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Although monolayer HfS2 and SnS2 do not have a direct band gap like MoS2, they are projected to 

have a much higher carrier mobility than MoS2. Their band offsets are favorable for their use with 

WSe2 in tunnel field effect transistors.  Here we study the effective masses, intrinsic defects and 

substitutional dopants of these dichalcogenides. We find that HfS2 has surprisingly small effective 

masses for a compound that might appear ionic. The S vacancy in HfS2 is found to be a shallow 

donor while that in SnS2 is a deep donor. Substitutional dopants at the S site are found to be shallow 

for donors and acceptors. This contrasts with MoS2 where donors and acceptors are not always 

shallow or with black phosphorus where dopants can reconstruct into non-doping configurations. It 

is pointed out that HfS2 is a more favorable semiconductor than MoS2 for semiconductor processing 

because it has more convenient CVD precursors previously used to make HfO2. 

 

   The open-shell transition metal dichalcogenides (TMDs) such as MoS2 have been intensively 

researched as important two-dimensional semiconductors.  Their band gap changes from an indirect 

gap for the bulk to direct gap for the monolayer case [1]. The relatively small dielectric screening in 

the monolayer case means that complex exciton behavior becomes important even for relative small 

band gaps [2]. Carriers can be manipulated between the degenerate valley states in valleytronics [3]. 

TMDs are also interesting as photo- and molecular sensors. On the other hand, for purely electronic 

devices, we can consider other layered semiconductors which might have a carrier higher mobility. 

   One proposed electronic device using TMDs is the heterojunction tunnel field effect transistor 

(TFET). In this case, the continued scaling of transistors for computation creates a need for very 

low power switches, in particular switches with a steep subthreshold slope below the thermionic 

limit of 60 mV/decade of a normal field effect transistor [4-7]. We note that TFETs operating in the 

subthreshold regime are also very sensitive sensor amplifiers [8]. TFETs would normally be built 

using heterojunctions of two lattice-matched III-V semiconductors with a staggered or broken-gap 

band alignment. However, the lattice-matching condition is not always met and this leads to 

interfacial mismatch defects which degrade switching performance. An alternative is to use stacked 

layer heterojunctions of two TMDs. TMDs offer a wide range of band gaps and band offsets [9-12], 

and because of the van der Waals inter-layer bonding, no lattice matching condition is needed to 

avoid dangling bond-type defects. Considering the band offsets of the various 2D semiconductors, a 

suitable choice is a p-type compound with d2 configuration such as WSe2 paired with an n-type d0 

compound such as HfS2 or SnS2 [9-12]. WSe2 has a suitable high ionization potential whereas HfS2 

and SnS2 have suitably deep electron affinities. SnS2 and HfS2 have s,p-like band edges and so, like 

black phosphorus, they have a higher phonon limited mobility of order 1000 cm2/V.s and lower 

effective masses than MoS2 [13,14].  

   The electronic properties of HfS2 or SnS2 are much less studied than the standard TMDs such as 

MoS2 or WSe2, It is particularly important to understand the intrinsic defects and anion vacancies 

because these defects can cause Fermi level pinning at the contacts [15-19], which causes a much 
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larger contact resistance. This is a principle cause of the under-performance of 2D devices [20,21]. 

Thus, this paper investigates the band edge states, the intrinsic defects and the substitutional dopants 

of these chalcogenides.  

 The calculations are carried out for periodic supercell models of the Hf/Sn disulfides using the 

CASTEP plane-wave density functional theory (DFT) code [22,23]. Ultra-soft pseudopotentials are 

used and the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation 

(GGA) is used for the electronic exchange-correlation functional for geometry relaxation. The HSE 

(Heyd-Scuseria-Ernzerhof) [24] hybrid functional is used for the calculation of the band gap and the 

heats of formation. The HSE parameters α and ω are set to 0.2 as in HSE06 to give band gaps 

consistent with experimental values. Spin-orbital coupling is not included. The plane wave cut-off 

energy is taken as 260 eV. All atomic structures are relaxed to a residual force of less than 10-5 

eV/atom. Van der Waals corrections [25] are included for bulk structures.  

