 \ a \ P & = (\text{monadLaw}_{1} \ a \ P) (\text{monadLaw}_{1} \ a \ P)
\end{align*}
\]

In case of the second monadic law the proof is by induction over the proofs of traces for $(P \Rightarrow \equiv \text{terminate})$, which immediately turn into traces of P:

\[
\begin{align*}
\text{monadLaw}_{2+} : \{c_0 : \text{Choice}\} \ (P : \text{Process}^+ \infty c_0) & \to (P \Rightarrow \equiv \text{terminate}) \sqsubseteq+ P \\
\text{monadLaw}_{2+} P \ \text{nothing empty} & = \text{empty} \\
\text{monadLaw}_{2+} P \ \text{[Lab} \ P x :: l m \text{ extc } l m x x_1\text{]} & = \text{extc } l m x (\text{monadLaw}_{2+} \infty (PE \ P x) l m x_1) \\
\text{monadLaw}_{2+} P l m \text{ (intc } l m x x_1\text{)} & = \text{intc } l m (\text{inj} \ x) (\text{monadLaw}_{2+} \infty (PI \ P x) l m x_1) \\
\text{monadLaw}_{2+} P \ \text{[just (PT P x)](terc } x\text{)} & = \text{intc } [\text{just (PT P x)}] (\text{inj} \ x) (\text{lemTrTerBind} \ P x)
\end{align*}
\]

In third monadic law the proof is by induction over the proofs of traces for $(P \Rightarrow \equiv (Q \Rightarrow \equiv R))$. In most cases the proof of traces carry over after applying the induction hypothesis. One special case if the first process P has a termination event, which results in an internal choice to $(Q x \Rightarrow \equiv R)$ on both sides. In this case the traces are essentially the same, but only after applying forcet. We use here an operation $\text{monadPT}+$, which is modulo an application of forcet equal to tr. There are no immediate termination events, and therefore no proofs of traces of the form $\text{terc } x$. We use efq (ex falsum quodlibet), which constructs from an element of the empty set an element of any set, for dealing with this case. The resulting proof is as follows:
6.3 Proof of Commutativity of the Interleaving Operator

The interleaving combination \((P \| Q)\) executes each component completely independent of the other, until termination. Traces of the interleaving combination \((P \|\| Q)\) will, therefore, appear as interleaving of traces of the two component, and therefore it is easy to see that \((P \|\| Q)\) and \((Q \|\| P)\) are trace equivalent.

However, because of the monadic setting, for most algebraic laws the return types of the left and right hand side of an equation are different. Assume the return types of \(P\) and \(Q\) are \(c_0\) and \(c_1\), respectively. Then for instance the return type of \((P \|\| Q)\) is \((c_0 \times c_1)\) whereas the return type of \((Q \|\| P)\) is \((c_1 \times c_0)\). Therefore the algebraic laws hold only modulo applying an adjustment of the return types using the operation \(\text{fmap}\), which applies a function to the return types.

Once we have taken this into account, a proof of commutativity of \(\|\|\|\) is obtained by exchanging the external/internal/termination choices, which means swapping \(\text{inj}_1\) and \(\text{inj}_2\). Here \(\text{inj}_1\) refers to choices in the first and \(\text{inj}_2\) to choices in the second process. We give here the main case referring to \(\text{Process}+\) (\(\text{swap}_\times\) swaps the two sides of a product):

\[
\begin{align*}
\text{S+|||+} & : \{c_0, c_1 \ : \ \text{Choice}\} \ (P : \text{Process}+ \infty c_0) \ (Q : \text{Process}+ \infty c_1) \\
& \quad \rightarrow (P +\|\|+ Q) \ n = (\text{fmap}+ \text{swap}_\times (Q +\|\|+ P)) \\
\text{S+|||+} & : \{c_0, c_1 \ : \ \text{Choice}\} \ (P : \text{Process}+ \infty c_0) \ (Q : \text{Process}+ \infty c_1) \\
& \quad \rightarrow (P +\|\|+ Q) \equiv+ (\text{fmap}+ \text{swap}_\times (Q +\|\|+ P)) \\
\text{S+|||+} & : \{c_0, c_1 \ : \ \text{Choice}\} \ (P : \text{Process}+ \infty c_0) \ (Q : \text{Process}+ \infty c_1) \\
& \quad \rightarrow (P +\|\|+ Q) = (S+|||+ P) \ (S+|||+ Q) \\
\end{align*}
\]
6.4 Proof of Commutativity of the Parallel Operator

