No Cover Image

Journal article 1263 views 127 downloads

The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth

Iain Fairley, Harshinie Karunarathna Orcid Logo, Ian Masters Orcid Logo

Renewable Energy, Volume: 125, Pages: 630 - 647

Swansea University Authors: Iain Fairley, Harshinie Karunarathna Orcid Logo, Ian Masters Orcid Logo

  • 38415.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (11.45MB)

Abstract

Extraction of energy from tidal streams has the potential to impact on the morphodynamics of areas such as sub-tidal sandbanks via alteration of hydrodynamics. Marine sediment transport is forced by both wave and tidal currents. Past work on tidal stream turbine impacts has largely ignored the contr...

Full description

Published in: Renewable Energy
ISSN: 0960-1481
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38415
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Extraction of energy from tidal streams has the potential to impact on the morphodynamics of areas such as sub-tidal sandbanks via alteration of hydrodynamics. Marine sediment transport is forced by both wave and tidal currents. Past work on tidal stream turbine impacts has largely ignored the contribution of waves. Here, a fully coupled hydrodynamic, spectral wave and sediment transport model is used to assess the importance of including waves in simulations of turbine impact on seabed morphodynamics. Assessment of this is important due to the additional expense of including waves in simulations. Focus is given to a sandbank in the Inner Sound of the Pentland Firth. It is found that inclusion of wave action alters hydrodynamics, although extent of alteration is dependant of wave direction. Magnitude of sediment transport is increased when waves are included in the simulations and this has implications for morphological and volumetric changes. Volumetric changes are substantially increased when wave action is included: the impact of including waves is greater than the impact of including tidal stream turbines. Therefore it is recommended that at tidal turbine array sites exposed to large swell or wind-seas, waves should be considered for inclusion in simulations of physical impact.
Keywords: Tidal stream turbines; Environmental impact assessment; Waves; Morphodynamics; Numerical modelling; Pentland Firth
College: Faculty of Science and Engineering
Start Page: 630
End Page: 647