   For the 2D Hf/Sn disulfide system, a convergence test finds that a vacuum layer thickness of 20Å 

in the z direction is enough to converge the formation energy of S vacancy, and that 5x5 supercells 

in the x,y direction are enough to allow us neglect the interaction of periodic images. The transition 

states of intrinsic defects are corrected using the Lany and Zunger scheme [26]. The formation 

energy of each charge state are given by  

 
where q is the charge on the system, Eq is the energy of charged system with a defect, EH is the 

energy of charged defect-free system. EV is the valence band maximum (VBM) and EF is the Fermi 

level with the respect to VBM. nα is the number of atoms of species α, μα is the relative chemical 

potential of element α. We note that the first two terms are equal to the difference between the total 

energy of charged defect system and total energy of the neutral defect-free system.  

HfS2 and SnS2 each have the 2H structure in which the metal site has an octahedral configuration. 

The lattice constant of HfS2 is calculated to be 3.68Å in PBE, which is 1.4% more than 

experimental value of 3.62Å [27]. The lattice constant of SnS2 is calculated to be 3.74Å, which is 

2.9% more than experimental value of 3.64Å [27].  

We then calculate the chemical potential for the S-rich and S-poor limits. In the S-rich limit, 

chemical potential of S is set to 0 eV. In the S-poor limit for HfS2, the S chemical potential is set to 

the Hf-HfS2 equilibrium, from the heat of formation of HfS2 (Table 1). This is calculated to be -5.10 

eV or 2.55 eV/S atom in HSE, compared to -2.58 eV/S atom experimentally [28]. For SnS2, the 

monovalent sulfide SnS exists between SnS2 and Sn metal [28-32], so the zone of S chemical 

potential for SnS2 ranges from 0 to -0.50 eV/ S atom, or 0 to -0.50 eV experimentally [30-32]. 

The band structures of bulk SnS2 and HfS2 have been studied for some time [33-37]. Fig. 1 and 2 

show the band structures of monolayer and bulk HfS2 and SnS2 calculated with the HSE functional. 

We see that there is an indirect band gap in both monolayer and bulk forms, which is different to the 

case of MoS2 and other d2 transition metal dichalcogenides. The band gap is from Γ to M for the 

monolayer and from Γ to L for the bulk. 

Table 2 compares the band gaps of these two materials calculated in PBE and HSE and the 

experimental band gaps for the bulk form [38]. Generally speaking, HSE06 corrects any under-

estimation of the band gap of PBE. 

The calculated Bader charges are +0.34 for Hf in HfS2 and +0.3 for Sn in SnS2 showing that the 

bonding is relatively non-polar in these compounds despite the formal ionic charges often used to 

describe their bonding.  
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Table 3 shows the calculated effective masses for SnS2 and HfS2. The non-polar bonding (only 

8% ionic for HfS2) explains the relatively dispersed band structures and the small effective masses 

of these compounds. The hole masses of SnS2 differ slightly from those of Gonzalez [37]. 

Fig 3 shows the calculated band alignments with respect to the vacuum level [11]. These were 

calculated using supercells containing a monolayer of sulphide and 20Ǻ of vacuum. This shows that 

WSe2 has a type II band alignment with monolayer HfS2 and SnS2 in HSE as desired for a vertically 

stacked heterojunction TFET. 

  We now consider the geometries and formation energies of the intrinsic defects. Fig.4(a) shows the 

vacancy configuration. When the S atom is removed, the Hf or Sn and S atoms around the vacancy 

all move slightly away from vacancy center, compared to the defect-free configuration. Fig. 4(b) 

shows the formation energy as a function of Fermi energy EF in the S-poor limit and the charge 

transition states. Here, the energies are plotted with respect to the charge neutrality level (CNL) [39] 

to enable both compounds to be plotted in a single diagram. For HfS2, the -2 state is stable across all 

of the gap and with no state in the gap. The transition state lies at the bottom of the conduction 

band, so the vacancy is a shallow donor. For SnS2, there is a transition level for –2 to +2 in the 

upper gap at +0.2 eV above the CNL. This vacancy is a deep donor.  