Most cases in the proof of the commutativity of \([_] ||+ [_] \) are similar to the proof of commutativity \([_] ||= [_] \) – one swaps \(\text{inj}_1 \) and \(\text{inj}_2 \) and uses induction. The only more difficult case is when we have two processes synchronising, resulting in both processes following choices having the same labels. This case uses a proof that the two choices for the two processes result have the same label and that both labels are in the synchronised sets. We obtain in this case from a proof that we have a trace a proof of the Boolean conjunction:

\[
\text{Lab } Q x \equiv_l \text{Lab } P x_1 \land B (\text{Lab } X x) \land A (\text{Lab } P x_1)
\]

which we need to transform into a proof of the Boolean conjunction

\[
\text{Lab } P x_1 \equiv_l \text{Lab } Q x \land A (\text{Lab } X x_1) \land B (\text{Lab } P x)
\]

We will make use of functions which introduce and eliminate proofs of Boolean conjunctions, i.e.

\[
\begin{align*}
\land \text{BoolIntro} & : (a \ b : \text{Bool}) \rightarrow T a
\rightarrow T b
\rightarrow T (a \land b) \\
\land \text{BoolEliml} & : (a \ b : \text{Bool}) \rightarrow T (a \land b)
\rightarrow T a \\
\land \text{BoolElimr} & : (a \ b : \text{Bool}) \rightarrow T (a \land b)
\rightarrow T b
\end{align*}
\]

Furthermore, we make use of a proof \(\text{sym} \) of symmetry of the Boolean equality \(\equiv_l \) on labels, and the transfer lemma

\[
\text{transf} : (Q : \text{Label} \rightarrow \text{Set})
\rightarrow (l \ l' : \text{Label})
\rightarrow T (l \equiv_l l')
\rightarrow Q l
\rightarrow Q l'
\]

We now take the proof of the conjunction apart into its three components, apply the proof of symmetry to the equality proof and recombine them. Finally we need to carry out a transfer to replace the first label (\(\text{Lab } P x_1 \)) in the trace by (\(\text{Lab } Q x \)), which are known to be equal. The resulting proof is as follows:

\[
\begin{align*}
\text{S+||+} & : \{(c_0 \ c_1 : \text{Choice}) \ (P : \text{Process}^+ \infty c_0) \ (A B : \text{Label} \rightarrow \text{Bool}) \ (Q : \text{Process}^+ \infty c_1) \\
& \rightarrow (P [A]+[B] Q) \subseteq+ \text{fmap}+ \text{swap} \times (Q [B]+[A] P)
\end{align*}
\]

\[
\begin{align*}
\text{S+||+} & \text{BPQ} x & \equiv \emptyset \\
\text{S+||+} & \text{BPQ} x & = \text{empty}
\end{align*}
\]

\[
\begin{align*}
\text{S+||+} & \text{BPQ} x \equiv \{l \ l' : \text{Label} \} \rightarrow T (l \equiv_l l')
\rightarrow Q l
\rightarrow Q l'
\end{align*}
\]
Defining Trace Semantics for CSP-Agda

\[AP_{x_1} : T (A (Lab P x_1)) \]
\[AP_{x_1} = \land \text{BoolElimr} (B (Lab Q x)) (A (Lab P x_1)) \]
\[(\land \text{BoolElimr} (Lab Q x \equiv_l Lab P x_1)) \]
\[(B (Lab Q x) \land A (Lab P x_1)) x_2 \]

\[lx_1 lx : T (Lab P x_1 \equiv_l Lab Q x) \]
\[lx_1 lx = \text{sym} (Lab Q x) (Lab P x_1) lx lx \]