  Fig. 5(a) shows the partial density of states (PDOS) of the neutral defect state. For HfS2, there is a 

peak in the PDOS at the conduction band edge with EF lying at the conduction band edge. For SnS2, 

transition state +2/-2 lies in the upper gap, above a defect band, consistent with Fig 4. The tendency 

to lose two electrons is the same for HfS2 except that Fig. 4(b) now has two PDOS peaks for the 

+2/0 and 0/-2 states.  

  The behavior of the S vacancy in the d0 compound HfS2 differs from that of the S vacancy in the 

d2 compounds MoS2 where the neutral vacancy has a donor state in the upper band gap and a filled 

state at the valence band edge [18,40]. 

   The sulfur interstitial configuration is shown in Fig. 4(c). This is the adatom configuration found 

in many layered compounds. The S-S bond is calculated to be 1.99Å in HfS2 and 1.98Å in SnS2. 

The S-S bond is longer than the double bond and shorter than S-S single bond in S8.  Fig. 4(d) 

shows the formation energies and transition state of this defect in HSE06. PBE gives three transition 

states in the gap +2/+1, +1/0, 0/-2, while HSE shows two defect states, +1/0, 0/-2. The +1/0 state 

lies in the middle of gap, and the 0/-2 state lies at the conduction band edge. The orbitals for +2/+1 

and +1/0 states are also shown in Fig. 4(c). The +2/+1 orbitals consist of degenerate px and py states 

of the S adatom. The +1/0 orbitals have the same two degenerate orbitals but more located in 

underlying S atom. HSE gives a similar result, but only the +1/0 state is found, lying 0.7 eV below 

the CBM. This behavior is similar to the S interstitial in monolayer MoS2 [40]. (It should be noted 

that the S interlayer interstitial in bulk SnS2 has a slightly different behavior, where it tries to bond 

to both layers [31,32].)  

  The Hf interstitial has two configurations in monolayer HfS2, as seen in Figs. 4(e,g). (The Sn 

interstitial in SnS2 has similar behavior.) One configuration has two Hf atoms stacked vertically on 

top of each other called the ‘onsite’ or ‘split interstitial’. The other configuration places the extra Hf 

atom outside the layer at the hollow center of three S atoms in the ‘hollow interstitial’. Their 

formation energies are shown as a function of EF in Fig 4(d). 

    For the split interstitial, the adjacent S atoms move away from defect center to allow space for the 

extra metal atom. The two metal atoms are equivalent for the split interstitial. These atoms form in-

plane bonds with the three adjacent S atoms. The system is symmetric in the z direction. There are 4 

valence electrons on Hf and Sn, two of which form three bonds with S. The other electron forms a 

Hf-Hf or Sn-Sn bond. There is one unpaired electron left, which can easily ionise. Hence, the +2 

charge system dominates. The two electrons in Hf-Hf or Sn-Sn bond ionize if EF moves across the 
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transition energy. Both HfS2 and SnS2 have a similar mid-gap +4/+2 transition state. A mid-gap 

peak is seen at 0.4eV in Fig 4(c,d), where the transition state is located.   

The symmetry in the z direction is lost for the ‘hollow interstitial’. Three adjacent S atoms distort 

outward and out of the plane. There are two unpaired electrons in the extra Hf/Sn atom. Fig. 4(h) 

shows the transition states. The HfS2 has a +4/+2 transition near the VBM and SnS2 has nearly no 

transition state.  Overall, plotting the formation energy of both interstitials across the band gap, the 

hollow site is the lowest for HfS2 and the lowest for SnS2 except very close to the valence band. 

The metal vacancy states have also been calculated. Their formation energies for the neutral 

defects for the S-rich (metal-poor) limit are 4.38 eV and 5.31 eV for HfS2 and SnS2, respectively. 

These formation energies are much higher than for the other defects. Therefore, we conclude that Hf 

and Sn vacancies are not very important. 

We have also calculated the formation energies in PBE. We find that while PBE underestimates 

band gap and the formation energy, in most cases it gives right location of charge transition state 

with respect to the CNL. As Hf/SnS2 is used for the n-type layer of the TFET, so EF will lie close to 

the CBM. The S vacancy, interstitial and Hf/Sn interstitial each have a positive formation energy 

near the CBM, which means that they will not form spontaneously.   