\[x_2 ' : T ((Lab P x_1 \equiv_l Lab Q x) \land A (Lab P x_1) \land B (Lab Q x)) \]
\[x_2 ' = \land \text{BoolIntro} (Lab P x_1 \equiv_l Lab Q x) \]
\[(A (Lab P x_1) \land B (Lab Q x)) \]
\[lx lx \]
\[(\land \text{BoolIntro} (A (Lab P x_1)) (B (Lab Q x)) AP_{x_1} BQx) \]

\[auxpr : \text{Tr+} (Lab P x_1 :: l) m (P \ [A] \oplus ||+ [B] Q) \]
\[auxpr = \text{extc} l m (\text{inj} 2 (\text{sub} (x_1 .. x)) x_2 ') \]
\[(S_{\infty}\ ||+ (PE P x_1) A B Q l m x_3) \]

\[\text{in transf} (\land l' \rightarrow \text{Tr+} (l' :: l) m (P \ [A] \oplus ||+ [B] Q)) \]
\[(Lab P x_1) (Lab Q x) lx lx auxpr \]

\[S_{\infty}\ ||+ P A B Q l m (\text{intc} . l . m (\text{inj}_1 x)) x_1 = \text{intc} l m (\text{inj}_2 x) (S_{\infty}\ ||+ P A B (PI Q x) l m x_1) \]
\[S_{\infty}\ ||+ P A B Q l m (\text{intc} . l . m (\text{inj}_2 y) x_1) = \text{intc} l m (\text{inj}_1 y) (S_{\infty}\ ||+ (PI P y) A B Q l m x_1) \]
\[S_{\infty}\ ||+ P A B Q (\text{just} (PT P x_1 .. PT Q x)) (\text{terc} (x .. x)) = \text{terc} (x_1 .. x) \]

\[\equiv_{||+} : \{ c_0 \ c_1 : \text{Choice} \} (P : \text{Process} \infty c_0)(A B : \text{Label} \rightarrow \text{Bool})(Q : \text{Process} \infty c_1) \]
\[\rightarrow (P \ [A] \oplus ||+ [B] Q) \equiv_{||+} (\text{fmap} \ \text{swap} \times (((Q \ [B] \oplus ||+ [A] P))) \]
\[\equiv_{||+} P A B Q = (S_{\infty} \oplus ||+ P A B Q), (S_{\infty} \oplus ||+ r P A B Q) \]

7 Related Work and Conclusion

Related Work. A detailed report on related work, which we do not want to repeat here, can be found in our previous paper [22].

Conclusion. The aims of this research is to give the type theoretic interactive theorem prover Agda the ability to model and verify concurrent programs by representing the process algebra CSP in monadic form. We implement trace semantics of CSP in Agda, together with the corresponding refinement and equality relation, formally in CSP-Agda. In order to demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic laws of CSP based on the trace semantics. In our approach we define processes coinductively and the trace semantic inductively.

Future Work. We are currently working on defining the failures/divergences model and stable failures model of CSP in Agda. Since those semantics are rather complicated, proofs of algebraic properties are much more involved. The first author has developed elements
of the European Rail Traffic Management System ERTMS [16] in CSP, and one goal is to implement those processes in CSP-Agda and prove safety properties. For larger case studies automated theorem proving techniques will be used. Here we can build on Kanso’s PhD thesis [24] (see as well [25]), in which he verified real world railway interlocking systems in Agda. Verifying larger examples might require to upgrade the integration of SAT solvers into Agda2, which has been developed by Kanso [24], to the current version of Agda.

One goal is to integrate the CSP model checker FDR2 into Agda. One ambitious goal is to write prototypes of programs, e.g. of some elements of the ERTMS, in Agda and make them directly executable in Agda. This uses the unique feature of Agda of being both a theorem prover and a dependently typed programming language. So in Agda there is no distinction between proofs and programs, between data types and propositions, and therefore the prototype can be implemented and verified in the same language, without the need to translate between two different languages.

Acknowledgements. We would like to thank the referees for their invaluable suggestions and detailed comments. This research was supported by the CORCON FP7 Marie Curie International Research Project, PIRSES-GA-2013-612638; COMPUTAL FP7 Marie Curie International Research Project, PIRSES-GA-2011-294962; and by CA COST Action CA15123 European research network on types for programming and verification (EUTYPES). The PhD project by B. Igried is supported by Hashemite University (FFNF150).

References