Fig 5 shows the substitutional doping states at the S site. The Br donor is calculated to be a 

shallow state, with a transition state near the respective band edge. The As acceptor is deeper, but 

still reasonably close to the VBM. This is very desirable if these compounds are to be used for a 

TFET. The fact that neither of the dopant sites reconstructs into a non-doping configuration explains 

why these sites are basically shallow, unlike the case of dopants in black phosphorus [41]. 

We summarise the situation of these two compounds for use as a TFET. Their band offsets are as 

desired. SnS2 has a low effective mass and is bipolar, with shallow donors and acceptors. Its main 

disadvantage is that it has only a small range of S chemical potential for which it is stable, which is 

important for growth by chemical vapor deposition (CVD). Superficially, HfS2 is more ionic than 

SnS2 so might be expected to have higher effective masses. However, in practice, its bonding is not 

very polar, and its effective masses are still low. Its big advantage is that it is the only stable sulfide 

of Hf, with a large stable range of S chemical potential. It has the great advantage that Hf CVD 

precursors are highly developed from the use of HfO2 as a high K oxide in microelectronics, 

whereas precursors for MoS2 like Mo(CO)6 are less volatile and poisonous. The disadvantage of 

HfS2 is that the S vacancy is a shallow donor. This will require CVD of HfS2 to be carried out in S-

rich conditions to increase the S vacancy formation energy and decrease its concentration. This 

might result in the formation of S interstitial adatoms, as already seen by Aretouli et al [42]. Such 

adatoms may affect the quality of epitaxial growth. This would require careful control of S activity. 

Thus, HfS2 is competing with InSe for use in TFETs. InSe has suitable band offsets, bipolar doping 

ability and suitably behaved intrinsic defects [43], but may be less convenient CVD. 

In conclusion, HfS2 and SnS2 are indirect band gap semiconductors but otherwise very suitable 

for electronic devices because of their low effective masses and higher mobility than MoS2. The 

high heat of formation makes it convenient for CVD. The main intrinsic defects in Hf/SnS2 are the 

S vacancy, S interstitial and Hf/Sn interstitial. The S vacancy forms a gap state in SnS2 and a 

shallow donor in HfS2. The S interstitial is a low formation adatom. Substitutional dopants give 

reasonably shallow states. Therefore, both HfS2 and SnS2 can be considered as building blocks for 

TFETs.  
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Table 1.  Heats of formation [28,29]. 

 eV/mole 

MoS2 -3.04 

HfS2 -5.16 

SnS2 -1.87 

SnS -1.36 

 

Table 2 Calculated Band gaps of HfS2 and SnS2 compared to experimental values [13,38,12]. ML = 

monolayer, CNL = charge neutrality level. 

Band gaps 

(eV) 

HfS2 SnS2 

 ML bulk ML Bulk 

PBE 0.98  1.50  

HSE 2.05 1.68 2.40 2.30 

SX 2.12 1.95 2.68 2.0 

Exp   1.98  2.18 

CNL (ML) 1.11  1.55  

 

Table 3 Effective masses for monolayer. e=electron, h=hole, x and y are along ΓK and ΓM 

respectively. 

 

 HfS2 SnS2 

mex 0.25 0.27 

mey 1.85 0.72 

mhx 0.48 1.2 

mhy 0.49 2.8 
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Fig. 1. Band structures for the monolayers. 
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Fig. 2. Band structures for the Bulk. 
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Fig. 3. Calculated band offsets for stacked monolayers of  HfS2, SnS2 and WSe2. 
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Fig. 4. Partial density of states for the defect-free monolayer, S vacancy, S interstitial, Hf onsite 

interstitial an hollow site interstitial, all in their neutral states, for HfS2 and SnS2. 
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Fig. 5. Geometries and defect foramtion energies vs Fermi energies for S vacancy, S adatom 

interstitial, Hf split interstitial and Hf ‘hollow interstitial’ for HfS2 and SnS2. (f,g) compares the 

formation energies for each metal interstitial defect for HfS2 or SnS2 alone. 
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Fig. 6. (a,b) Geometries of substitutional Br and As dopants at the S site, and (c) formation energy 

vs. Fermi energy. 


